Органо-монтморілоніт, модифікований полііоненами, для полімерних композитів

dc.citation.epage190
dc.citation.issue2
dc.citation.spage187
dc.contributor.affiliationУкраїнський державний хіміко-технологічний університет
dc.contributor.affiliationЛатвійський університет біонаук та технологій
dc.contributor.affiliationUkrainian State University of Chemical Technology
dc.contributor.affiliationLatvia University of Life Sciences and Technologies
dc.contributor.authorСухий, М. П.
dc.contributor.authorТоміло, В. І.
dc.contributor.authorСухий, К. М.
dc.contributor.authorБеляновська, О. А.
dc.contributor.authorВайварс, Г.
dc.contributor.authorSukhyi, M. P.
dc.contributor.authorTomilo, V. I.
dc.contributor.authorSukhyi, K. M.
dc.contributor.authorBelyanovskaya, E. A.
dc.contributor.authorVaivars, G.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T07:35:35Z
dc.date.available2024-01-22T07:35:35Z
dc.date.created2020-03-16
dc.date.issued2020-03-16
dc.description.abstractРозроблено технологію отримання монтморилоніту, модифікованого поліоніонами. Було показано, що макромолекули полімерної четвертинної амонієвої солі інтеркалюють у міжкристалічний простір монтморилоніту, що супроводжується збільшенням міжшарових відстаней з 1,08 до 1,67 нм. Запропоновано метод синтезу монтморилоніту, модифікованого поліоніонами. Виявлено оптимальні умови сорбції молекул полімеону монтморилонітом: концентрація водної дисперсії монтморилоніту – 1 %, температура реакційної середовища – 40 °С, відношення монтморилоніту-поліонієну – 3: 1, обробка час – 24 години.
dc.description.abstractThe technology for producing montmorillonite modified with polyionenes has been developed. It was shown that macromolecular polymer intercalation of the quaternary ammonium salt of montmorillonite intercrystalline space is accompanied by an increase in interlayer distances from 1.08 to 1.67 nm. A method for the synthesis of montmorillonite modified with polyionenes is proposed. The optimal conditions for the sorption of polymeonene molecules by montmorillonite were found: the concentration of the aqueous dispersion of montmorillonite is 1 %, the temperature of the reaction medium is 40 °C, the ratio of montmorillonite-polyionene is 3: 1, the processing time is 24 hours.
dc.format.extent187-190
dc.format.pages4
dc.identifier.citationОргано-монтморілоніт, модифікований полііоненами, для полімерних композитів / М. П. Сухий, В. І. Томіло, К. М. Сухий, О. А. Беляновська, Г. Вайварс // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2020. — Том 3. — № 2. — С. 187–190.
dc.identifier.citationenOrgano-montmorillonite modified by polyionenes for polymer composites / M. P. Sukhyi, V. I. Tomilo, K. M. Sukhyi, E. A. Belyanovskaya, G. Vaivars // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 2. — P. 187–190.
dc.identifier.doidoi.org/10.23939/ctas2020.02.187
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60828
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (3), 2020
dc.relation.references1. Utracki, L. A. (2004). Clay-containing polymeric nanocomposites. Smithers Rapra Publishing, Shawbury, Shrewsbury, Shropshire, SY4 4NR, UK.
dc.relation.references2. Wang, W., Zhang, H., Jia, R., Dai Ya., Dong, H., Hou, H., Guo, Q. (2018). High performance extrusion blown starch/polyvinyl alcohol/clay nanocomposite films. Food Hydrocolloids. 79, 534–543. https://doi.org/10.1016/j.foodhyd.2017.12.013
dc.relation.references3. De León-Almazan, C. M., Estrada-Moreno, I. A., PáramoGarcía, U., Rivera-Armenta, J. L. (2018). Polyaniline/ clay nanocomposites. A comparative approach on the doping acid and the clay spacing technique. Synthetic Metals, 236, 61–67. https://doi.org/10.1016/j.synthmet.2018.01.006
dc.relation.references4. Chen, Ch., Khobaib, M., Curliss, D. (2003). Epoxy layered–silicate nanocomposites. Progress in Organic Coatings, 47, 376–383. https://doi.org/10.1016/S0300-9440(03)00130-9
dc.relation.references5. Li, X., Yang, J., Zhou, X., Wei, Q., Li, J., Biwei, Q., Wunderlich, K., Wang, X. (2018). Effect of compatibilizer on morphology, rheology and properties of SEBS/clay nanocomposites. Polymer Testing. 67, 435–440 https://doi.org/10.1016/j.polymertesting.2018.03.037
dc.relation.references6. Zare, Y., Rhee, K. Y. (2017). Multistep modeling of Young’s modulus in polymer/clay nanocomposites assuming the intercalation/exfoliation of clay layers and the interphase between polymer matrix and nanoparticles. Composites Part A: Appl. Sci. and Manufacturing. 102, 137–144. https://doi.org/10.1016/j.compositesa.2017.08.004
dc.relation.references7. Zhong, Y., Zhu, Z., Wang, S. (2018). Synthesis and rheological properties of polystyrene/layered silicate. Chemistry and Technologies, 26(1), 9–19.
dc.relation.references8. Iturrondobeitia, M., Ibarretxe, J., Okariz, A., Jimbert, P., Fernandez-Martinez, R., Guraya, T. (2018). Semiautomated quantification of the microstructure of PLA/clay nanocomposites to improve the prediction of the elastic modulus. Polymer Testing, 66, 280–291 https://doi.org/10.1016/j.polymertesting.2018.01.015
dc.relation.references9. Zabihi, O., Ahmadi, M., Nikafshar, S., Preyeswary, K. Ch., Naebe, M. (2018). A technical review on epoxyclay nanocomposites: Structure, properties, and their applications in fiber reinforced composites. Composites Part B: Engineering, 135, 1–24 https://doi.org/10.1016/j.compositesb.2017.09.066
dc.relation.references10. Kotal, M., Bhowmick, A. K. (2015). Polymer nanocomposites from modified clays: Recent advances and challenges. Progress in Polymer Sci., 51, 127–187. https://doi.org/10.1016/j.progpolymsci.2015.10.001
dc.relation.references11. Belušáková, S., Sola-Llano, R., Lopez Arbeloa, I., Martínez-Martínez, V., Bujdák, J. (2018). Resonance energy transfer between dye molecules in hybrid films of a layered silicate, including the effect of dye concentration thereon. Appl. Clay Sci., 155, 57–64. https://doi.org/10.1016/j.clay.2018.01.001
dc.relation.references12. Volzone, C., Garrido, L. B. (2012). High Temperature Structural Modifications of Intercalated Montmorillonite Clay Mineral with OH-Al Polymers. Procedia Materials Sci., 1, 164–171. https://doi.org/10.1016/j.mspro.2012.06.022
dc.relation.references13. Yebra-Rodriguez, A., Alvarez-Lloret, P., Cardell, C. A., Rodriguez-Navarro, B. (2011). Influence of processing conditions on the optical and crystallographic properties of injection molded polyamide-6 and polyamide-6/montmorillonite nanocomposites. Appl. Clay Sci., 51, 414–418 https://doi.org/10.1016/j.clay.2010.12.031
dc.relation.references14. Faghihi, K., Taher, M., Hajibeygi, M. (2016). Preparation and characterization of newpolyamide / montmorillonite nanocomposites containing azo moiety in the main chain. Arab. J. Chem., 9, 1496–1502. https://doi.org/10.1016/j.arabjc.2012.03.010
dc.relation.references15. Beuguel, Q., Ville, J., Crepin-Leblond, J., Mederic, P., Aubry, T. (2017). Influence of clay mineral structure and polyamide polarity on the structural and morphological properties of clay polypropylene/polyamide nanocomposites. Appl. Clay Sci., 135, 253– 259. https://doi.org/10.1016/j.clay.2016.09.034
dc.relation.references16. Zulfiqar, S., Sarwar, M. I. (2009). Synthesis and Characterization of Aromatic-Aliphatic Polyamide Nanocomposite Films Incorporating a Thermally Stable Organoclay. Nanoscale Res. Lett., 4, 391–399. https://doi.org/10.1007/s11671-009-9258-1
dc.relation.references17. Follain, N., Alexandre, B., Chappey, C., Colasse, L., Médéric, P., Marais, S. (2016). Barrier properties of polyamide 12/montmorillonite nanocomposites: Effect of clay structure and mixing conditions. Composites Sci. and Technol., 136, 18–28. https://doi.org/10.1016/j.compscitech.2016.09.023
dc.relation.references18. Wang, Z., Pinnavaia, T. J. (1998). Hybrid organicinorganic nanocomposites: exfoliation of magadiite nanolayers in an elastomeric epoxy polymer. Chem. Mater., 10, 1820–1826. https://doi.org/10.1021/cm970784o
dc.relation.references19. Burnside, S.D., Giannelis, E. P. (1995). Synthesis and properties of new poly (dimethylsiloxane) nanocomposites. Chem. Mater., 7, 1597–1600. https://doi.org/10.1021/cm00057a001
dc.relation.references20. Alexandre, M., Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng., 28, 1– 63. https://doi.org/10.1016/S0927-796X(00)00012-7
dc.relation.references21. Zulfiqar, S., Ahmad, Z., Ishaq, M., Saeed, S., Sarwar, M. I. (2007). Thermal and mechanical properties of SEBS-gMA based inorganic composite materials. J. Mater. Sci., 42, 93–100. https://doi.org/10.1007/s10853-006-1082-8.
dc.relation.references22. Paul, M. A., Alexandre, M., Degée, P., Henrist, C., Rulmont, A., Dubois, P. (2003). New nanocomposite materials based on plasticized poly (L-lactide) and organomodified montmorillonites: thermal and morphological study. Polymer, 44, 443–450. https://doi.org/10.1016/S0032-3861(02)00778-4
dc.relation.references23. Messersmith, P. B., Giannelis, E. P. (1994). Synthesis and characterization of layered silicateepoxy nanocomposites. Chem. Mater., 6, 1719–1725. http://dx.doi.org/10.1021/cm00046a026
dc.relation.referencesen1. Utracki, L. A. (2004). Clay-containing polymeric nanocomposites. Smithers Rapra Publishing, Shawbury, Shrewsbury, Shropshire, SY4 4NR, UK.
dc.relation.referencesen2. Wang, W., Zhang, H., Jia, R., Dai Ya., Dong, H., Hou, H., Guo, Q. (2018). High performance extrusion blown starch/polyvinyl alcohol/clay nanocomposite films. Food Hydrocolloids. 79, 534–543. https://doi.org/10.1016/j.foodhyd.2017.12.013
dc.relation.referencesen3. De León-Almazan, C. M., Estrada-Moreno, I. A., PáramoGarcía, U., Rivera-Armenta, J. L. (2018). Polyaniline/ clay nanocomposites. A comparative approach on the doping acid and the clay spacing technique. Synthetic Metals, 236, 61–67. https://doi.org/10.1016/j.synthmet.2018.01.006
dc.relation.referencesen4. Chen, Ch., Khobaib, M., Curliss, D. (2003). Epoxy layered–silicate nanocomposites. Progress in Organic Coatings, 47, 376–383. https://doi.org/10.1016/S0300-9440(03)00130-9
dc.relation.referencesen5. Li, X., Yang, J., Zhou, X., Wei, Q., Li, J., Biwei, Q., Wunderlich, K., Wang, X. (2018). Effect of compatibilizer on morphology, rheology and properties of SEBS/clay nanocomposites. Polymer Testing. 67, 435–440 https://doi.org/10.1016/j.polymertesting.2018.03.037
dc.relation.referencesen6. Zare, Y., Rhee, K. Y. (2017). Multistep modeling of Young’s modulus in polymer/clay nanocomposites assuming the intercalation/exfoliation of clay layers and the interphase between polymer matrix and nanoparticles. Composites Part A: Appl. Sci. and Manufacturing. 102, 137–144. https://doi.org/10.1016/j.compositesa.2017.08.004
dc.relation.referencesen7. Zhong, Y., Zhu, Z., Wang, S. (2018). Synthesis and rheological properties of polystyrene/layered silicate. Chemistry and Technologies, 26(1), 9–19.
dc.relation.referencesen8. Iturrondobeitia, M., Ibarretxe, J., Okariz, A., Jimbert, P., Fernandez-Martinez, R., Guraya, T. (2018). Semiautomated quantification of the microstructure of PLA/clay nanocomposites to improve the prediction of the elastic modulus. Polymer Testing, 66, 280–291 https://doi.org/10.1016/j.polymertesting.2018.01.015
dc.relation.referencesen9. Zabihi, O., Ahmadi, M., Nikafshar, S., Preyeswary, K. Ch., Naebe, M. (2018). A technical review on epoxyclay nanocomposites: Structure, properties, and their applications in fiber reinforced composites. Composites Part B: Engineering, 135, 1–24 https://doi.org/10.1016/j.compositesb.2017.09.066
dc.relation.referencesen10. Kotal, M., Bhowmick, A. K. (2015). Polymer nanocomposites from modified clays: Recent advances and challenges. Progress in Polymer Sci., 51, 127–187. https://doi.org/10.1016/j.progpolymsci.2015.10.001
dc.relation.referencesen11. Belušáková, S., Sola-Llano, R., Lopez Arbeloa, I., Martínez-Martínez, V., Bujdák, J. (2018). Resonance energy transfer between dye molecules in hybrid films of a layered silicate, including the effect of dye concentration thereon. Appl. Clay Sci., 155, 57–64. https://doi.org/10.1016/j.clay.2018.01.001
dc.relation.referencesen12. Volzone, C., Garrido, L. B. (2012). High Temperature Structural Modifications of Intercalated Montmorillonite Clay Mineral with OH-Al Polymers. Procedia Materials Sci., 1, 164–171. https://doi.org/10.1016/j.mspro.2012.06.022
dc.relation.referencesen13. Yebra-Rodriguez, A., Alvarez-Lloret, P., Cardell, C. A., Rodriguez-Navarro, B. (2011). Influence of processing conditions on the optical and crystallographic properties of injection molded polyamide-6 and polyamide-6/montmorillonite nanocomposites. Appl. Clay Sci., 51, 414–418 https://doi.org/10.1016/j.clay.2010.12.031
dc.relation.referencesen14. Faghihi, K., Taher, M., Hajibeygi, M. (2016). Preparation and characterization of newpolyamide, montmorillonite nanocomposites containing azo moiety in the main chain. Arab. J. Chem., 9, 1496–1502. https://doi.org/10.1016/j.arabjc.2012.03.010
dc.relation.referencesen15. Beuguel, Q., Ville, J., Crepin-Leblond, J., Mederic, P., Aubry, T. (2017). Influence of clay mineral structure and polyamide polarity on the structural and morphological properties of clay polypropylene/polyamide nanocomposites. Appl. Clay Sci., 135, 253– 259. https://doi.org/10.1016/j.clay.2016.09.034
dc.relation.referencesen16. Zulfiqar, S., Sarwar, M. I. (2009). Synthesis and Characterization of Aromatic-Aliphatic Polyamide Nanocomposite Films Incorporating a Thermally Stable Organoclay. Nanoscale Res. Lett., 4, 391–399. https://doi.org/10.1007/s11671-009-9258-1
dc.relation.referencesen17. Follain, N., Alexandre, B., Chappey, C., Colasse, L., Médéric, P., Marais, S. (2016). Barrier properties of polyamide 12/montmorillonite nanocomposites: Effect of clay structure and mixing conditions. Composites Sci. and Technol., 136, 18–28. https://doi.org/10.1016/j.compscitech.2016.09.023
dc.relation.referencesen18. Wang, Z., Pinnavaia, T. J. (1998). Hybrid organicinorganic nanocomposites: exfoliation of magadiite nanolayers in an elastomeric epoxy polymer. Chem. Mater., 10, 1820–1826. https://doi.org/10.1021/cm970784o
dc.relation.referencesen19. Burnside, S.D., Giannelis, E. P. (1995). Synthesis and properties of new poly (dimethylsiloxane) nanocomposites. Chem. Mater., 7, 1597–1600. https://doi.org/10.1021/cm00057a001
dc.relation.referencesen20. Alexandre, M., Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng., 28, 1– 63. https://doi.org/10.1016/S0927-796X(00)00012-7
dc.relation.referencesen21. Zulfiqar, S., Ahmad, Z., Ishaq, M., Saeed, S., Sarwar, M. I. (2007). Thermal and mechanical properties of SEBS-gMA based inorganic composite materials. J. Mater. Sci., 42, 93–100. https://doi.org/10.1007/s10853-006-1082-8.
dc.relation.referencesen22. Paul, M. A., Alexandre, M., Degée, P., Henrist, C., Rulmont, A., Dubois, P. (2003). New nanocomposite materials based on plasticized poly (L-lactide) and organomodified montmorillonites: thermal and morphological study. Polymer, 44, 443–450. https://doi.org/10.1016/S0032-3861(02)00778-4
dc.relation.referencesen23. Messersmith, P. B., Giannelis, E. P. (1994). Synthesis and characterization of layered silicateepoxy nanocomposites. Chem. Mater., 6, 1719–1725. http://dx.doi.org/10.1021/cm00046a026
dc.relation.urihttps://doi.org/10.1016/j.foodhyd.2017.12.013
dc.relation.urihttps://doi.org/10.1016/j.synthmet.2018.01.006
dc.relation.urihttps://doi.org/10.1016/S0300-9440(03)00130-9
dc.relation.urihttps://doi.org/10.1016/j.polymertesting.2018.03.037
dc.relation.urihttps://doi.org/10.1016/j.compositesa.2017.08.004
dc.relation.urihttps://doi.org/10.1016/j.polymertesting.2018.01.015
dc.relation.urihttps://doi.org/10.1016/j.compositesb.2017.09.066
dc.relation.urihttps://doi.org/10.1016/j.progpolymsci.2015.10.001
dc.relation.urihttps://doi.org/10.1016/j.clay.2018.01.001
dc.relation.urihttps://doi.org/10.1016/j.mspro.2012.06.022
dc.relation.urihttps://doi.org/10.1016/j.clay.2010.12.031
dc.relation.urihttps://doi.org/10.1016/j.arabjc.2012.03.010
dc.relation.urihttps://doi.org/10.1016/j.clay.2016.09.034
dc.relation.urihttps://doi.org/10.1007/s11671-009-9258-1
dc.relation.urihttps://doi.org/10.1016/j.compscitech.2016.09.023
dc.relation.urihttps://doi.org/10.1021/cm970784o
dc.relation.urihttps://doi.org/10.1021/cm00057a001
dc.relation.urihttps://doi.org/10.1016/S0927-796X(00)00012-7
dc.relation.urihttps://doi.org/10.1007/s10853-006-1082-8
dc.relation.urihttps://doi.org/10.1016/S0032-3861(02)00778-4
dc.relation.urihttp://dx.doi.org/10.1021/cm00046a026
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subjectмодифікація
dc.subjectмонтморилоніт
dc.subjectполіоніони
dc.subjectвідлущування
dc.subjectmodification
dc.subjectmontmorillonite
dc.subjectpolyionenes
dc.subjectexfoliation
dc.titleОргано-монтморілоніт, модифікований полііоненами, для полімерних композитів
dc.title.alternativeOrgano-montmorillonite modified by polyionenes for polymer composites
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v3n2_Sukhyi_M_P-Organo_montmorillonite_187-190.pdf
Size:
300.31 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v3n2_Sukhyi_M_P-Organo_montmorillonite_187-190__COVER.png
Size:
498.28 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.91 KB
Format:
Plain Text
Description: