Органо-монтморілоніт, модифікований полііоненами, для полімерних композитів
dc.citation.epage | 190 | |
dc.citation.issue | 2 | |
dc.citation.spage | 187 | |
dc.contributor.affiliation | Український державний хіміко-технологічний університет | |
dc.contributor.affiliation | Латвійський університет біонаук та технологій | |
dc.contributor.affiliation | Ukrainian State University of Chemical Technology | |
dc.contributor.affiliation | Latvia University of Life Sciences and Technologies | |
dc.contributor.author | Сухий, М. П. | |
dc.contributor.author | Томіло, В. І. | |
dc.contributor.author | Сухий, К. М. | |
dc.contributor.author | Беляновська, О. А. | |
dc.contributor.author | Вайварс, Г. | |
dc.contributor.author | Sukhyi, M. P. | |
dc.contributor.author | Tomilo, V. I. | |
dc.contributor.author | Sukhyi, K. M. | |
dc.contributor.author | Belyanovskaya, E. A. | |
dc.contributor.author | Vaivars, G. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T07:35:35Z | |
dc.date.available | 2024-01-22T07:35:35Z | |
dc.date.created | 2020-03-16 | |
dc.date.issued | 2020-03-16 | |
dc.description.abstract | Розроблено технологію отримання монтморилоніту, модифікованого поліоніонами. Було показано, що макромолекули полімерної четвертинної амонієвої солі інтеркалюють у міжкристалічний простір монтморилоніту, що супроводжується збільшенням міжшарових відстаней з 1,08 до 1,67 нм. Запропоновано метод синтезу монтморилоніту, модифікованого поліоніонами. Виявлено оптимальні умови сорбції молекул полімеону монтморилонітом: концентрація водної дисперсії монтморилоніту – 1 %, температура реакційної середовища – 40 °С, відношення монтморилоніту-поліонієну – 3: 1, обробка час – 24 години. | |
dc.description.abstract | The technology for producing montmorillonite modified with polyionenes has been developed. It was shown that macromolecular polymer intercalation of the quaternary ammonium salt of montmorillonite intercrystalline space is accompanied by an increase in interlayer distances from 1.08 to 1.67 nm. A method for the synthesis of montmorillonite modified with polyionenes is proposed. The optimal conditions for the sorption of polymeonene molecules by montmorillonite were found: the concentration of the aqueous dispersion of montmorillonite is 1 %, the temperature of the reaction medium is 40 °C, the ratio of montmorillonite-polyionene is 3: 1, the processing time is 24 hours. | |
dc.format.extent | 187-190 | |
dc.format.pages | 4 | |
dc.identifier.citation | Органо-монтморілоніт, модифікований полііоненами, для полімерних композитів / М. П. Сухий, В. І. Томіло, К. М. Сухий, О. А. Беляновська, Г. Вайварс // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2020. — Том 3. — № 2. — С. 187–190. | |
dc.identifier.citationen | Organo-montmorillonite modified by polyionenes for polymer composites / M. P. Sukhyi, V. I. Tomilo, K. M. Sukhyi, E. A. Belyanovskaya, G. Vaivars // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 2. — P. 187–190. | |
dc.identifier.doi | doi.org/10.23939/ctas2020.02.187 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60828 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (3), 2020 | |
dc.relation.references | 1. Utracki, L. A. (2004). Clay-containing polymeric nanocomposites. Smithers Rapra Publishing, Shawbury, Shrewsbury, Shropshire, SY4 4NR, UK. | |
dc.relation.references | 2. Wang, W., Zhang, H., Jia, R., Dai Ya., Dong, H., Hou, H., Guo, Q. (2018). High performance extrusion blown starch/polyvinyl alcohol/clay nanocomposite films. Food Hydrocolloids. 79, 534–543. https://doi.org/10.1016/j.foodhyd.2017.12.013 | |
dc.relation.references | 3. De León-Almazan, C. M., Estrada-Moreno, I. A., PáramoGarcía, U., Rivera-Armenta, J. L. (2018). Polyaniline/ clay nanocomposites. A comparative approach on the doping acid and the clay spacing technique. Synthetic Metals, 236, 61–67. https://doi.org/10.1016/j.synthmet.2018.01.006 | |
dc.relation.references | 4. Chen, Ch., Khobaib, M., Curliss, D. (2003). Epoxy layered–silicate nanocomposites. Progress in Organic Coatings, 47, 376–383. https://doi.org/10.1016/S0300-9440(03)00130-9 | |
dc.relation.references | 5. Li, X., Yang, J., Zhou, X., Wei, Q., Li, J., Biwei, Q., Wunderlich, K., Wang, X. (2018). Effect of compatibilizer on morphology, rheology and properties of SEBS/clay nanocomposites. Polymer Testing. 67, 435–440 https://doi.org/10.1016/j.polymertesting.2018.03.037 | |
dc.relation.references | 6. Zare, Y., Rhee, K. Y. (2017). Multistep modeling of Young’s modulus in polymer/clay nanocomposites assuming the intercalation/exfoliation of clay layers and the interphase between polymer matrix and nanoparticles. Composites Part A: Appl. Sci. and Manufacturing. 102, 137–144. https://doi.org/10.1016/j.compositesa.2017.08.004 | |
dc.relation.references | 7. Zhong, Y., Zhu, Z., Wang, S. (2018). Synthesis and rheological properties of polystyrene/layered silicate. Chemistry and Technologies, 26(1), 9–19. | |
dc.relation.references | 8. Iturrondobeitia, M., Ibarretxe, J., Okariz, A., Jimbert, P., Fernandez-Martinez, R., Guraya, T. (2018). Semiautomated quantification of the microstructure of PLA/clay nanocomposites to improve the prediction of the elastic modulus. Polymer Testing, 66, 280–291 https://doi.org/10.1016/j.polymertesting.2018.01.015 | |
dc.relation.references | 9. Zabihi, O., Ahmadi, M., Nikafshar, S., Preyeswary, K. Ch., Naebe, M. (2018). A technical review on epoxyclay nanocomposites: Structure, properties, and their applications in fiber reinforced composites. Composites Part B: Engineering, 135, 1–24 https://doi.org/10.1016/j.compositesb.2017.09.066 | |
dc.relation.references | 10. Kotal, M., Bhowmick, A. K. (2015). Polymer nanocomposites from modified clays: Recent advances and challenges. Progress in Polymer Sci., 51, 127–187. https://doi.org/10.1016/j.progpolymsci.2015.10.001 | |
dc.relation.references | 11. Belušáková, S., Sola-Llano, R., Lopez Arbeloa, I., Martínez-Martínez, V., Bujdák, J. (2018). Resonance energy transfer between dye molecules in hybrid films of a layered silicate, including the effect of dye concentration thereon. Appl. Clay Sci., 155, 57–64. https://doi.org/10.1016/j.clay.2018.01.001 | |
dc.relation.references | 12. Volzone, C., Garrido, L. B. (2012). High Temperature Structural Modifications of Intercalated Montmorillonite Clay Mineral with OH-Al Polymers. Procedia Materials Sci., 1, 164–171. https://doi.org/10.1016/j.mspro.2012.06.022 | |
dc.relation.references | 13. Yebra-Rodriguez, A., Alvarez-Lloret, P., Cardell, C. A., Rodriguez-Navarro, B. (2011). Influence of processing conditions on the optical and crystallographic properties of injection molded polyamide-6 and polyamide-6/montmorillonite nanocomposites. Appl. Clay Sci., 51, 414–418 https://doi.org/10.1016/j.clay.2010.12.031 | |
dc.relation.references | 14. Faghihi, K., Taher, M., Hajibeygi, M. (2016). Preparation and characterization of newpolyamide / montmorillonite nanocomposites containing azo moiety in the main chain. Arab. J. Chem., 9, 1496–1502. https://doi.org/10.1016/j.arabjc.2012.03.010 | |
dc.relation.references | 15. Beuguel, Q., Ville, J., Crepin-Leblond, J., Mederic, P., Aubry, T. (2017). Influence of clay mineral structure and polyamide polarity on the structural and morphological properties of clay polypropylene/polyamide nanocomposites. Appl. Clay Sci., 135, 253– 259. https://doi.org/10.1016/j.clay.2016.09.034 | |
dc.relation.references | 16. Zulfiqar, S., Sarwar, M. I. (2009). Synthesis and Characterization of Aromatic-Aliphatic Polyamide Nanocomposite Films Incorporating a Thermally Stable Organoclay. Nanoscale Res. Lett., 4, 391–399. https://doi.org/10.1007/s11671-009-9258-1 | |
dc.relation.references | 17. Follain, N., Alexandre, B., Chappey, C., Colasse, L., Médéric, P., Marais, S. (2016). Barrier properties of polyamide 12/montmorillonite nanocomposites: Effect of clay structure and mixing conditions. Composites Sci. and Technol., 136, 18–28. https://doi.org/10.1016/j.compscitech.2016.09.023 | |
dc.relation.references | 18. Wang, Z., Pinnavaia, T. J. (1998). Hybrid organicinorganic nanocomposites: exfoliation of magadiite nanolayers in an elastomeric epoxy polymer. Chem. Mater., 10, 1820–1826. https://doi.org/10.1021/cm970784o | |
dc.relation.references | 19. Burnside, S.D., Giannelis, E. P. (1995). Synthesis and properties of new poly (dimethylsiloxane) nanocomposites. Chem. Mater., 7, 1597–1600. https://doi.org/10.1021/cm00057a001 | |
dc.relation.references | 20. Alexandre, M., Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng., 28, 1– 63. https://doi.org/10.1016/S0927-796X(00)00012-7 | |
dc.relation.references | 21. Zulfiqar, S., Ahmad, Z., Ishaq, M., Saeed, S., Sarwar, M. I. (2007). Thermal and mechanical properties of SEBS-gMA based inorganic composite materials. J. Mater. Sci., 42, 93–100. https://doi.org/10.1007/s10853-006-1082-8. | |
dc.relation.references | 22. Paul, M. A., Alexandre, M., Degée, P., Henrist, C., Rulmont, A., Dubois, P. (2003). New nanocomposite materials based on plasticized poly (L-lactide) and organomodified montmorillonites: thermal and morphological study. Polymer, 44, 443–450. https://doi.org/10.1016/S0032-3861(02)00778-4 | |
dc.relation.references | 23. Messersmith, P. B., Giannelis, E. P. (1994). Synthesis and characterization of layered silicateepoxy nanocomposites. Chem. Mater., 6, 1719–1725. http://dx.doi.org/10.1021/cm00046a026 | |
dc.relation.referencesen | 1. Utracki, L. A. (2004). Clay-containing polymeric nanocomposites. Smithers Rapra Publishing, Shawbury, Shrewsbury, Shropshire, SY4 4NR, UK. | |
dc.relation.referencesen | 2. Wang, W., Zhang, H., Jia, R., Dai Ya., Dong, H., Hou, H., Guo, Q. (2018). High performance extrusion blown starch/polyvinyl alcohol/clay nanocomposite films. Food Hydrocolloids. 79, 534–543. https://doi.org/10.1016/j.foodhyd.2017.12.013 | |
dc.relation.referencesen | 3. De León-Almazan, C. M., Estrada-Moreno, I. A., PáramoGarcía, U., Rivera-Armenta, J. L. (2018). Polyaniline/ clay nanocomposites. A comparative approach on the doping acid and the clay spacing technique. Synthetic Metals, 236, 61–67. https://doi.org/10.1016/j.synthmet.2018.01.006 | |
dc.relation.referencesen | 4. Chen, Ch., Khobaib, M., Curliss, D. (2003). Epoxy layered–silicate nanocomposites. Progress in Organic Coatings, 47, 376–383. https://doi.org/10.1016/S0300-9440(03)00130-9 | |
dc.relation.referencesen | 5. Li, X., Yang, J., Zhou, X., Wei, Q., Li, J., Biwei, Q., Wunderlich, K., Wang, X. (2018). Effect of compatibilizer on morphology, rheology and properties of SEBS/clay nanocomposites. Polymer Testing. 67, 435–440 https://doi.org/10.1016/j.polymertesting.2018.03.037 | |
dc.relation.referencesen | 6. Zare, Y., Rhee, K. Y. (2017). Multistep modeling of Young’s modulus in polymer/clay nanocomposites assuming the intercalation/exfoliation of clay layers and the interphase between polymer matrix and nanoparticles. Composites Part A: Appl. Sci. and Manufacturing. 102, 137–144. https://doi.org/10.1016/j.compositesa.2017.08.004 | |
dc.relation.referencesen | 7. Zhong, Y., Zhu, Z., Wang, S. (2018). Synthesis and rheological properties of polystyrene/layered silicate. Chemistry and Technologies, 26(1), 9–19. | |
dc.relation.referencesen | 8. Iturrondobeitia, M., Ibarretxe, J., Okariz, A., Jimbert, P., Fernandez-Martinez, R., Guraya, T. (2018). Semiautomated quantification of the microstructure of PLA/clay nanocomposites to improve the prediction of the elastic modulus. Polymer Testing, 66, 280–291 https://doi.org/10.1016/j.polymertesting.2018.01.015 | |
dc.relation.referencesen | 9. Zabihi, O., Ahmadi, M., Nikafshar, S., Preyeswary, K. Ch., Naebe, M. (2018). A technical review on epoxyclay nanocomposites: Structure, properties, and their applications in fiber reinforced composites. Composites Part B: Engineering, 135, 1–24 https://doi.org/10.1016/j.compositesb.2017.09.066 | |
dc.relation.referencesen | 10. Kotal, M., Bhowmick, A. K. (2015). Polymer nanocomposites from modified clays: Recent advances and challenges. Progress in Polymer Sci., 51, 127–187. https://doi.org/10.1016/j.progpolymsci.2015.10.001 | |
dc.relation.referencesen | 11. Belušáková, S., Sola-Llano, R., Lopez Arbeloa, I., Martínez-Martínez, V., Bujdák, J. (2018). Resonance energy transfer between dye molecules in hybrid films of a layered silicate, including the effect of dye concentration thereon. Appl. Clay Sci., 155, 57–64. https://doi.org/10.1016/j.clay.2018.01.001 | |
dc.relation.referencesen | 12. Volzone, C., Garrido, L. B. (2012). High Temperature Structural Modifications of Intercalated Montmorillonite Clay Mineral with OH-Al Polymers. Procedia Materials Sci., 1, 164–171. https://doi.org/10.1016/j.mspro.2012.06.022 | |
dc.relation.referencesen | 13. Yebra-Rodriguez, A., Alvarez-Lloret, P., Cardell, C. A., Rodriguez-Navarro, B. (2011). Influence of processing conditions on the optical and crystallographic properties of injection molded polyamide-6 and polyamide-6/montmorillonite nanocomposites. Appl. Clay Sci., 51, 414–418 https://doi.org/10.1016/j.clay.2010.12.031 | |
dc.relation.referencesen | 14. Faghihi, K., Taher, M., Hajibeygi, M. (2016). Preparation and characterization of newpolyamide, montmorillonite nanocomposites containing azo moiety in the main chain. Arab. J. Chem., 9, 1496–1502. https://doi.org/10.1016/j.arabjc.2012.03.010 | |
dc.relation.referencesen | 15. Beuguel, Q., Ville, J., Crepin-Leblond, J., Mederic, P., Aubry, T. (2017). Influence of clay mineral structure and polyamide polarity on the structural and morphological properties of clay polypropylene/polyamide nanocomposites. Appl. Clay Sci., 135, 253– 259. https://doi.org/10.1016/j.clay.2016.09.034 | |
dc.relation.referencesen | 16. Zulfiqar, S., Sarwar, M. I. (2009). Synthesis and Characterization of Aromatic-Aliphatic Polyamide Nanocomposite Films Incorporating a Thermally Stable Organoclay. Nanoscale Res. Lett., 4, 391–399. https://doi.org/10.1007/s11671-009-9258-1 | |
dc.relation.referencesen | 17. Follain, N., Alexandre, B., Chappey, C., Colasse, L., Médéric, P., Marais, S. (2016). Barrier properties of polyamide 12/montmorillonite nanocomposites: Effect of clay structure and mixing conditions. Composites Sci. and Technol., 136, 18–28. https://doi.org/10.1016/j.compscitech.2016.09.023 | |
dc.relation.referencesen | 18. Wang, Z., Pinnavaia, T. J. (1998). Hybrid organicinorganic nanocomposites: exfoliation of magadiite nanolayers in an elastomeric epoxy polymer. Chem. Mater., 10, 1820–1826. https://doi.org/10.1021/cm970784o | |
dc.relation.referencesen | 19. Burnside, S.D., Giannelis, E. P. (1995). Synthesis and properties of new poly (dimethylsiloxane) nanocomposites. Chem. Mater., 7, 1597–1600. https://doi.org/10.1021/cm00057a001 | |
dc.relation.referencesen | 20. Alexandre, M., Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng., 28, 1– 63. https://doi.org/10.1016/S0927-796X(00)00012-7 | |
dc.relation.referencesen | 21. Zulfiqar, S., Ahmad, Z., Ishaq, M., Saeed, S., Sarwar, M. I. (2007). Thermal and mechanical properties of SEBS-gMA based inorganic composite materials. J. Mater. Sci., 42, 93–100. https://doi.org/10.1007/s10853-006-1082-8. | |
dc.relation.referencesen | 22. Paul, M. A., Alexandre, M., Degée, P., Henrist, C., Rulmont, A., Dubois, P. (2003). New nanocomposite materials based on plasticized poly (L-lactide) and organomodified montmorillonites: thermal and morphological study. Polymer, 44, 443–450. https://doi.org/10.1016/S0032-3861(02)00778-4 | |
dc.relation.referencesen | 23. Messersmith, P. B., Giannelis, E. P. (1994). Synthesis and characterization of layered silicateepoxy nanocomposites. Chem. Mater., 6, 1719–1725. http://dx.doi.org/10.1021/cm00046a026 | |
dc.relation.uri | https://doi.org/10.1016/j.foodhyd.2017.12.013 | |
dc.relation.uri | https://doi.org/10.1016/j.synthmet.2018.01.006 | |
dc.relation.uri | https://doi.org/10.1016/S0300-9440(03)00130-9 | |
dc.relation.uri | https://doi.org/10.1016/j.polymertesting.2018.03.037 | |
dc.relation.uri | https://doi.org/10.1016/j.compositesa.2017.08.004 | |
dc.relation.uri | https://doi.org/10.1016/j.polymertesting.2018.01.015 | |
dc.relation.uri | https://doi.org/10.1016/j.compositesb.2017.09.066 | |
dc.relation.uri | https://doi.org/10.1016/j.progpolymsci.2015.10.001 | |
dc.relation.uri | https://doi.org/10.1016/j.clay.2018.01.001 | |
dc.relation.uri | https://doi.org/10.1016/j.mspro.2012.06.022 | |
dc.relation.uri | https://doi.org/10.1016/j.clay.2010.12.031 | |
dc.relation.uri | https://doi.org/10.1016/j.arabjc.2012.03.010 | |
dc.relation.uri | https://doi.org/10.1016/j.clay.2016.09.034 | |
dc.relation.uri | https://doi.org/10.1007/s11671-009-9258-1 | |
dc.relation.uri | https://doi.org/10.1016/j.compscitech.2016.09.023 | |
dc.relation.uri | https://doi.org/10.1021/cm970784o | |
dc.relation.uri | https://doi.org/10.1021/cm00057a001 | |
dc.relation.uri | https://doi.org/10.1016/S0927-796X(00)00012-7 | |
dc.relation.uri | https://doi.org/10.1007/s10853-006-1082-8 | |
dc.relation.uri | https://doi.org/10.1016/S0032-3861(02)00778-4 | |
dc.relation.uri | http://dx.doi.org/10.1021/cm00046a026 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.subject | модифікація | |
dc.subject | монтморилоніт | |
dc.subject | поліоніони | |
dc.subject | відлущування | |
dc.subject | modification | |
dc.subject | montmorillonite | |
dc.subject | polyionenes | |
dc.subject | exfoliation | |
dc.title | Органо-монтморілоніт, модифікований полііоненами, для полімерних композитів | |
dc.title.alternative | Organo-montmorillonite modified by polyionenes for polymer composites | |
dc.type | Article |
Files
License bundle
1 - 1 of 1