The use of plants for purification of wastewater from pharmaceutical factories

dc.citation.epage204
dc.citation.issue4
dc.citation.journalTitleЕкологічні проблеми
dc.citation.spage199
dc.contributor.affiliationNational Technical University of Ukraine " Igor Sikorsky Kyiv Polytechnic Institute"
dc.contributor.affiliationPolish Academy of Sciences
dc.contributor.authorKika, Liubov
dc.contributor.authorSablii, Larysa
dc.contributor.authorJaromin-Gleń, Katarzyna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-04-03T08:00:40Z
dc.date.available2024-04-03T08:00:40Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractBased on literary analysis, the effectiveness of a range of plants (aquatic: Lemna aoukikusa, Lemna minor, Spirodela polyrhiza, Lemna aequinoctialis; vetiver grass Chrysopogon zizanioides) for the purification of wastewater from antibiotics has been investigated. It has been found that the removal efficiency for various types of antibiotics and their concentrations reaches 70 percent or more. This suggests the potential application of these aquatic plants for phytoremediation of wastewater containing antibiotic contaminants.
dc.format.extent199-204
dc.format.pages6
dc.identifier.citationKika L. The use of plants for purification of wastewater from pharmaceutical factories / Liubov Kika, Larysa Sablii, Katarzyna Jaromin-Gleń // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 4. — P. 199–204.
dc.identifier.citationenKika L. The use of plants for purification of wastewater from pharmaceutical factories / Liubov Kika, Larysa Sablii, Katarzyna Jaromin-Gleń // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 4. — P. 199–204.
dc.identifier.doidoi.org/10.23939/ep2023.04.199
dc.identifier.issn2414-5950
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61644
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕкологічні проблеми, 4 (8), 2023
dc.relation.ispartofEnvironmental Problems, 4 (8), 2023
dc.relation.referencesAli, Z., Waheed, H., G. Kazi, A., Hayat, A., & Ahmad, M. (2016). Chapter 16 - Duckweed: An Efficient Hyperaccumulator of Heavy Metals in Water Bodies. Plant Metal Interaction, 2016, 411-429. doi: https://doi.org/10.1016/B978-0-12-803158-2.00016-3
dc.relation.referencesAnsari, A. A., Naeem M., Gill, S. S., & AlZuaibr, F. M. (2020). Phytoremediation of contaminated waters: an eco-friendly technology based on aquatic macrophytes application. The Egyptian Journal of Aquatic Research, 46(4), 371-376.doi: https://doi.org/10.1016/j.ejar.2020.03.002
dc.relation.referencesBalarak, D., Mostafapour, F. K.,, Akbari, H., & Joghtaei, A. (2017). Adsorption of amoxicillin antibiotic from pharmaceutical wastewater by activated carbon prepared from Azolla filiculoides. Journal of Pharmaceutical Research International, 18(3), 1-13. doi: http://dx.doi.org/10.9734/JPRI/2017/35607
dc.relation.referencesDhir, B. (2013). Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up. Springer New Delhi. doi: https://doi.org/10.1007/978-81-322-1307-9
dc.relation.referencesChugh, M., Kumar, L., Shah, M.P., & Bharadvaja, N. (2022). Algal Bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus, 7, 10129. doi: https://doi.org/10.1016/j.nexus.2022.100129
dc.relation.referencesGomes, M. P., Moreira Brito J. C., Rocha D., C., Navarro-Silva, M. A., & Juneau, P. (2020) Individual and combined effects of amoxicillin, enrofloxacin, and oxytetracycline on Lemna minor physiology. Ecotoxicology and Environmental Safety, Elsevier, 203, 11025. doi: https://doi.org/10.1016/j.ecoenv.2020.111025
dc.relation.referencesGao, P., Munir, M., & Xagoraraki, I. (2012). Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Science of The Total Environment, 421-422, 173-183. doi: https://doi.org/10.1016/j.scitotenv.2012.01.061
dc.relation.referencesJendrzejewska, N., & Karwowska, E., (2018). The influence of antibiotics on wastewater treatment processes and the development of antibiotic-resistant bacteria. Water Science and Technology, 77(9), 2320–2326. doi: https://doi.org/10.2166/wst.2018.153
dc.relation.referencesHabaki, H., Thyagarajan, N., Li, Z., Wang, S., Zhang, J., & Egashira, R. (2023). Removal of antibiotics from pharmaceutical wastewater using Lemna Aoukikusa (duckweed). Separation Science and Technology, 58, 1491-1501. doi: https://doi:10.1080/01496395.2023.2195544
dc.relation.referencesHuang, W., & Kong, R., & Chen, L., An, Y. (2022). Physiological responses and antibiotic-degradation capacity of duckweed (Lemna 1aequinoctialis) exposed to streptomycin. Frontiers in Plant Science, 13. doi: https://doi.org/10.3389/fpls.2022.1065199
dc.relation.referencesMaldonado, I., G. Moreno Terrazas, E., & Zirena Vilca, F. (2022). Application of duckweed (Lemna sp.) and water fern (Azolla sp.) in the removal of pharmaceutical residues in water: State of art focus on antibiotics. Science of The Total Environment, 838, 156565. doi: https://doi.org/10.1016/j.scitotenv.2022.156565
dc.relation.referencesMalovanyy, M. S., Soloviy, Kh. M., & Nykyforov, V. V. (2018). Conditions for development and cultivation of cyanobacteria for multi-target application (literature review). Environmental Problems, 3(1), 1-11.
dc.relation.referencesMalovanyy, M., Tymchuk, I., Balandiukh, Iu., Soloviy, Kh., Zhuk, V., Kopiy, M., Stokalyuk, O., & Petrushka, K. (2021). Optimum collection and concentration strategies of hydrobionts excess biomass in biological surface water purifying technologies. Environmental Problems, 6(1), 40-47. doi: https://doi.org/10.23939/ep2021.01.040
dc.relation.referencesMccutcheon, S., & Schnoor, J. (2004). Phytoremediation Transformation and Control of Contaminants. Environmental Science and Pollution Research, 11, 40. doi: https://doi.org/10.1007/BF02980279
dc.relation.referencesPanja, S., Sarkar, D., & Datta, R. (2020). Removal of antibiotics and nutrients by Vetiver grass (Chrysopogon zizanioides) from secondary wastewater effluent. International Journal of Phytoremediation, 22, 764-773. doi: https://doi.org/10.1080/15226514.2019.1710813
dc.relation.referencesSingh, V., Pandey, B., & Suthar, S. (2018). Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza: Growth, oxidative stress, biochemical traits and antibiotic degradation. Chemosphere, 201, 492-502. doi: https://doi.org/10.1016/j.chemosphere.2018.03.010
dc.relation.referencesSingh, H., & Pant, G. (2023). Phytoremediation: Low input-based ecological approach for sustainable environment. Applied Water Science, 13. doi: http://dx.doi.org/10.1007/s13201-023-01898-2
dc.relation.referencesSoloviy, Kh., & Malovanyy, M. (2019). Freshwater Ecosystem Macrophytes and Microphytes: Development, Environmental Problems, Usage as Raw Material. Review. Environmental Problems, 4(3), 115-124. doi: https://doi.org/10.23939/ep2019.03.115
dc.relation.referencesenAli, Z., Waheed, H., G. Kazi, A., Hayat, A., & Ahmad, M. (2016). Chapter 16 - Duckweed: An Efficient Hyperaccumulator of Heavy Metals in Water Bodies. Plant Metal Interaction, 2016, 411-429. doi: https://doi.org/10.1016/B978-0-12-803158-2.00016-3
dc.relation.referencesenAnsari, A. A., Naeem M., Gill, S. S., & AlZuaibr, F. M. (2020). Phytoremediation of contaminated waters: an eco-friendly technology based on aquatic macrophytes application. The Egyptian Journal of Aquatic Research, 46(4), 371-376.doi: https://doi.org/10.1016/j.ejar.2020.03.002
dc.relation.referencesenBalarak, D., Mostafapour, F. K.,, Akbari, H., & Joghtaei, A. (2017). Adsorption of amoxicillin antibiotic from pharmaceutical wastewater by activated carbon prepared from Azolla filiculoides. Journal of Pharmaceutical Research International, 18(3), 1-13. doi: http://dx.doi.org/10.9734/JPRI/2017/35607
dc.relation.referencesenDhir, B. (2013). Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up. Springer New Delhi. doi: https://doi.org/10.1007/978-81-322-1307-9
dc.relation.referencesenChugh, M., Kumar, L., Shah, M.P., & Bharadvaja, N. (2022). Algal Bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus, 7, 10129. doi: https://doi.org/10.1016/j.nexus.2022.100129
dc.relation.referencesenGomes, M. P., Moreira Brito J. C., Rocha D., C., Navarro-Silva, M. A., & Juneau, P. (2020) Individual and combined effects of amoxicillin, enrofloxacin, and oxytetracycline on Lemna minor physiology. Ecotoxicology and Environmental Safety, Elsevier, 203, 11025. doi: https://doi.org/10.1016/j.ecoenv.2020.111025
dc.relation.referencesenGao, P., Munir, M., & Xagoraraki, I. (2012). Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Science of The Total Environment, 421-422, 173-183. doi: https://doi.org/10.1016/j.scitotenv.2012.01.061
dc.relation.referencesenJendrzejewska, N., & Karwowska, E., (2018). The influence of antibiotics on wastewater treatment processes and the development of antibiotic-resistant bacteria. Water Science and Technology, 77(9), 2320–2326. doi: https://doi.org/10.2166/wst.2018.153
dc.relation.referencesenHabaki, H., Thyagarajan, N., Li, Z., Wang, S., Zhang, J., & Egashira, R. (2023). Removal of antibiotics from pharmaceutical wastewater using Lemna Aoukikusa (duckweed). Separation Science and Technology, 58, 1491-1501. doi: https://doi:10.1080/01496395.2023.2195544
dc.relation.referencesenHuang, W., & Kong, R., & Chen, L., An, Y. (2022). Physiological responses and antibiotic-degradation capacity of duckweed (Lemna 1aequinoctialis) exposed to streptomycin. Frontiers in Plant Science, 13. doi: https://doi.org/10.3389/fpls.2022.1065199
dc.relation.referencesenMaldonado, I., G. Moreno Terrazas, E., & Zirena Vilca, F. (2022). Application of duckweed (Lemna sp.) and water fern (Azolla sp.) in the removal of pharmaceutical residues in water: State of art focus on antibiotics. Science of The Total Environment, 838, 156565. doi: https://doi.org/10.1016/j.scitotenv.2022.156565
dc.relation.referencesenMalovanyy, M. S., Soloviy, Kh. M., & Nykyforov, V. V. (2018). Conditions for development and cultivation of cyanobacteria for multi-target application (literature review). Environmental Problems, 3(1), 1-11.
dc.relation.referencesenMalovanyy, M., Tymchuk, I., Balandiukh, Iu., Soloviy, Kh., Zhuk, V., Kopiy, M., Stokalyuk, O., & Petrushka, K. (2021). Optimum collection and concentration strategies of hydrobionts excess biomass in biological surface water purifying technologies. Environmental Problems, 6(1), 40-47. doi: https://doi.org/10.23939/ep2021.01.040
dc.relation.referencesenMccutcheon, S., & Schnoor, J. (2004). Phytoremediation Transformation and Control of Contaminants. Environmental Science and Pollution Research, 11, 40. doi: https://doi.org/10.1007/BF02980279
dc.relation.referencesenPanja, S., Sarkar, D., & Datta, R. (2020). Removal of antibiotics and nutrients by Vetiver grass (Chrysopogon zizanioides) from secondary wastewater effluent. International Journal of Phytoremediation, 22, 764-773. doi: https://doi.org/10.1080/15226514.2019.1710813
dc.relation.referencesenSingh, V., Pandey, B., & Suthar, S. (2018). Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza: Growth, oxidative stress, biochemical traits and antibiotic degradation. Chemosphere, 201, 492-502. doi: https://doi.org/10.1016/j.chemosphere.2018.03.010
dc.relation.referencesenSingh, H., & Pant, G. (2023). Phytoremediation: Low input-based ecological approach for sustainable environment. Applied Water Science, 13. doi: http://dx.doi.org/10.1007/s13201-023-01898-2
dc.relation.referencesenSoloviy, Kh., & Malovanyy, M. (2019). Freshwater Ecosystem Macrophytes and Microphytes: Development, Environmental Problems, Usage as Raw Material. Review. Environmental Problems, 4(3), 115-124. doi: https://doi.org/10.23939/ep2019.03.115
dc.relation.urihttps://doi.org/10.1016/B978-0-12-803158-2.00016-3
dc.relation.urihttps://doi.org/10.1016/j.ejar.2020.03.002
dc.relation.urihttp://dx.doi.org/10.9734/JPRI/2017/35607
dc.relation.urihttps://doi.org/10.1007/978-81-322-1307-9
dc.relation.urihttps://doi.org/10.1016/j.nexus.2022.100129
dc.relation.urihttps://doi.org/10.1016/j.ecoenv.2020.111025
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2012.01.061
dc.relation.urihttps://doi.org/10.2166/wst.2018.153
dc.relation.urihttps://doi:10.1080/01496395.2023.2195544
dc.relation.urihttps://doi.org/10.3389/fpls.2022.1065199
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2022.156565
dc.relation.urihttps://doi.org/10.23939/ep2021.01.040
dc.relation.urihttps://doi.org/10.1007/BF02980279
dc.relation.urihttps://doi.org/10.1080/15226514.2019.1710813
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2018.03.010
dc.relation.urihttp://dx.doi.org/10.1007/s13201-023-01898-2
dc.relation.urihttps://doi.org/10.23939/ep2019.03.115
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Kika L., Sablii L., Jaromin-Gleń K., 2023
dc.subjectphytoremediation
dc.subjectwastewater
dc.subjectpharmaceutical companies
dc.subjectpharmaceuticals
dc.subjectantibiotics
dc.subjectplants
dc.titleThe use of plants for purification of wastewater from pharmaceutical factories
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v8n4_Kika_L-The_use_of_plants_for_purification_199-204.pdf
Size:
487.56 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v8n4_Kika_L-The_use_of_plants_for_purification_199-204__COVER.png
Size:
1.03 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: