The use of plants for purification of wastewater from pharmaceutical factories
dc.citation.epage | 204 | |
dc.citation.issue | 4 | |
dc.citation.journalTitle | Екологічні проблеми | |
dc.citation.spage | 199 | |
dc.contributor.affiliation | National Technical University of Ukraine " Igor Sikorsky Kyiv Polytechnic Institute" | |
dc.contributor.affiliation | Polish Academy of Sciences | |
dc.contributor.author | Kika, Liubov | |
dc.contributor.author | Sablii, Larysa | |
dc.contributor.author | Jaromin-Gleń, Katarzyna | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-04-03T08:00:40Z | |
dc.date.available | 2024-04-03T08:00:40Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Based on literary analysis, the effectiveness of a range of plants (aquatic: Lemna aoukikusa, Lemna minor, Spirodela polyrhiza, Lemna aequinoctialis; vetiver grass Chrysopogon zizanioides) for the purification of wastewater from antibiotics has been investigated. It has been found that the removal efficiency for various types of antibiotics and their concentrations reaches 70 percent or more. This suggests the potential application of these aquatic plants for phytoremediation of wastewater containing antibiotic contaminants. | |
dc.format.extent | 199-204 | |
dc.format.pages | 6 | |
dc.identifier.citation | Kika L. The use of plants for purification of wastewater from pharmaceutical factories / Liubov Kika, Larysa Sablii, Katarzyna Jaromin-Gleń // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 4. — P. 199–204. | |
dc.identifier.citationen | Kika L. The use of plants for purification of wastewater from pharmaceutical factories / Liubov Kika, Larysa Sablii, Katarzyna Jaromin-Gleń // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 4. — P. 199–204. | |
dc.identifier.doi | doi.org/10.23939/ep2023.04.199 | |
dc.identifier.issn | 2414-5950 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61644 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Екологічні проблеми, 4 (8), 2023 | |
dc.relation.ispartof | Environmental Problems, 4 (8), 2023 | |
dc.relation.references | Ali, Z., Waheed, H., G. Kazi, A., Hayat, A., & Ahmad, M. (2016). Chapter 16 - Duckweed: An Efficient Hyperaccumulator of Heavy Metals in Water Bodies. Plant Metal Interaction, 2016, 411-429. doi: https://doi.org/10.1016/B978-0-12-803158-2.00016-3 | |
dc.relation.references | Ansari, A. A., Naeem M., Gill, S. S., & AlZuaibr, F. M. (2020). Phytoremediation of contaminated waters: an eco-friendly technology based on aquatic macrophytes application. The Egyptian Journal of Aquatic Research, 46(4), 371-376.doi: https://doi.org/10.1016/j.ejar.2020.03.002 | |
dc.relation.references | Balarak, D., Mostafapour, F. K.,, Akbari, H., & Joghtaei, A. (2017). Adsorption of amoxicillin antibiotic from pharmaceutical wastewater by activated carbon prepared from Azolla filiculoides. Journal of Pharmaceutical Research International, 18(3), 1-13. doi: http://dx.doi.org/10.9734/JPRI/2017/35607 | |
dc.relation.references | Dhir, B. (2013). Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up. Springer New Delhi. doi: https://doi.org/10.1007/978-81-322-1307-9 | |
dc.relation.references | Chugh, M., Kumar, L., Shah, M.P., & Bharadvaja, N. (2022). Algal Bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus, 7, 10129. doi: https://doi.org/10.1016/j.nexus.2022.100129 | |
dc.relation.references | Gomes, M. P., Moreira Brito J. C., Rocha D., C., Navarro-Silva, M. A., & Juneau, P. (2020) Individual and combined effects of amoxicillin, enrofloxacin, and oxytetracycline on Lemna minor physiology. Ecotoxicology and Environmental Safety, Elsevier, 203, 11025. doi: https://doi.org/10.1016/j.ecoenv.2020.111025 | |
dc.relation.references | Gao, P., Munir, M., & Xagoraraki, I. (2012). Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Science of The Total Environment, 421-422, 173-183. doi: https://doi.org/10.1016/j.scitotenv.2012.01.061 | |
dc.relation.references | Jendrzejewska, N., & Karwowska, E., (2018). The influence of antibiotics on wastewater treatment processes and the development of antibiotic-resistant bacteria. Water Science and Technology, 77(9), 2320–2326. doi: https://doi.org/10.2166/wst.2018.153 | |
dc.relation.references | Habaki, H., Thyagarajan, N., Li, Z., Wang, S., Zhang, J., & Egashira, R. (2023). Removal of antibiotics from pharmaceutical wastewater using Lemna Aoukikusa (duckweed). Separation Science and Technology, 58, 1491-1501. doi: https://doi:10.1080/01496395.2023.2195544 | |
dc.relation.references | Huang, W., & Kong, R., & Chen, L., An, Y. (2022). Physiological responses and antibiotic-degradation capacity of duckweed (Lemna 1aequinoctialis) exposed to streptomycin. Frontiers in Plant Science, 13. doi: https://doi.org/10.3389/fpls.2022.1065199 | |
dc.relation.references | Maldonado, I., G. Moreno Terrazas, E., & Zirena Vilca, F. (2022). Application of duckweed (Lemna sp.) and water fern (Azolla sp.) in the removal of pharmaceutical residues in water: State of art focus on antibiotics. Science of The Total Environment, 838, 156565. doi: https://doi.org/10.1016/j.scitotenv.2022.156565 | |
dc.relation.references | Malovanyy, M. S., Soloviy, Kh. M., & Nykyforov, V. V. (2018). Conditions for development and cultivation of cyanobacteria for multi-target application (literature review). Environmental Problems, 3(1), 1-11. | |
dc.relation.references | Malovanyy, M., Tymchuk, I., Balandiukh, Iu., Soloviy, Kh., Zhuk, V., Kopiy, M., Stokalyuk, O., & Petrushka, K. (2021). Optimum collection and concentration strategies of hydrobionts excess biomass in biological surface water purifying technologies. Environmental Problems, 6(1), 40-47. doi: https://doi.org/10.23939/ep2021.01.040 | |
dc.relation.references | Mccutcheon, S., & Schnoor, J. (2004). Phytoremediation Transformation and Control of Contaminants. Environmental Science and Pollution Research, 11, 40. doi: https://doi.org/10.1007/BF02980279 | |
dc.relation.references | Panja, S., Sarkar, D., & Datta, R. (2020). Removal of antibiotics and nutrients by Vetiver grass (Chrysopogon zizanioides) from secondary wastewater effluent. International Journal of Phytoremediation, 22, 764-773. doi: https://doi.org/10.1080/15226514.2019.1710813 | |
dc.relation.references | Singh, V., Pandey, B., & Suthar, S. (2018). Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza: Growth, oxidative stress, biochemical traits and antibiotic degradation. Chemosphere, 201, 492-502. doi: https://doi.org/10.1016/j.chemosphere.2018.03.010 | |
dc.relation.references | Singh, H., & Pant, G. (2023). Phytoremediation: Low input-based ecological approach for sustainable environment. Applied Water Science, 13. doi: http://dx.doi.org/10.1007/s13201-023-01898-2 | |
dc.relation.references | Soloviy, Kh., & Malovanyy, M. (2019). Freshwater Ecosystem Macrophytes and Microphytes: Development, Environmental Problems, Usage as Raw Material. Review. Environmental Problems, 4(3), 115-124. doi: https://doi.org/10.23939/ep2019.03.115 | |
dc.relation.referencesen | Ali, Z., Waheed, H., G. Kazi, A., Hayat, A., & Ahmad, M. (2016). Chapter 16 - Duckweed: An Efficient Hyperaccumulator of Heavy Metals in Water Bodies. Plant Metal Interaction, 2016, 411-429. doi: https://doi.org/10.1016/B978-0-12-803158-2.00016-3 | |
dc.relation.referencesen | Ansari, A. A., Naeem M., Gill, S. S., & AlZuaibr, F. M. (2020). Phytoremediation of contaminated waters: an eco-friendly technology based on aquatic macrophytes application. The Egyptian Journal of Aquatic Research, 46(4), 371-376.doi: https://doi.org/10.1016/j.ejar.2020.03.002 | |
dc.relation.referencesen | Balarak, D., Mostafapour, F. K.,, Akbari, H., & Joghtaei, A. (2017). Adsorption of amoxicillin antibiotic from pharmaceutical wastewater by activated carbon prepared from Azolla filiculoides. Journal of Pharmaceutical Research International, 18(3), 1-13. doi: http://dx.doi.org/10.9734/JPRI/2017/35607 | |
dc.relation.referencesen | Dhir, B. (2013). Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up. Springer New Delhi. doi: https://doi.org/10.1007/978-81-322-1307-9 | |
dc.relation.referencesen | Chugh, M., Kumar, L., Shah, M.P., & Bharadvaja, N. (2022). Algal Bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus, 7, 10129. doi: https://doi.org/10.1016/j.nexus.2022.100129 | |
dc.relation.referencesen | Gomes, M. P., Moreira Brito J. C., Rocha D., C., Navarro-Silva, M. A., & Juneau, P. (2020) Individual and combined effects of amoxicillin, enrofloxacin, and oxytetracycline on Lemna minor physiology. Ecotoxicology and Environmental Safety, Elsevier, 203, 11025. doi: https://doi.org/10.1016/j.ecoenv.2020.111025 | |
dc.relation.referencesen | Gao, P., Munir, M., & Xagoraraki, I. (2012). Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Science of The Total Environment, 421-422, 173-183. doi: https://doi.org/10.1016/j.scitotenv.2012.01.061 | |
dc.relation.referencesen | Jendrzejewska, N., & Karwowska, E., (2018). The influence of antibiotics on wastewater treatment processes and the development of antibiotic-resistant bacteria. Water Science and Technology, 77(9), 2320–2326. doi: https://doi.org/10.2166/wst.2018.153 | |
dc.relation.referencesen | Habaki, H., Thyagarajan, N., Li, Z., Wang, S., Zhang, J., & Egashira, R. (2023). Removal of antibiotics from pharmaceutical wastewater using Lemna Aoukikusa (duckweed). Separation Science and Technology, 58, 1491-1501. doi: https://doi:10.1080/01496395.2023.2195544 | |
dc.relation.referencesen | Huang, W., & Kong, R., & Chen, L., An, Y. (2022). Physiological responses and antibiotic-degradation capacity of duckweed (Lemna 1aequinoctialis) exposed to streptomycin. Frontiers in Plant Science, 13. doi: https://doi.org/10.3389/fpls.2022.1065199 | |
dc.relation.referencesen | Maldonado, I., G. Moreno Terrazas, E., & Zirena Vilca, F. (2022). Application of duckweed (Lemna sp.) and water fern (Azolla sp.) in the removal of pharmaceutical residues in water: State of art focus on antibiotics. Science of The Total Environment, 838, 156565. doi: https://doi.org/10.1016/j.scitotenv.2022.156565 | |
dc.relation.referencesen | Malovanyy, M. S., Soloviy, Kh. M., & Nykyforov, V. V. (2018). Conditions for development and cultivation of cyanobacteria for multi-target application (literature review). Environmental Problems, 3(1), 1-11. | |
dc.relation.referencesen | Malovanyy, M., Tymchuk, I., Balandiukh, Iu., Soloviy, Kh., Zhuk, V., Kopiy, M., Stokalyuk, O., & Petrushka, K. (2021). Optimum collection and concentration strategies of hydrobionts excess biomass in biological surface water purifying technologies. Environmental Problems, 6(1), 40-47. doi: https://doi.org/10.23939/ep2021.01.040 | |
dc.relation.referencesen | Mccutcheon, S., & Schnoor, J. (2004). Phytoremediation Transformation and Control of Contaminants. Environmental Science and Pollution Research, 11, 40. doi: https://doi.org/10.1007/BF02980279 | |
dc.relation.referencesen | Panja, S., Sarkar, D., & Datta, R. (2020). Removal of antibiotics and nutrients by Vetiver grass (Chrysopogon zizanioides) from secondary wastewater effluent. International Journal of Phytoremediation, 22, 764-773. doi: https://doi.org/10.1080/15226514.2019.1710813 | |
dc.relation.referencesen | Singh, V., Pandey, B., & Suthar, S. (2018). Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza: Growth, oxidative stress, biochemical traits and antibiotic degradation. Chemosphere, 201, 492-502. doi: https://doi.org/10.1016/j.chemosphere.2018.03.010 | |
dc.relation.referencesen | Singh, H., & Pant, G. (2023). Phytoremediation: Low input-based ecological approach for sustainable environment. Applied Water Science, 13. doi: http://dx.doi.org/10.1007/s13201-023-01898-2 | |
dc.relation.referencesen | Soloviy, Kh., & Malovanyy, M. (2019). Freshwater Ecosystem Macrophytes and Microphytes: Development, Environmental Problems, Usage as Raw Material. Review. Environmental Problems, 4(3), 115-124. doi: https://doi.org/10.23939/ep2019.03.115 | |
dc.relation.uri | https://doi.org/10.1016/B978-0-12-803158-2.00016-3 | |
dc.relation.uri | https://doi.org/10.1016/j.ejar.2020.03.002 | |
dc.relation.uri | http://dx.doi.org/10.9734/JPRI/2017/35607 | |
dc.relation.uri | https://doi.org/10.1007/978-81-322-1307-9 | |
dc.relation.uri | https://doi.org/10.1016/j.nexus.2022.100129 | |
dc.relation.uri | https://doi.org/10.1016/j.ecoenv.2020.111025 | |
dc.relation.uri | https://doi.org/10.1016/j.scitotenv.2012.01.061 | |
dc.relation.uri | https://doi.org/10.2166/wst.2018.153 | |
dc.relation.uri | https://doi:10.1080/01496395.2023.2195544 | |
dc.relation.uri | https://doi.org/10.3389/fpls.2022.1065199 | |
dc.relation.uri | https://doi.org/10.1016/j.scitotenv.2022.156565 | |
dc.relation.uri | https://doi.org/10.23939/ep2021.01.040 | |
dc.relation.uri | https://doi.org/10.1007/BF02980279 | |
dc.relation.uri | https://doi.org/10.1080/15226514.2019.1710813 | |
dc.relation.uri | https://doi.org/10.1016/j.chemosphere.2018.03.010 | |
dc.relation.uri | http://dx.doi.org/10.1007/s13201-023-01898-2 | |
dc.relation.uri | https://doi.org/10.23939/ep2019.03.115 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Kika L., Sablii L., Jaromin-Gleń K., 2023 | |
dc.subject | phytoremediation | |
dc.subject | wastewater | |
dc.subject | pharmaceutical companies | |
dc.subject | pharmaceuticals | |
dc.subject | antibiotics | |
dc.subject | plants | |
dc.title | The use of plants for purification of wastewater from pharmaceutical factories | |
dc.type | Article |
Files
License bundle
1 - 1 of 1