Universal controller for the distributed management in the adaptive smart home systems

dc.citation.epage73
dc.citation.issue2
dc.citation.journalTitleУкраїнський журнал інформаційних технологій
dc.citation.spage64
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorТеслюк, В. М.
dc.contributor.authorБереговська, Х. В.
dc.contributor.authorЗербіно, Д. Д.
dc.contributor.authorТеслюк, Т. В.
dc.contributor.authorСенета, М. Я.
dc.contributor.authorTeslyuk, V. M.
dc.contributor.authorBeregovska, Kh. V.
dc.contributor.authorZerbino, D. D.
dc.contributor.authorTeslyuk, T. V.
dc.contributor.authorSeneta, M. Ya.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-19T08:26:01Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractРозроблено структуру та алгоритм функціонування універсального контролера адаптивної системи “розумний дім”. Розподілене управління забезпечує підвищену живучість, а модульний принцип організації системи – ефективну модернізацію у майбутньому. Розроблена інформаційна модель передбачає зв’язок із віддаленим сервером даних за допомогою Wi–Fi-модуля на мікроконтролері ESP8266, який підтримує локальну Wi–Fi-мережу для забезпечення управління “розумним будинком” через смартфони. З локальною IP-адресою ESP8266 пов’язана вебсторінка, через яку користувачі отримують інформацію на смартфон про поточний стан будинку і можуть дистанційно керувати ним. Періодично через цей самий Wi–Fi-модуль система відправляє дані на хмарний сервер, а також зчитує з нього дані для дистанційного управління будинком. Підключення до Інтернету здійснюється через Wi–Fi роутер. Для ефективної організації обміну внутрішніми даними між контролерами в системі використано протокол двопровідної спільної шини I2C. Зв’язок між системним контролером і сервером здійснюється через універсальний канал UART. Сервер системи передає AT-команди та дані для модуля Wi–Fi ESP8266 через другий канал UART. Ціна пропонованого технічного рішення невисока. Програмне забезпечення універсальних системних контролерів розроблено на мові асемблера для мікроконтролера STM8, що дає змогу забезпечити високу швидкість роботи пристрою. Для реалізації “розумного дому” використано принципи інтелектуальної адаптації системи під користувача. Розроблено технічну підтримку адаптивної системи розумного будинку, яка характеризується невисокою ціною. Під час розроблення враховано збереження максимально ефективного співвідношення: якість як вигода в часі до вартості впровадження системи.
dc.description.abstractIt is developed the structure and algorithm of functioning of the universal controller of the adaptive smart home system. Distributed management provides increased survivability, and the modular principle of system organization ensures effective modernization in the future. The developed information model involves a connection with a remote data server using a Wi–Fi module on an ESP8266 microcontroller, which supports a local Wi–Fi network to provide control of a smart home through smartphones. A web page is associated with the local IP address of the ESP8266, through which users receive information on the current state of the home on their smartphone and can control it remotely. Periodically, through the same Wi–Fi module, the system sends data to the cloud server, as well as reads data from it for remote control of the home. The connection to the Internet is made through a Wi–Fi router. The system performs simple and urgent operations without the server involvement. Depending on the needs, the universal controller can be replaced with a specialized one. For efficient organization of the exchange of internal data between controllers, the protocol of two–wire shared bus I2C is used in the system. Communication between the system controller and the server is carried out via the universal UART channel. The system server transmits AT commands and data for the ESP8266 Wi–Fi module via the second UART channel. The proposed technical solution is characterized by a low price. The developed software for universal system controllers is developed in the assembly language for the STM8 microcontroller, which ensures high-speed operation of the device. Examples of the layout of the “transmitter” of the system and the implementation of the “receiver” of the adaptive smart home system are considered. The hardware and software structure for controller development for distributed management in the adaptive smart home systems is proposed. The principles of intelligent adaptation of the system to the user were used to implement a smart home. The technical support of the adaptive system of the smart house is developed, which is characterized by a low price. The creation of such adaptive systems can be implemented with different “levels” of intelligence. During development, it is very important to maintain the maximum ratio: of quality as an approximate benefit in time, which saves the user of the system, to the cost of system implementation.
dc.format.extent64-73
dc.format.pages10
dc.identifier.citationUniversal controller for the distributed management in the adaptive smart home systems / V. M. Teslyuk, Kh. V. Beregovska, D. D. Zerbino, T. V. Teslyuk, M. Ya. Seneta // Ukrainian Journal of Information Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 64–73.
dc.identifier.citationenUniversal controller for the distributed management in the adaptive smart home systems / V. M. Teslyuk, Kh. V. Beregovska, D. D. Zerbino, T. V. Teslyuk, M. Ya. Seneta // Ukrainian Journal of Information Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 64–73.
dc.identifier.doidoi.org/10.23939/ujit2024.02.064
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/120434
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал інформаційних технологій, 2 (6), 2024
dc.relation.ispartofUkrainian Journal of Information Technology, 2 (6), 2024
dc.relation.references1. Berezsky, O., Verbovyy, S., & Pitsun, O. (2018). Hybrid intelligent information technology for biomedical image processing. In Proceedings of the IEEE International Conference of Computer Science and Information Technologies (pp. 420-423). Lviv. https://doi.org/10.1109/STC-CSIT.2018.8526711
dc.relation.references2. Molnár, E., Molnár, R., Kryvinska, N., & Greguš, M. (2014). Web intelligence in practice. Journal of Service Science Research, 6(1), 149-172. https://doi.org/10.1007/s12927-014-0006-4
dc.relation.references3. Boreiko, O. Y., & Teslyuk, V. M. (2016). Developing a controller for registering passenger flow of public transport for the "smart" city system. Eastern-European Journal of Enterprise Technologies, 6(3), 40-46. https://doi.org/10.15587/1729-4061.2016.84143
dc.relation.references4. Lytvyn, V., Vysotska, V., Mykhailyshyn, V., Peleshchak, I., Peleshchak, R., & Kohut, I. (2019). Intelligent system of a smart house. In 3rd International Conference on Advanced Information and Communications Technologies (pp. 282-287). https://doi.org/10.1109/AIACT.2019.8847748
dc.relation.references5. Saheed, Y. K., & Arowolo, M. O. (2021). Efficient cyber attack detection on the Internet of medical things-smart environment based on deep recurrent neural network and machine learning algorithms. IEEE Access, 9, 161546-161554. https://doi.org/10.1109/ACCESS.2021.3128837
dc.relation.references6. Alrayes, F. S., Asiri, M. M., Maashi, M., Salama, A. S., Hamza, M. A., Ibrahim, S. S., Zamani, A. S., & Alsaid, M. I. (2023). Intrusion detection using chaotic poor and rich optimization with deep learning model for smart city environment. Sustainability, 15, 6902. https://doi.org/10.3390/su15086902
dc.relation.references7. Teslyuk, V., Beregovska, Kh., Denysyuk, P., & Mashevska, M. (2017). Method of development Smart-House-Systems models, based on Petri-Markov nets, and extended by functional components. In Proceedings of the XIIth International Conference of Computer Science and Information Technologies (pp. 352-355). Lviv: Publishing House Vezha&Co. https://doi.org/10.1109/STC-CSIT.2017.8098803
dc.relation.references8. Gram-Hanssen, K., & Darby, S. J. (2018). Home is where the smart is? Evaluating smart home research and approaches against the concept of home. Energy Research & Social Science, 37, 94-101. https://doi.org/10.1016/j.erss.2017.09.037
dc.relation.references9. Bernheim Brush, A. J., Lee, B., Mahajan, R., Agarwal, S., Saroiu, S., & Dixon, C. (2011). Home automation in the wild: Challenges and opportunities. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 2115-2124). https://doi.org/10.1145/1978942.1979249
dc.relation.references10. Radha, R. K. (2021). Flexible smart home design: Case study to design future smart home prototypes. Ain Shams Engineering Journal, 13, 101513. https://doi.org/10.1016/j.asej.2021.05.027
dc.relation.references11. Teslyuk, V., Beregovska, K., & Denysyk, P. (2017). Decomposition of models of Smart-House - systems. In Proceedings of the XIIIth International Conference on Perspective Technologies and Methods in MEMS Design (pp. 22-24). Lviv, Ukraine. https://doi.org/10.1109/MEMSTECH.2017.7937524
dc.relation.references12. Goessler, T., & Kaluarachchi, Y. (2023). Smart adaptive homes and their potential to improve space efficiency and personalisation. Buildings, 13(5), 1132. https://doi.org/10.3390/buildings13051132
dc.relation.references13. Zolfaghari, S., Massa, S. M., & Riboni, D. (2023). Activity recognition in smart homes via feature-rich visual extraction of locomotion traces. Electronics, 12(9), 1969. https://doi.org/10.3390/electronics12091969
dc.relation.references14. Najeh, H., Lohr, C., & Leduc, B. (2023). Convolutional neural network bootstrapped by dynamic segmentation and stigmergy-based encoding for real-time human activity recognition in smart homes. Sensors, 23, 1969. https://doi.org/10.3390/s23041969
dc.relation.references15. Liu, J., Wang, M., & Wang, X. (2022). Research on General Model of Intelligence Level for Smart Home. In 7th International Conference on Computer and Communication Systems (ICCCS) (pp. 123-129). Wuhan, China. https://doi.org/10.1109/ICCCS55155.2022.9846791
dc.relation.references16. Diallo, A., & Diallo, C. (2021). Human activity recognition in smart home using deep learning models. In International Conference on Computational Science and Computational Intelligence (pp. 1511-1515). Las Vegas, NV, USA. https://doi.org/10.1109/CSCI54926.2021.00294
dc.relation.references17. Madhav, P. V., et al. (2023). Design and implementation of smart housing system for elderly persons. In International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (pp. 1-5). Chennai, India. https://doi.org/10.1109/RAEEUCCI57140.2023.10134421
dc.relation.references18. Almarzooqi, H., Alzubaidi, I., Albahrani, A., Almansoori, A., & Shatnawi, M. (2019). Gas detection approaches in smart houses. In International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 726-731). Las Vegas, NV, USA. https://doi.org/10.1109/CSCI49370.2019.00138
dc.relation.references19. Niu, H., Nguyen, D., Yonekawa, K., Kurokawa, M., Wada, S., & Yoshihara, K. (2020). Multi-source transfer learning for human activity recognition in smart homes. In IEEE International Conference on Smart Computing (pp. 274-277). Bologna, Italy. https://doi.org/10.1109/SMARTCOMP50058.2020.00063
dc.relation.references20. Zhan, Y., & Haddadi, H. (2021). MoSen: Sensor network optimization in multiple-occupancy smart homes. In IEEE International Conference on Pervasive Computing and Communications Workshops and Other Affiliated Events (pp. 384-388). Kassel, Germany. https://doi.org/10.1109/PerComWorkshops51409.2021.9430947
dc.relation.references21. Nie, B. (2022). Pattern mining of smart home user behavior in the context of the Internet of Things: Based on sensor networks. In 3rd International Conference on Smart Electronics and Communication (pp. 398-401). Trichy, India. https://doi.org/10.1109/ICOSEC54921.2022.9952128
dc.relation.references22. Cultice, T., Ionel, D., & Thapliyal, H. (2020). Smart home sensor anomaly detection using convolutional autoencoder neural network. In IEEE International Symposium on Smart Electronic Systems (iSES) (pp. 67). https://doi.org/10.1109/iSES50453.2020.00026
dc.relation.references23. Khan, M., Saad, M. M., Tariq, M. A., Seo, J., & Kim, D. (2020). Human activity prediction-aware sensor cycling in smart home networks. In IEEE Globecom Workshops (pp. 1-6), Taipei, Taiwan. https://doi.org/10.1109/GCWkshps50303.2020.9367449
dc.relation.references24. Shan, G., Lee, H., & Roh, B.-H. (2022). Indoor localization-based energy management for smart home. In IEEE PES 14th Asia-Pacific Power and Energy Engineering Conference (APPEEC) (pp. 1-5), Melbourne, Australia. https://doi.org/10.1109/APPEEC53445.2022.10072129
dc.relation.references25. Wang, T., Cook, D. J., & Fischer, T. R. (2023). The indoor predictability of human mobility: Estimating mobility with smart home sensors. IEEE Transactions on Emerging Topics in Computing, 11(1), 182-193. https://doi.org/10.1109/TETC.2022.3188939
dc.relation.references26. Rokonuzzaman, M., Akash, M. I., Khatun Mishu, M., Tan, W.-S., Hannan, M. A., & Amin, N. (2022). IoT-based distribution and control system for smart home applications. In IEEE 12th Symposium on Computer Applications & Industrial Electronics (pp. 95-98), Penang, Malaysia. https://doi.org/10.1109/ISCAIE54458.2022.9794497
dc.relation.references27. Tayef, S. H., Rahman, M. M., & Sakib, M. A. B. (2021). Design and implementation of IoT based smart home automation system. In 24th International Conference on Computer and Information Technology (ICCIT) (pp. 1-5), Dhaka, Bangladesh. https://doi.org/10.1109/ICCIT54785.2021.9689809
dc.relation.references28. Sharma, S., Sharma, A., Goel, T., Deoli, R., & Mohan, S. (2020). Smart home gardening management system: A cloud-based Internet-of-Things (IoT) application in VANET. In 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (pp. 1-5), Kharagpur, India. https://doi.org/10.1109/ICCCNT49239.2020.9225573
dc.relation.references29. Kang, B., Kim, S., Choi, M.-I., Cho, K., Jang, S., & Park, S. (2016). Analysis of types and importance of sensors in smart home services. In IEEE 18th International Conference on High Performance Computing and Communications (pp. 1388-1389), Sydney, NSW, Australia. https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0196
dc.relation.references30. Yoon, Y., Lee, J., Lee, J., Kim, B., & Jembre, Y. Z. (2020). Adaptive sensor data transmission scheduling scheme for smart home networks. In IEEE 92nd Vehicular Technology Conference (pp. 1-3), Victoria, BC, Canada. https://doi.org/10.1109/VTC2020-Fall49728.2020.9348564
dc.relation.references31. Romadhon, A. S., & Widyaningrum, V. T. (2022). Application of sensors in Arduino as a control in smart home. In IEEE 8th Information Technology International Seminar (ITIS) (pp. 130-133), Surabaya, Indonesia. https://doi.org/10.1109/ITIS57155.2022.10010217
dc.relation.references32. Macheso, P., Manda, T. D., Chisale, S., Dzupire, N., Mlatho, J., & Mukanyiligira, D. (2021). Design of ESP8266 smart home using MQTT and Node-RED. In International Conference on Artificial Intelligence and Smart Systems (pp. 502-505), Coimbatore, India. https://doi.org/10.1109/ICAIS50930.2021.9396027
dc.relation.references33. Zhang, Y., Meng, Z., Shen, R., Hou, L., & Liu, J. (2021). Electrical design and application of smart home system based on distributed control. In IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (pp. 723-727), Chongqing, China. https://doi.org/10.1109/IAEAC50856.2021.9391001
dc.relation.references34. Sarhan, Q. I. (2020). Arduino based smart home warning system. In IEEE 6th International Conference on Control Science and Systems Engineering (pp. 201-206), Beijing, China. https://doi.org/10.1109/ICCSSE50399.2020.917193
dc.relation.references35. Narkthong, N., Duan, S., Ren, S., & Xu, X. (2024) MicroVSA: An Ultra-Lightweight Vector Symbolic Architecture-based Classifier Library for Always-On Inference on Tiny Microcontrollers. In the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2, (pp. 730-745), Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3620665.3640374
dc.relation.referencesen1. Berezsky, O., Verbovyy, S., & Pitsun, O. (2018). Hybrid intelligent information technology for biomedical image processing. In Proceedings of the IEEE International Conference of Computer Science and Information Technologies (pp. 420-423). Lviv. https://doi.org/10.1109/STC-CSIT.2018.8526711
dc.relation.referencesen2. Molnár, E., Molnár, R., Kryvinska, N., & Greguš, M. (2014). Web intelligence in practice. Journal of Service Science Research, 6(1), 149-172. https://doi.org/10.1007/s12927-014-0006-4
dc.relation.referencesen3. Boreiko, O. Y., & Teslyuk, V. M. (2016). Developing a controller for registering passenger flow of public transport for the "smart" city system. Eastern-European Journal of Enterprise Technologies, 6(3), 40-46. https://doi.org/10.15587/1729-4061.2016.84143
dc.relation.referencesen4. Lytvyn, V., Vysotska, V., Mykhailyshyn, V., Peleshchak, I., Peleshchak, R., & Kohut, I. (2019). Intelligent system of a smart house. In 3rd International Conference on Advanced Information and Communications Technologies (pp. 282-287). https://doi.org/10.1109/AIACT.2019.8847748
dc.relation.referencesen5. Saheed, Y. K., & Arowolo, M. O. (2021). Efficient cyber attack detection on the Internet of medical things-smart environment based on deep recurrent neural network and machine learning algorithms. IEEE Access, 9, 161546-161554. https://doi.org/10.1109/ACCESS.2021.3128837
dc.relation.referencesen6. Alrayes, F. S., Asiri, M. M., Maashi, M., Salama, A. S., Hamza, M. A., Ibrahim, S. S., Zamani, A. S., & Alsaid, M. I. (2023). Intrusion detection using chaotic poor and rich optimization with deep learning model for smart city environment. Sustainability, 15, 6902. https://doi.org/10.3390/su15086902
dc.relation.referencesen7. Teslyuk, V., Beregovska, Kh., Denysyuk, P., & Mashevska, M. (2017). Method of development Smart-House-Systems models, based on Petri-Markov nets, and extended by functional components. In Proceedings of the XIIth International Conference of Computer Science and Information Technologies (pp. 352-355). Lviv: Publishing House Vezha&Co. https://doi.org/10.1109/STC-CSIT.2017.8098803
dc.relation.referencesen8. Gram-Hanssen, K., & Darby, S. J. (2018). Home is where the smart is? Evaluating smart home research and approaches against the concept of home. Energy Research & Social Science, 37, 94-101. https://doi.org/10.1016/j.erss.2017.09.037
dc.relation.referencesen9. Bernheim Brush, A. J., Lee, B., Mahajan, R., Agarwal, S., Saroiu, S., & Dixon, C. (2011). Home automation in the wild: Challenges and opportunities. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 2115-2124). https://doi.org/10.1145/1978942.1979249
dc.relation.referencesen10. Radha, R. K. (2021). Flexible smart home design: Case study to design future smart home prototypes. Ain Shams Engineering Journal, 13, 101513. https://doi.org/10.1016/j.asej.2021.05.027
dc.relation.referencesen11. Teslyuk, V., Beregovska, K., & Denysyk, P. (2017). Decomposition of models of Smart-House - systems. In Proceedings of the XIIIth International Conference on Perspective Technologies and Methods in MEMS Design (pp. 22-24). Lviv, Ukraine. https://doi.org/10.1109/MEMSTECH.2017.7937524
dc.relation.referencesen12. Goessler, T., & Kaluarachchi, Y. (2023). Smart adaptive homes and their potential to improve space efficiency and personalisation. Buildings, 13(5), 1132. https://doi.org/10.3390/buildings13051132
dc.relation.referencesen13. Zolfaghari, S., Massa, S. M., & Riboni, D. (2023). Activity recognition in smart homes via feature-rich visual extraction of locomotion traces. Electronics, 12(9), 1969. https://doi.org/10.3390/electronics12091969
dc.relation.referencesen14. Najeh, H., Lohr, C., & Leduc, B. (2023). Convolutional neural network bootstrapped by dynamic segmentation and stigmergy-based encoding for real-time human activity recognition in smart homes. Sensors, 23, 1969. https://doi.org/10.3390/s23041969
dc.relation.referencesen15. Liu, J., Wang, M., & Wang, X. (2022). Research on General Model of Intelligence Level for Smart Home. In 7th International Conference on Computer and Communication Systems (ICCCS) (pp. 123-129). Wuhan, China. https://doi.org/10.1109/ICCCS55155.2022.9846791
dc.relation.referencesen16. Diallo, A., & Diallo, C. (2021). Human activity recognition in smart home using deep learning models. In International Conference on Computational Science and Computational Intelligence (pp. 1511-1515). Las Vegas, NV, USA. https://doi.org/10.1109/CSCI54926.2021.00294
dc.relation.referencesen17. Madhav, P. V., et al. (2023). Design and implementation of smart housing system for elderly persons. In International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (pp. 1-5). Chennai, India. https://doi.org/10.1109/RAEEUCCI57140.2023.10134421
dc.relation.referencesen18. Almarzooqi, H., Alzubaidi, I., Albahrani, A., Almansoori, A., & Shatnawi, M. (2019). Gas detection approaches in smart houses. In International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 726-731). Las Vegas, NV, USA. https://doi.org/10.1109/CSCI49370.2019.00138
dc.relation.referencesen19. Niu, H., Nguyen, D., Yonekawa, K., Kurokawa, M., Wada, S., & Yoshihara, K. (2020). Multi-source transfer learning for human activity recognition in smart homes. In IEEE International Conference on Smart Computing (pp. 274-277). Bologna, Italy. https://doi.org/10.1109/SMARTCOMP50058.2020.00063
dc.relation.referencesen20. Zhan, Y., & Haddadi, H. (2021). MoSen: Sensor network optimization in multiple-occupancy smart homes. In IEEE International Conference on Pervasive Computing and Communications Workshops and Other Affiliated Events (pp. 384-388). Kassel, Germany. https://doi.org/10.1109/PerComWorkshops51409.2021.9430947
dc.relation.referencesen21. Nie, B. (2022). Pattern mining of smart home user behavior in the context of the Internet of Things: Based on sensor networks. In 3rd International Conference on Smart Electronics and Communication (pp. 398-401). Trichy, India. https://doi.org/10.1109/ICOSEC54921.2022.9952128
dc.relation.referencesen22. Cultice, T., Ionel, D., & Thapliyal, H. (2020). Smart home sensor anomaly detection using convolutional autoencoder neural network. In IEEE International Symposium on Smart Electronic Systems (iSES) (pp. 67). https://doi.org/10.1109/iSES50453.2020.00026
dc.relation.referencesen23. Khan, M., Saad, M. M., Tariq, M. A., Seo, J., & Kim, D. (2020). Human activity prediction-aware sensor cycling in smart home networks. In IEEE Globecom Workshops (pp. 1-6), Taipei, Taiwan. https://doi.org/10.1109/GCWkshps50303.2020.9367449
dc.relation.referencesen24. Shan, G., Lee, H., & Roh, B.-H. (2022). Indoor localization-based energy management for smart home. In IEEE PES 14th Asia-Pacific Power and Energy Engineering Conference (APPEEC) (pp. 1-5), Melbourne, Australia. https://doi.org/10.1109/APPEEC53445.2022.10072129
dc.relation.referencesen25. Wang, T., Cook, D. J., & Fischer, T. R. (2023). The indoor predictability of human mobility: Estimating mobility with smart home sensors. IEEE Transactions on Emerging Topics in Computing, 11(1), 182-193. https://doi.org/10.1109/TETC.2022.3188939
dc.relation.referencesen26. Rokonuzzaman, M., Akash, M. I., Khatun Mishu, M., Tan, W.-S., Hannan, M. A., & Amin, N. (2022). IoT-based distribution and control system for smart home applications. In IEEE 12th Symposium on Computer Applications & Industrial Electronics (pp. 95-98), Penang, Malaysia. https://doi.org/10.1109/ISCAIE54458.2022.9794497
dc.relation.referencesen27. Tayef, S. H., Rahman, M. M., & Sakib, M. A. B. (2021). Design and implementation of IoT based smart home automation system. In 24th International Conference on Computer and Information Technology (ICCIT) (pp. 1-5), Dhaka, Bangladesh. https://doi.org/10.1109/ICCIT54785.2021.9689809
dc.relation.referencesen28. Sharma, S., Sharma, A., Goel, T., Deoli, R., & Mohan, S. (2020). Smart home gardening management system: A cloud-based Internet-of-Things (IoT) application in VANET. In 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (pp. 1-5), Kharagpur, India. https://doi.org/10.1109/ICCCNT49239.2020.9225573
dc.relation.referencesen29. Kang, B., Kim, S., Choi, M.-I., Cho, K., Jang, S., & Park, S. (2016). Analysis of types and importance of sensors in smart home services. In IEEE 18th International Conference on High Performance Computing and Communications (pp. 1388-1389), Sydney, NSW, Australia. https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0196
dc.relation.referencesen30. Yoon, Y., Lee, J., Lee, J., Kim, B., & Jembre, Y. Z. (2020). Adaptive sensor data transmission scheduling scheme for smart home networks. In IEEE 92nd Vehicular Technology Conference (pp. 1-3), Victoria, BC, Canada. https://doi.org/10.1109/VTC2020-Fall49728.2020.9348564
dc.relation.referencesen31. Romadhon, A. S., & Widyaningrum, V. T. (2022). Application of sensors in Arduino as a control in smart home. In IEEE 8th Information Technology International Seminar (ITIS) (pp. 130-133), Surabaya, Indonesia. https://doi.org/10.1109/ITIS57155.2022.10010217
dc.relation.referencesen32. Macheso, P., Manda, T. D., Chisale, S., Dzupire, N., Mlatho, J., & Mukanyiligira, D. (2021). Design of ESP8266 smart home using MQTT and Node-RED. In International Conference on Artificial Intelligence and Smart Systems (pp. 502-505), Coimbatore, India. https://doi.org/10.1109/ICAIS50930.2021.9396027
dc.relation.referencesen33. Zhang, Y., Meng, Z., Shen, R., Hou, L., & Liu, J. (2021). Electrical design and application of smart home system based on distributed control. In IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (pp. 723-727), Chongqing, China. https://doi.org/10.1109/IAEAC50856.2021.9391001
dc.relation.referencesen34. Sarhan, Q. I. (2020). Arduino based smart home warning system. In IEEE 6th International Conference on Control Science and Systems Engineering (pp. 201-206), Beijing, China. https://doi.org/10.1109/ICCSSE50399.2020.917193
dc.relation.referencesen35. Narkthong, N., Duan, S., Ren, S., & Xu, X. (2024) MicroVSA: An Ultra-Lightweight Vector Symbolic Architecture-based Classifier Library for Always-On Inference on Tiny Microcontrollers. In the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2, (pp. 730-745), Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3620665.3640374
dc.relation.urihttps://doi.org/10.1109/STC-CSIT.2018.8526711
dc.relation.urihttps://doi.org/10.1007/s12927-014-0006-4
dc.relation.urihttps://doi.org/10.15587/1729-4061.2016.84143
dc.relation.urihttps://doi.org/10.1109/AIACT.2019.8847748
dc.relation.urihttps://doi.org/10.1109/ACCESS.2021.3128837
dc.relation.urihttps://doi.org/10.3390/su15086902
dc.relation.urihttps://doi.org/10.1109/STC-CSIT.2017.8098803
dc.relation.urihttps://doi.org/10.1016/j.erss.2017.09.037
dc.relation.urihttps://doi.org/10.1145/1978942.1979249
dc.relation.urihttps://doi.org/10.1016/j.asej.2021.05.027
dc.relation.urihttps://doi.org/10.1109/MEMSTECH.2017.7937524
dc.relation.urihttps://doi.org/10.3390/buildings13051132
dc.relation.urihttps://doi.org/10.3390/electronics12091969
dc.relation.urihttps://doi.org/10.3390/s23041969
dc.relation.urihttps://doi.org/10.1109/ICCCS55155.2022.9846791
dc.relation.urihttps://doi.org/10.1109/CSCI54926.2021.00294
dc.relation.urihttps://doi.org/10.1109/RAEEUCCI57140.2023.10134421
dc.relation.urihttps://doi.org/10.1109/CSCI49370.2019.00138
dc.relation.urihttps://doi.org/10.1109/SMARTCOMP50058.2020.00063
dc.relation.urihttps://doi.org/10.1109/PerComWorkshops51409.2021.9430947
dc.relation.urihttps://doi.org/10.1109/ICOSEC54921.2022.9952128
dc.relation.urihttps://doi.org/10.1109/iSES50453.2020.00026
dc.relation.urihttps://doi.org/10.1109/GCWkshps50303.2020.9367449
dc.relation.urihttps://doi.org/10.1109/APPEEC53445.2022.10072129
dc.relation.urihttps://doi.org/10.1109/TETC.2022.3188939
dc.relation.urihttps://doi.org/10.1109/ISCAIE54458.2022.9794497
dc.relation.urihttps://doi.org/10.1109/ICCIT54785.2021.9689809
dc.relation.urihttps://doi.org/10.1109/ICCCNT49239.2020.9225573
dc.relation.urihttps://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0196
dc.relation.urihttps://doi.org/10.1109/VTC2020-Fall49728.2020.9348564
dc.relation.urihttps://doi.org/10.1109/ITIS57155.2022.10010217
dc.relation.urihttps://doi.org/10.1109/ICAIS50930.2021.9396027
dc.relation.urihttps://doi.org/10.1109/IAEAC50856.2021.9391001
dc.relation.urihttps://doi.org/10.1109/ICCSSE50399.2020.917193
dc.relation.urihttps://doi.org/10.1145/3620665.3640374
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectмікроконтролер
dc.subjectESP8266
dc.subjectSTM8
dc.subjectадаптивна система
dc.subjectрозумний дім
dc.subjectmicrocontroller
dc.subjectESP8266
dc.subjectSTM8
dc.subjectadaptive system
dc.subjectsmart home
dc.titleUniversal controller for the distributed management in the adaptive smart home systems
dc.title.alternativeУніверсальний контролер для розподіленого керування в адаптивних системах розумного дому
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v6n2_Teslyuk_V_M-Universal_controller_for_64-73.pdf
Size:
991.16 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v6n2_Teslyuk_V_M-Universal_controller_for_64-73__COVER.png
Size:
1.68 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: