Дослідження впливу параметрів синтезу на магнітні властивості CoNi феритів

dc.citation.epage38
dc.citation.issue2
dc.citation.spage33
dc.contributor.affiliationУкраїнський державний хіміко-технологічний університет
dc.contributor.affiliationUkrainian State University of Chemical Technology
dc.contributor.authorФролова, Л. А.
dc.contributor.authorБутиріна, Т. Є.
dc.contributor.authorFrolova, L.
dc.contributor.authorButyrina, T.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T07:35:38Z
dc.date.available2024-01-22T07:35:38Z
dc.date.created2020-03-16
dc.date.issued2020-03-16
dc.description.abstractУ статті досліджено вплив умов проведення синтезу на намагніченість насичення та коерцитивну силу NiCo феритів, які були отримані під дією низькотемпературної контактної нерівноважної плазми (КНП). Основними впливовими факторами є початковий рН розчину, температура обробки та тривалість плазмової обробки. Математичні рівняння адекватно описують отримані залежності. Результати показали, що рН реакційного середовища є параметром, який найбільше впливає на магнітний гістерезис для зразків, отриманих при обробці КНП. Зі збільшенням початкового рН значення коерцитивної сили збільшуються.
dc.description.abstractThe influence of synthesis conditions on saturation magnetization and coercive force of NiCo ferrites, which were obtained under the action of low-temperature contact nonequilibrium plasma (PNP), is investigated. The main influencing factors were the initial pH of the solution, the treatment temperature and the duration of plasma treatment. Mathematical equations adequately describe the obtained dependences. The results showed that the pH of the reaction medium is the parameter that most affects the magnetic hysteresis for samples obtained by processing KNP. Increasing the initial pH leads to an increase in coercive force.
dc.format.extent33-38
dc.format.pages6
dc.identifier.citationФролова Л. А. Дослідження впливу параметрів синтезу на магнітні властивості CoNi феритів / Л. А. Фролова, Т. Є. Бутиріна // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2020. — Том 3. — № 2. — С. 33–38.
dc.identifier.citationenFrolova L. Studying the influence of synthesis parameters on the magnetic properties of CoNi ferrites / L. Frolova, T. Butyrina // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 2. — P. 33–38.
dc.identifier.doidoi.org/10.23939/ctas2020.02.033
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60834
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (3), 2020
dc.relation.references1. Cruz, I. F., Freire, C., Araújo, J. P., Pereira, C., & Pereira, A. M. (2018). Multifunctional ferrite nanoparticles: from current trends toward the future. In Magnetic Nanostructured Materials, pp. 59–116. https://doi.org/10.1016/B978-0-12-813904-2.00003-6
dc.relation.references2. Tang, I. M., Krishnamra, N., Charoenphandhu, N., Hoonsawat, R., & Pon-On, W. (2011). Biomagnetic of apatite-coated cobalt ferrite: a core–shell particle for protein adsorption and pH-controlled release. Nanoscale Res Lett, 6(1), 19. https://link.springer.com/content/pdf/10.1007/s11671-010-9761-4.pdf
dc.relation.references3. Mariosi, F. R., Venturini, J., da Cas Viegas, A., & Bergmann, C. P. (2020). Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceramics International, 46(3), 2772–2779. https://doi.org/10.1016/j.ceramint.2019.09.266
dc.relation.references4. Gorter, E. W. (1950). Magnetization in ferrites: saturation magnetization of ferrites with spinel structure. Nature, 165(4203), 798–800.
dc.relation.references5. Yáñez-Vilar, S., Sánchez-Andújar, M., Gómez-Aguirre, C., Mira, J., Señarís-Rodríguez, M. A., & Castro-García, S. (2009). A simple solvothermal synthesis of MFe2O4 (M= Mn, Co and Ni) nanoparticles. Journal of Solid State Chemistry, 182(10), 2685–2690. https://doi.org/10.1016/j.jssc.2009.07.028
dc.relation.references6. Venturini, J., Wermuth, T. B., Machado, M. C., Arcaro, S., Alves, A. K., da Cas Viegas, A., & Bergmann, C. P. (2019). The influence of solvent composition in the sol-gel synthesis of cobalt ferrite (CoFe2O4): A route to tuning its magnetic and mechanical properties. Journal of the European Ceramic Society, 39(12), 3442–3449. https://doi.org/10.1016/j.jeurceramsoc.2019.01.030
dc.relation.references7. Gharibshahian,M.,Mirzaee, O., &Nourbakhsh,M. S. (2017). Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwavemodified Pechinimethod. Journal of Magnetism and Magnetic Materials, 425, 48–56. https://doi.org/10.1016/j.jmmm.2016.10.116
dc.relation.references8. Cernea, M., Galizia, P., Ciuchi, I., Aldica, G., Mihalache, V., Diamandescu, L., & Galassi, C. (2016). CoFe2O4 magnetic ceramic derived from gel and densified by spark plasma sintering. Journal of Alloys and Compounds, 656, 854–862. https://doi.org/10.1016/j.jallcom.2015.09.271
dc.relation.references9. X. H. Li, C. L. Xu, X. H. Han, L. Qiao, T. Wang, F. S Li, “Synthesis and magnetic properties of nearly monodisperse CoFe2O4 nanoparticles through a simple hydrothermal condition”, Nanoscale Research Letters, vol. 5, no. 6, p. 1039, 2010.
dc.relation.references10. Hashemi, S. M., Hasani, S., Ardakani, K. J., & Davar, F. (2019). The effect of simultaneous addition of ethylene glycol and agarose on the structural and magnetic properties of CoFe2O4 nanoparticles prepared by the sol-gel auto-combustion method. Journal of Magnetism and Magnetic Materials, 492, 165714. https://doi.org/10.1016/j.jmmm.2019.165714
dc.relation.references11. Li, X., Sun, Y., Zong, Y., Wei, Y., Liu, X., Li, X., ... & Zheng, X. (2020). Size-effect induced cation redistribution on the magnetic properties of well-dispersed CoFe2O4 nanocrystals. Journal of Alloys and Compounds, 155710. https://doi.org/10.1016/j.jallcom.2020.155710
dc.relation.references12. Revathi, J., Abel, M. J., Archana, V., Sumithra, T., & Thiruneelakandan, R. (2020). Synthesis and characterization of CoFe2O4 and Ni-doped CoFe2O4 nanoparticles by chemical Co-precipitation technique for photo-degradation of organic dyestuffs under direct sunlight. Physica B: Condensed Matter, 412136. https://doi.org/10.1016/j.physb.2020.412136
dc.relation.references13. Brachwitz, K., Böntgen, T., Lorenz, M., & Grundmann, M. (2013). On the transition point of thermally activated conduction of spinel-type MFe2O4 ferrite thin films (M= Zn, Co, Ni). Applied Physics Letters, 102(17), 172104.K. https://doi.org/10.1063/1.4803475
dc.relation.references14. Frolova, L., Pivovarov, A., & Tsepich, E. (2016). Non-equilibrium plasma-assisted hydrophase ferritization in Fе2+–Ni2+–SO4 2−–OH− System. In Nanophysics, Nanophotonics, Surface Studies, and Applications (pp. 213–220). Springer, Cham. https://doi.org/10.1007/978-3-319-30737-4_18
dc.relation.references15. Сергеева, О. В., & Пивоваров, А. А. (2015). Factors affecting the character of plasma discharge with electrolytic cathode at a fixed pressure. Eastern-European Journal of Enterprise Technologies, 3(6 (75)), 31–35. https://doi.org/10.15587/1729-4061.2015.44243
dc.relation.references16. Frolova, L. A., & Derimova, A. V. (2019). Factors controlling magnetic properties of CoFe2O4 nanoparticles prepared by contact low-temperature non-equilibrium plasma method. Journal of Chemical Technology and Metallurgy, 54(5), 1040–1046. https://dl.uctm.edu/journal/node/j2019-5/21_18-174_p1040-1046.pdf
dc.relation.referencesen1. Cruz, I. F., Freire, C., Araújo, J. P., Pereira, C., & Pereira, A. M. (2018). Multifunctional ferrite nanoparticles: from current trends toward the future. In Magnetic Nanostructured Materials, pp. 59–116. https://doi.org/10.1016/B978-0-12-813904-2.00003-6
dc.relation.referencesen2. Tang, I. M., Krishnamra, N., Charoenphandhu, N., Hoonsawat, R., & Pon-On, W. (2011). Biomagnetic of apatite-coated cobalt ferrite: a core–shell particle for protein adsorption and pH-controlled release. Nanoscale Res Lett, 6(1), 19. https://link.springer.com/content/pdf/10.1007/s11671-010-9761-4.pdf
dc.relation.referencesen3. Mariosi, F. R., Venturini, J., da Cas Viegas, A., & Bergmann, C. P. (2020). Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceramics International, 46(3), 2772–2779. https://doi.org/10.1016/j.ceramint.2019.09.266
dc.relation.referencesen4. Gorter, E. W. (1950). Magnetization in ferrites: saturation magnetization of ferrites with spinel structure. Nature, 165(4203), 798–800.
dc.relation.referencesen5. Yáñez-Vilar, S., Sánchez-Andújar, M., Gómez-Aguirre, C., Mira, J., Señarís-Rodríguez, M. A., & Castro-García, S. (2009). A simple solvothermal synthesis of MFe2O4 (M= Mn, Co and Ni) nanoparticles. Journal of Solid State Chemistry, 182(10), 2685–2690. https://doi.org/10.1016/j.jssc.2009.07.028
dc.relation.referencesen6. Venturini, J., Wermuth, T. B., Machado, M. C., Arcaro, S., Alves, A. K., da Cas Viegas, A., & Bergmann, C. P. (2019). The influence of solvent composition in the sol-gel synthesis of cobalt ferrite (CoFe2O4): A route to tuning its magnetic and mechanical properties. Journal of the European Ceramic Society, 39(12), 3442–3449. https://doi.org/10.1016/j.jeurceramsoc.2019.01.030
dc.relation.referencesen7. Gharibshahian,M.,Mirzaee, O., &Nourbakhsh,M. S. (2017). Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwavemodified Pechinimethod. Journal of Magnetism and Magnetic Materials, 425, 48–56. https://doi.org/10.1016/j.jmmm.2016.10.116
dc.relation.referencesen8. Cernea, M., Galizia, P., Ciuchi, I., Aldica, G., Mihalache, V., Diamandescu, L., & Galassi, C. (2016). CoFe2O4 magnetic ceramic derived from gel and densified by spark plasma sintering. Journal of Alloys and Compounds, 656, 854–862. https://doi.org/10.1016/j.jallcom.2015.09.271
dc.relation.referencesen9. X. H. Li, C. L. Xu, X. H. Han, L. Qiao, T. Wang, F. S Li, "Synthesis and magnetic properties of nearly monodisperse CoFe2O4 nanoparticles through a simple hydrothermal condition", Nanoscale Research Letters, vol. 5, no. 6, p. 1039, 2010.
dc.relation.referencesen10. Hashemi, S. M., Hasani, S., Ardakani, K. J., & Davar, F. (2019). The effect of simultaneous addition of ethylene glycol and agarose on the structural and magnetic properties of CoFe2O4 nanoparticles prepared by the sol-gel auto-combustion method. Journal of Magnetism and Magnetic Materials, 492, 165714. https://doi.org/10.1016/j.jmmm.2019.165714
dc.relation.referencesen11. Li, X., Sun, Y., Zong, Y., Wei, Y., Liu, X., Li, X., ... & Zheng, X. (2020). Size-effect induced cation redistribution on the magnetic properties of well-dispersed CoFe2O4 nanocrystals. Journal of Alloys and Compounds, 155710. https://doi.org/10.1016/j.jallcom.2020.155710
dc.relation.referencesen12. Revathi, J., Abel, M. J., Archana, V., Sumithra, T., & Thiruneelakandan, R. (2020). Synthesis and characterization of CoFe2O4 and Ni-doped CoFe2O4 nanoparticles by chemical Co-precipitation technique for photo-degradation of organic dyestuffs under direct sunlight. Physica B: Condensed Matter, 412136. https://doi.org/10.1016/j.physb.2020.412136
dc.relation.referencesen13. Brachwitz, K., Böntgen, T., Lorenz, M., & Grundmann, M. (2013). On the transition point of thermally activated conduction of spinel-type MFe2O4 ferrite thin films (M= Zn, Co, Ni). Applied Physics Letters, 102(17), 172104.K. https://doi.org/10.1063/1.4803475
dc.relation.referencesen14. Frolova, L., Pivovarov, A., & Tsepich, E. (2016). Non-equilibrium plasma-assisted hydrophase ferritization in Fe2+–Ni2+–SO4 2−–OH− System. In Nanophysics, Nanophotonics, Surface Studies, and Applications (pp. 213–220). Springer, Cham. https://doi.org/10.1007/978-3-319-30737-4_18
dc.relation.referencesen15. Serheeva, O. V., & Pivovarov, A. A. (2015). Factors affecting the character of plasma discharge with electrolytic cathode at a fixed pressure. Eastern-European Journal of Enterprise Technologies, 3(6 (75)), 31–35. https://doi.org/10.15587/1729-4061.2015.44243
dc.relation.referencesen16. Frolova, L. A., & Derimova, A. V. (2019). Factors controlling magnetic properties of CoFe2O4 nanoparticles prepared by contact low-temperature non-equilibrium plasma method. Journal of Chemical Technology and Metallurgy, 54(5), 1040–1046. https://dl.uctm.edu/journal/node/j2019-5/21_18-174_p1040-1046.pdf
dc.relation.urihttps://doi.org/10.1016/B978-0-12-813904-2.00003-6
dc.relation.urihttps://link.springer.com/content/pdf/10.1007/s11671-010-9761-4.pdf
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2019.09.266
dc.relation.urihttps://doi.org/10.1016/j.jssc.2009.07.028
dc.relation.urihttps://doi.org/10.1016/j.jeurceramsoc.2019.01.030
dc.relation.urihttps://doi.org/10.1016/j.jmmm.2016.10.116
dc.relation.urihttps://doi.org/10.1016/j.jallcom.2015.09.271
dc.relation.urihttps://doi.org/10.1016/j.jmmm.2019.165714
dc.relation.urihttps://doi.org/10.1016/j.jallcom.2020.155710
dc.relation.urihttps://doi.org/10.1016/j.physb.2020.412136
dc.relation.urihttps://doi.org/10.1063/1.4803475
dc.relation.urihttps://doi.org/10.1007/978-3-319-30737-4_18
dc.relation.urihttps://doi.org/10.15587/1729-4061.2015.44243
dc.relation.urihttps://dl.uctm.edu/journal/node/j2019-5/21_18-174_p1040-1046.pdf
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subjectшпінель
dc.subjectNiCo ферит
dc.subjectплазма
dc.subjectмагнітні характеристики
dc.subjectspinel
dc.subjectNiCo ferrite
dc.subjectplasma
dc.subjectmagnetic characteristics
dc.titleДослідження впливу параметрів синтезу на магнітні властивості CoNi феритів
dc.title.alternativeStudying the influence of synthesis parameters on the magnetic properties of CoNi ferrites
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2020v3n2_Frolova_L-Studying_the_influence_of_33-38.pdf
Size:
961.32 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2020v3n2_Frolova_L-Studying_the_influence_of_33-38__COVER.png
Size:
510.13 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: