Simulation-analytical analysis of the influence of technological factors on the stress-strain behavior of functional surfaces of mold parts

dc.citation.epage17
dc.citation.issue1
dc.citation.journalTitleУкраїнський журнал із машинобудування і матеріалознавства
dc.citation.spage1
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorStupnytskyy, Vadym
dc.contributor.authorXianning, She
dc.contributor.authorVrublevskyi, Ihor
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-18T11:37:54Z
dc.date.created2025-02-27
dc.date.issued2025-02-27
dc.description.abstractIn contemporary mechanical engineering, manufacturing various parts of dies, molds, etc., is particularly challenging. This is due to some factors, including the high precision of the components, the low roughness of their functional surfaces, significant temperature fluctuations during operation, the complex nature of the materials used in these parts, and the high frequency and intensity of the cyclic and alternating thermal and power loads. To demonstrate the advantages of the effectiveness of functionally oriented technological design, the object of research for adequacy is the formation of design technological solutions at the level of route-operational technology for manufacturing mold ejectors. During operation, this particular structural element is subject to intensive wear and alternating power and thermal loads, which, in combination, can cause a loss of functionality of the mold as a whole. Consequently, ejectors’ most significant operational properties are wear resistance, contact stiffness, and fatigue strength. The properties above are contingent on various surface quality indicators, including but not limited to the microtopology of functional surfaces, microhardness (surface layer hardness), residual stresses and strains, and their nature and depth. The quality indicators of the working surface are primarily established during the final stage of the ejector manufacturing process, encompassing finishing and finishing operations. The article undertakes an analysis of the implementation of two variants of the route for machining the most accurate cylindrical surfaces of ejectors at the finishing operation: namely, finishing grinding with an abrasive wheel and fine turning with a blade tool with a CNB-based composite insert of CB7025.
dc.format.extent1-17
dc.format.pages17
dc.identifier.citationStupnytskyy V. Simulation-analytical analysis of the influence of technological factors on the stress-strain behavior of functional surfaces of mold parts / Vadym Stupnytskyy, She Xianning, Ihor Vrublevskyi // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 11. — No 1. — P. 1–17.
dc.identifier.citationenStupnytskyy V. Simulation-analytical analysis of the influence of technological factors on the stress-strain behavior of functional surfaces of mold parts / Vadym Stupnytskyy, She Xianning, Ihor Vrublevskyi // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 11. — No 1. — P. 1–17.
dc.identifier.doidoi.org/10.23939/ujmems2025.01.001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/120170
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал із машинобудування і матеріалознавства, 1 (11), 2025
dc.relation.ispartofUkrainian Journal of Mechanical Engineering and Materials Science, 1 (11), 2025
dc.relation.references[1]. K. K. Wang and V. W. Wang, "Computer-aided mold design and manufacturing", Injection and Compression Molding Fundamentals, pp. 607-669, 2017. DOI:10.1201/9780203750810-9
dc.relation.references[2]. T. Altan, B. Lilly, and Y. C. Yen, "Manufacturing of dies and molds", CIRP Annals, vol. 50, no. 2, pp.404-422, 2001. DOI:10.1016/S0007-8506(07)62988-6
dc.relation.references[3]. S. Feng, A. M. Kamat, and Y. Pei, "Design and fabrication of conformal cooling channels in molds: Review and progress updates", International Journal of Heat and Mass Transfer, vol. 171, 121082, 2021. DOI:10.1016/j.ijheatmasstransfer.2021.121082
dc.relation.references[4]. V. Stupnytskyy and I. Hrytsay, "Computer-Aided Conception for Planning and Researching of the Functional-Oriented Manufacturing Process", Advanced Manufacturing Processes. InterPartner-2019. Lecture Notes in Mechanical Engineering, vol. 1, no. 2, pp. 309-320, 2020. DOI:10.1007/978-3-030-40724-7_32.
dc.relation.references[5]. O.Derevianchenko and O. Fomin, "Complex Recognition Approach for Cutting Part of Cutters in Finishing Turning", In: Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D. (eds) Advances in Design, Simulation and Manufacturing IV. DSMIE 2021. Lecture Notes in Mechanical Engineering. Springer, Cham, 2021. DOI:10.1007/978-3-030-77719-7_3
dc.relation.references[6]. L. Xikun, L. Jing, Q. Like, C. Tong, Q. Guanming, and S. Yanbin, "Composition, characteristics and development of advanced ceramic cutting tools". Journal of Rare Earths, vol. 25, pp. 287-294, 2007. DOI:10.1016/S1002-0721(07)60490-6
dc.relation.references[7]. F. Klocke, H. W. Raedt, and S. Hoppe, "2D-FEM simulation of the orthogonal high speed cutting process", Machining Science and Technology, vol. 5, no. 3, pp. 223-240, 2001. DOI:10.1081/MST-100108618
dc.relation.references[8]. T. Bulzak, Z. Pater, J. Tomczak and Ł. Wójcik, "A rotary compression test for determining the critical value of the Cockcroft-Latham criterion for R260 steel", International Journal of Damage Mechanics, vol. 29, no. 6, pp.874-886, 2019. DOI:10.1177/1056789519887527.
dc.relation.references[9]. N. V. Chandra Shekar and K. G. Rajan, "Kinetics of pressure induced structural phase transitions-A review", Bulletin of Materials Science, vol. 24, pp. 1-21, 2001. DOI:10.1007/BF02704834
dc.relation.references[10]. V. Stupnytskyy, E. Dragašius, S. Baskutis and S. Xianning, "Modeling and simulation of machined surface layer microgeometry parameters", Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 8, no. 1, pp. 1-11, 2022. DOI:10.23939/ujmems2022.01.001
dc.relation.references[11]. W. Boyce, R. DiPrima and D. Meade, "Elementary Differential Equations and Boundary Value Problems". Wiley, London, 2017.
dc.relation.references[12]. A.T. Abbas, N. Sharma, M.S. Soliman, M.M. El Rayes, R.C. Sharma and A. Elkaseer, "Effect of Wiper Edge Geometry on Machining Performance While Turning AISI 1045 Steel in Dry Conditions Using the VIKOR-ML Approach", Machines, vol. 11, 719, 2023. DOI:10.3390/machines11070719.
dc.relation.references[13]. V. Stupnytskyy and I. Hrytsay, "Simulation study of cutting-induced residual stress", In Advances in Design, Simulation and Manufacturing II: Proceedings of the 2nd International Conference on Design, Simulation, Manufacturing: The Innovation Exchange, DSMIE-2019, June 11-14, 2019, Lutsk, Ukraine Springer International Publishing, pp. 341-350, 2020. DOI:10.1007/978-3-030-22365-6_34
dc.relation.references[14]. F. Nagashima, Y. Nakagawa and M. Yoshino, "Numerical analysis of subgrain formation during metal cutting and rolling based on the crystal plasticity theory", International Journal of Material Forming, vol. 15, no. 9, 2022. DOI:10.1007/s12289-022-01652-0
dc.relation.references[15]. V.N. Laptinskii, "Exact Solution of the Prandtl Problem about a Dynamic Laminar Boundary Layer", Differential Equations, vol. 56, pp. 538-542, 2020. DOI:10.1134/S0012266120040126
dc.relation.references[16]. H., Sutanto and J. Madl, "Residual stress development in hard machining-a review", In IOP Conference Series: Materials Science and Engineering, vol. 420, no. 1, p. 012031, 2018. DOI: 10.1088/1757-899X/420/1/012031
dc.relation.references[17]. R.F. Eduljee, J.W. Gillespie, R.L. Mccullough, "Prediction of Process Induced Thermal Residual Stresses in Injection Molded Composites", Journal of Thermoplastic Composite Materials, vol. 2, no.4, pp. 319-333, 198. DOI:10.1177/089270578900200406
dc.relation.references[18]. I. Noll, T. Bartel and A. Menzel, "A thermodynamically consistent phase transformation model for multiphase alloys: application to Ti-Al-V in laser powder bed fusion processes", Computational Mechanics, vol. 74, no. 4, pp. 1319-1338, 2024. DOI:10.1007/s00466-024-02479-z.
dc.relation.references[19]. K. Jeyabalan, S.D. Catteau, J. Teixeira, G. Geandier, B. Denand, et al. "Modeling of the austenite decomposition kinetics in a low-alloyed steel enriched in carbon and nitrogen", Materialia, vol.9, pp.100582, 2020. DOI:ff10.1016/j.mtla.2019.100582
dc.relation.references[20]. S. Akcan, W.S. Shah, S.P. Moylan, et al. "Formation of white layers in steels by machining and their characteristics", Metallurgical and Materials Transactions A, vol. 33, pp. 1245-1254, 2002. DOI:10.1007/s11661-002-0225-z
dc.relation.references[21]. XT. Feng, H. Xu, C. Yang, et al. "Influence of Loading and Unloading Stress Paths on the Deformation and Failure Features of Jinping Marble Under True Triaxial Compression", Rock Mechanics and Rock Engineering, vol.53, pp.3287-3301, 2020. DOI:10.1007/s00603-020-02104-4
dc.relation.references[22]. D.G. Thakur, B. Ramamoorthy and L. Vijayaraghavan, "Effect of cutting parameters on the degree of work hardening and tool life during high-speed machining of Inconel 718", The International Journal of Advanced Manufacturing Technology, vol. 59, pp. 483-489, 2012. DOI:10.1007/s00170-011-3529-6.
dc.relation.references[23]. X. Jiang, K. Liu, Y. Yan, M. Li, P. Gong and H. He, "Grinding Temperature and Surface Integrity of Quenched Automotive Transmission Gear during the Form Grinding Process", Materials, vol. 15, no. 21, 7723, 2022. DOI:10.3390/ma15217723.
dc.relation.referencesen[1]. K. K. Wang and V. W. Wang, "Computer-aided mold design and manufacturing", Injection and Compression Molding Fundamentals, pp. 607-669, 2017. DOI:10.1201/9780203750810-9
dc.relation.referencesen[2]. T. Altan, B. Lilly, and Y. C. Yen, "Manufacturing of dies and molds", CIRP Annals, vol. 50, no. 2, pp.404-422, 2001. DOI:10.1016/S0007-8506(07)62988-6
dc.relation.referencesen[3]. S. Feng, A. M. Kamat, and Y. Pei, "Design and fabrication of conformal cooling channels in molds: Review and progress updates", International Journal of Heat and Mass Transfer, vol. 171, 121082, 2021. DOI:10.1016/j.ijheatmasstransfer.2021.121082
dc.relation.referencesen[4]. V. Stupnytskyy and I. Hrytsay, "Computer-Aided Conception for Planning and Researching of the Functional-Oriented Manufacturing Process", Advanced Manufacturing Processes. InterPartner-2019. Lecture Notes in Mechanical Engineering, vol. 1, no. 2, pp. 309-320, 2020. DOI:10.1007/978-3-030-40724-7_32.
dc.relation.referencesen[5]. O.Derevianchenko and O. Fomin, "Complex Recognition Approach for Cutting Part of Cutters in Finishing Turning", In: Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D. (eds) Advances in Design, Simulation and Manufacturing IV. DSMIE 2021. Lecture Notes in Mechanical Engineering. Springer, Cham, 2021. DOI:10.1007/978-3-030-77719-7_3
dc.relation.referencesen[6]. L. Xikun, L. Jing, Q. Like, C. Tong, Q. Guanming, and S. Yanbin, "Composition, characteristics and development of advanced ceramic cutting tools". Journal of Rare Earths, vol. 25, pp. 287-294, 2007. DOI:10.1016/S1002-0721(07)60490-6
dc.relation.referencesen[7]. F. Klocke, H. W. Raedt, and S. Hoppe, "2D-FEM simulation of the orthogonal high speed cutting process", Machining Science and Technology, vol. 5, no. 3, pp. 223-240, 2001. DOI:10.1081/MST-100108618
dc.relation.referencesen[8]. T. Bulzak, Z. Pater, J. Tomczak and Ł. Wójcik, "A rotary compression test for determining the critical value of the Cockcroft-Latham criterion for R260 steel", International Journal of Damage Mechanics, vol. 29, no. 6, pp.874-886, 2019. DOI:10.1177/1056789519887527.
dc.relation.referencesen[9]. N. V. Chandra Shekar and K. G. Rajan, "Kinetics of pressure induced structural phase transitions-A review", Bulletin of Materials Science, vol. 24, pp. 1-21, 2001. DOI:10.1007/BF02704834
dc.relation.referencesen[10]. V. Stupnytskyy, E. Dragašius, S. Baskutis and S. Xianning, "Modeling and simulation of machined surface layer microgeometry parameters", Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 8, no. 1, pp. 1-11, 2022. DOI:10.23939/ujmems2022.01.001
dc.relation.referencesen[11]. W. Boyce, R. DiPrima and D. Meade, "Elementary Differential Equations and Boundary Value Problems". Wiley, London, 2017.
dc.relation.referencesen[12]. A.T. Abbas, N. Sharma, M.S. Soliman, M.M. El Rayes, R.C. Sharma and A. Elkaseer, "Effect of Wiper Edge Geometry on Machining Performance While Turning AISI 1045 Steel in Dry Conditions Using the VIKOR-ML Approach", Machines, vol. 11, 719, 2023. DOI:10.3390/machines11070719.
dc.relation.referencesen[13]. V. Stupnytskyy and I. Hrytsay, "Simulation study of cutting-induced residual stress", In Advances in Design, Simulation and Manufacturing II: Proceedings of the 2nd International Conference on Design, Simulation, Manufacturing: The Innovation Exchange, DSMIE-2019, June 11-14, 2019, Lutsk, Ukraine Springer International Publishing, pp. 341-350, 2020. DOI:10.1007/978-3-030-22365-6_34
dc.relation.referencesen[14]. F. Nagashima, Y. Nakagawa and M. Yoshino, "Numerical analysis of subgrain formation during metal cutting and rolling based on the crystal plasticity theory", International Journal of Material Forming, vol. 15, no. 9, 2022. DOI:10.1007/s12289-022-01652-0
dc.relation.referencesen[15]. V.N. Laptinskii, "Exact Solution of the Prandtl Problem about a Dynamic Laminar Boundary Layer", Differential Equations, vol. 56, pp. 538-542, 2020. DOI:10.1134/S0012266120040126
dc.relation.referencesen[16]. H., Sutanto and J. Madl, "Residual stress development in hard machining-a review", In IOP Conference Series: Materials Science and Engineering, vol. 420, no. 1, p. 012031, 2018. DOI: 10.1088/1757-899X/420/1/012031
dc.relation.referencesen[17]. R.F. Eduljee, J.W. Gillespie, R.L. Mccullough, "Prediction of Process Induced Thermal Residual Stresses in Injection Molded Composites", Journal of Thermoplastic Composite Materials, vol. 2, no.4, pp. 319-333, 198. DOI:10.1177/089270578900200406
dc.relation.referencesen[18]. I. Noll, T. Bartel and A. Menzel, "A thermodynamically consistent phase transformation model for multiphase alloys: application to Ti-Al-V in laser powder bed fusion processes", Computational Mechanics, vol. 74, no. 4, pp. 1319-1338, 2024. DOI:10.1007/s00466-024-02479-z.
dc.relation.referencesen[19]. K. Jeyabalan, S.D. Catteau, J. Teixeira, G. Geandier, B. Denand, et al. "Modeling of the austenite decomposition kinetics in a low-alloyed steel enriched in carbon and nitrogen", Materialia, vol.9, pp.100582, 2020. DOI:ff10.1016/j.mtla.2019.100582
dc.relation.referencesen[20]. S. Akcan, W.S. Shah, S.P. Moylan, et al. "Formation of white layers in steels by machining and their characteristics", Metallurgical and Materials Transactions A, vol. 33, pp. 1245-1254, 2002. DOI:10.1007/s11661-002-0225-z
dc.relation.referencesen[21]. XT. Feng, H. Xu, C. Yang, et al. "Influence of Loading and Unloading Stress Paths on the Deformation and Failure Features of Jinping Marble Under True Triaxial Compression", Rock Mechanics and Rock Engineering, vol.53, pp.3287-3301, 2020. DOI:10.1007/s00603-020-02104-4
dc.relation.referencesen[22]. D.G. Thakur, B. Ramamoorthy and L. Vijayaraghavan, "Effect of cutting parameters on the degree of work hardening and tool life during high-speed machining of Inconel 718", The International Journal of Advanced Manufacturing Technology, vol. 59, pp. 483-489, 2012. DOI:10.1007/s00170-011-3529-6.
dc.relation.referencesen[23]. X. Jiang, K. Liu, Y. Yan, M. Li, P. Gong and H. He, "Grinding Temperature and Surface Integrity of Quenched Automotive Transmission Gear during the Form Grinding Process", Materials, vol. 15, no. 21, 7723, 2022. DOI:10.3390/ma15217723.
dc.rights.holder© Національний університет "Львівська політехніка", 2025
dc.rights.holder© Stupnytskyy V., Xianning S., Vrublevskyi I., 2025
dc.subjectmold manufacturing
dc.subjectsimulation modeling
dc.subjectcutting-induced residual stress
dc.subjectroughness
dc.subjectstress-strain state
dc.titleSimulation-analytical analysis of the influence of technological factors on the stress-strain behavior of functional surfaces of mold parts
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2025v11n1_Stupnytskyy_V-Simulation_analytical_1-17.pdf
Size:
2.75 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2025v11n1_Stupnytskyy_V-Simulation_analytical_1-17__COVER.png
Size:
481.1 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: