Fundamental aspects of metrological support in IoT

dc.citation.epage56
dc.citation.issue1
dc.citation.journalTitleВимірювальна техніка та метрологія
dc.citation.spage50
dc.contributor.affiliationLviv Politechnic National University
dc.contributor.authorHonsor, Oksana
dc.contributor.authorMykyichuk, Bohdan
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-13T07:53:57Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractThe application of intelligent sensors, network technologies, and machine learning in IoT and industry is increas- ingly widespread as a part of the development and implementation of Industry 4.0, Industry 5.0, and Smart City. It is necessary to review the fundamental principles of metrological support for production. This includes calibration, estimation of measurement uncertainty, traceability, and processing of large data sets to reproduce and compare the results of measurements of physical quan- tities remotely. Modern smart sensors are cost-effective, which makes traditional sensor calibration methods increasingly uneco- nomical. The utilization of advanced networking technologies, along with machine learning, complicates the pre-processing of measured values. Therefore, new solutions are required when it comes to implementing digital metrology. In this article, a metrological framework for the full life cycle of measured data in IoT is presented. It ensures transparency, comparability, consistent quality and reliability of measured data, processing methods and results. The OPC-UA digital data com- munication standard is considered, which provides a single interface for exchanging digital data with devices from different manu- facturers or via different protocols. The syntax of a machine-readable representation of SI units and derived quantities as well as the structure of the sensor network metadata model are also described. Special emphasis is placed on dynamic calibration of sen- sors, determining measurement uncertainty in sensor networks, and implementing digital calibration certificates in IoT and industry.
dc.format.extent50-56
dc.format.pages7
dc.identifier.citationHonsor O. Fundamental aspects of metrological support in IoT / Honsor Oksana, Mykyichuk Bohdan // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 1. — P. 50–56.
dc.identifier.citationenHonsor O. Fundamental aspects of metrological support in IoT / Honsor Oksana, Mykyichuk Bohdan // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 1. — P. 50–56.
dc.identifier.doidoi.org/10.23939/istcmtm2024.01.050
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64136
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВимірювальна техніка та метрологія, 1 (85), 2024
dc.relation.ispartofMeasuring Equipment and Metrology, 1 (85), 2024
dc.relation.references[1] B. Jeckelmann, R. Edelmaier Metrological Infrastructure.Berlin, Boston: De Gruyter Oldenbourg; 2023. DOI: 10.1515/9783110715835
dc.relation.references[2] E. Balestrieri, L. De Vito, F. Lamonaca, F. Picariello, S. Rapuano, I. Tudosa, Research challenges in Measurement for Internet of Things systems, Acta IMEKO, Vol. 7, No. 4, 2018, pp. 82–94. DOI: 10.21014/acta_imeko.v7i4.675
dc.relation.references[3] Sascha Eichstädt, Anupam P. Vedurmudi, Maximilian Gruber, Daniel Hutzschenreuter, Fundamental aspects in sensor network metrology, Acta IMEKO, Vol. 12, No. 1, 2023. DOI: 10.21014/ACTAIMEKO.V12I1.1417
dc.relation.references[4] S. Hackel, F. Hartig, J. Hornig, and T. Wiedenh, The digital calibration certificate, PTB – Mitteilungen Forschen und Prufen, Vol. 127, No. 4, 2017, pp. 75–81. DOI: 10.7795/310.20170403
dc.relation.references[5] T. Mustapää, J. Autiosalo, P. Nikander, J. E. Siegel and R. Viitala, Digital Metrology for the Internet of Things, Conference: 2020 Global Internet of Things Summit (GIoTS), Dublin, Ireland, pp. 1–6, 2020. DOI: 10.1109/GIOTS49054.2020.9119603.
dc.relation.references[6] J. M. Barcelo-Ordinas, M. Doudou, J. Garcia-Vidal, and N. Badache, Self-calibration methods for uncontrolled environments in sensor networks: A reference survey, Ad Hoc Networks, Vol. 88, pp. 142–159, 2019. DOI: 10.1016/j.adhoc. 2019.01.008.
dc.relation.references[7] T. Schneider, N. Helwig, A. Schütze, Industrial condition monitoring with smart sensors using automated feature extraction and selection, Measurement Science and Technology, Vol. 29, No. 9, 2018. DOI: 10.1088/1361-6501/aad1d4
dc.relation.references[8] Met4FoF – metrology for Factory of the Future – Tutorial on the one-touch calibration of MEMS temperature sensors, 2021 [Online]. Available: https://www.ptb.de/empir2018/met4fof/home/
dc.relation.references[9] B. Seeger, T. Bruns, Primary calibration of mechanical sensors with digital output for dynamic applications, Acta IMEKO, Vol. 10, No. 3, 2021, pp. 177–184. DOI: 10.21014/acta_imeko.v10i3.1075
dc.relation.references[10] D. Hutzschenreuter et al., SmartCom Digital System of Units (DSI) Guide for the use of the metadata format used in metrology for the easy-to-use, safe, harmonised and unambiguous digital transfer of metrological data – Second Edition, 2020. DOI: 10.5281/zenodo.3816686
dc.relation.references[11] S. Eichstädt, M. Gruber, A. P. Vedurmudi, B. Seeger, T. Bruns, G. Kok, Toward smart traceability for digital sensors and the industrial Internet of Things, Sensors, vol. 21, no. 6, 2021. doi: 10.3390/s21062019
dc.relation.references[12] Why OPC UA is so important, Indusoft Digital Manufacturing, 2022 [Online]. Available: https://indusoft.com.ua/blog/2022/05/18/chomu-opc-ua-takij-vazhlivij/
dc.relation.references[13] J. Wright Siunitx – A comprehensive (SI) units package, Version v2.7s [Online]. Available: http://mirrors.ctan.org/macros/latex/contrib/siunitx/siunit
dc.relation.references[14] IEC TS 62720:2017. Identification of units of measurements for computer-based processing, 2017.
dc.relation.references[15] S. Eichstädt, C. Elster, I. M. Smith, T. J. Esward, Evaluation of dynamic measurement uncertainty – an open-source software package to bridge theory and practice, Journal of Sensors and Sensor Systems, Vol. 6, 2017, pp. 97–105. DOI: 10.5194/jsss-6-97-2017
dc.relation.references[16] O. Vasilevskyi, Conception of metrological assurance in Industry 4.0, Information technologies and computer enginery, Vol. 48, No. 2, 2020, pp. 37–44. DOI: 10.31649/1999-9941-2020-48-2-37-44
dc.relation.references[17] Communication and validation of smart data in IoT networks, Publishable Summary for 17IND02 SmartCom, 2021 [Online]. Available: https://www.ptb.de/empir2018/smartcom/project
dc.relation.references[18] Hutzschenreuter, D., Härtig, F., Wiedenhöfer, T., Hackel, S. G., Scheibner, A., Smith, I., Brown, C., & Wiebke Heeren, SmartCom Digital-SI (D-SI) XML exchange format for metrological data version 1.3.1 (1.3.1), Zenodo, 2020. DOI: 10.5281/zenodo.3826517
dc.relation.references[19] S. Hackel, F. Härtig, T. Schrader, A. Scheibner, J. Loewe, L. Doering, B. Gloger, J. Jagieniak, D. Hutzschenreuter, and G. Söylev-Öktem. The fundamental architecture of the DCC. Measurement: Sensors, 18:100354, 2021. DOI: 10.1016/j.measen.2021.100354. [20]J. Nummiluikki, S. Saxholm, A Kärkkäinen, S. Koskinen. Digital Calibration Certificate in an Industrial Application, Acta IMEKO, Vol. 12, No. 1 (2023). DOI: 10.21014/actaimeko, v.12i1.1402.
dc.relation.referencesen[1] B. Jeckelmann, R. Edelmaier Metrological Infrastructure.Berlin, Boston: De Gruyter Oldenbourg; 2023. DOI: 10.1515/9783110715835
dc.relation.referencesen[2] E. Balestrieri, L. De Vito, F. Lamonaca, F. Picariello, S. Rapuano, I. Tudosa, Research challenges in Measurement for Internet of Things systems, Acta IMEKO, Vol. 7, No. 4, 2018, pp. 82–94. DOI: 10.21014/acta_imeko.v7i4.675
dc.relation.referencesen[3] Sascha Eichstädt, Anupam P. Vedurmudi, Maximilian Gruber, Daniel Hutzschenreuter, Fundamental aspects in sensor network metrology, Acta IMEKO, Vol. 12, No. 1, 2023. DOI: 10.21014/ACTAIMEKO.V12I1.1417
dc.relation.referencesen[4] S. Hackel, F. Hartig, J. Hornig, and T. Wiedenh, The digital calibration certificate, PTB – Mitteilungen Forschen und Prufen, Vol. 127, No. 4, 2017, pp. 75–81. DOI: 10.7795/310.20170403
dc.relation.referencesen[5] T. Mustapää, J. Autiosalo, P. Nikander, J. E. Siegel and R. Viitala, Digital Metrology for the Internet of Things, Conference: 2020 Global Internet of Things Summit (GIoTS), Dublin, Ireland, pp. 1–6, 2020. DOI: 10.1109/GIOTS49054.2020.9119603.
dc.relation.referencesen[6] J. M. Barcelo-Ordinas, M. Doudou, J. Garcia-Vidal, and N. Badache, Self-calibration methods for uncontrolled environments in sensor networks: A reference survey, Ad Hoc Networks, Vol. 88, pp. 142–159, 2019. DOI: 10.1016/j.adhoc. 2019.01.008.
dc.relation.referencesen[7] T. Schneider, N. Helwig, A. Schütze, Industrial condition monitoring with smart sensors using automated feature extraction and selection, Measurement Science and Technology, Vol. 29, No. 9, 2018. DOI: 10.1088/1361-6501/aad1d4
dc.relation.referencesen[8] Met4FoF – metrology for Factory of the Future – Tutorial on the one-touch calibration of MEMS temperature sensors, 2021 [Online]. Available: https://www.ptb.de/empir2018/met4fof/home/
dc.relation.referencesen[9] B. Seeger, T. Bruns, Primary calibration of mechanical sensors with digital output for dynamic applications, Acta IMEKO, Vol. 10, No. 3, 2021, pp. 177–184. DOI: 10.21014/acta_imeko.v10i3.1075
dc.relation.referencesen[10] D. Hutzschenreuter et al., SmartCom Digital System of Units (DSI) Guide for the use of the metadata format used in metrology for the easy-to-use, safe, harmonised and unambiguous digital transfer of metrological data – Second Edition, 2020. DOI: 10.5281/zenodo.3816686
dc.relation.referencesen[11] S. Eichstädt, M. Gruber, A. P. Vedurmudi, B. Seeger, T. Bruns, G. Kok, Toward smart traceability for digital sensors and the industrial Internet of Things, Sensors, vol. 21, no. 6, 2021. doi: 10.3390/s21062019
dc.relation.referencesen[12] Why OPC UA is so important, Indusoft Digital Manufacturing, 2022 [Online]. Available: https://indusoft.com.ua/blog/2022/05/18/chomu-opc-ua-takij-vazhlivij/
dc.relation.referencesen[13] J. Wright Siunitx – A comprehensive (SI) units package, Version v2.7s [Online]. Available: http://mirrors.ctan.org/macros/latex/contrib/siunitx/siunit
dc.relation.referencesen[14] IEC TS 62720:2017. Identification of units of measurements for computer-based processing, 2017.
dc.relation.referencesen[15] S. Eichstädt, C. Elster, I. M. Smith, T. J. Esward, Evaluation of dynamic measurement uncertainty – an open-source software package to bridge theory and practice, Journal of Sensors and Sensor Systems, Vol. 6, 2017, pp. 97–105. DOI: 10.5194/jsss-6-97-2017
dc.relation.referencesen[16] O. Vasilevskyi, Conception of metrological assurance in Industry 4.0, Information technologies and computer enginery, Vol. 48, No. 2, 2020, pp. 37–44. DOI: 10.31649/1999-9941-2020-48-2-37-44
dc.relation.referencesen[17] Communication and validation of smart data in IoT networks, Publishable Summary for 17IND02 SmartCom, 2021 [Online]. Available: https://www.ptb.de/empir2018/smartcom/project
dc.relation.referencesen[18] Hutzschenreuter, D., Härtig, F., Wiedenhöfer, T., Hackel, S. G., Scheibner, A., Smith, I., Brown, C., & Wiebke Heeren, SmartCom Digital-SI (D-SI) XML exchange format for metrological data version 1.3.1 (1.3.1), Zenodo, 2020. DOI: 10.5281/zenodo.3826517
dc.relation.referencesen[19] S. Hackel, F. Härtig, T. Schrader, A. Scheibner, J. Loewe, L. Doering, B. Gloger, J. Jagieniak, D. Hutzschenreuter, and G. Söylev-Öktem. The fundamental architecture of the DCC. Measurement: Sensors, 18:100354, 2021. DOI: 10.1016/j.measen.2021.100354. [20]J. Nummiluikki, S. Saxholm, A Kärkkäinen, S. Koskinen. Digital Calibration Certificate in an Industrial Application, Acta IMEKO, Vol. 12, No. 1 (2023). DOI: 10.21014/actaimeko, v.12i1.1402.
dc.relation.urihttps://www.ptb.de/empir2018/met4fof/home/
dc.relation.urihttps://indusoft.com.ua/blog/2022/05/18/chomu-opc-ua-takij-vazhlivij/
dc.relation.urihttp://mirrors.ctan.org/macros/latex/contrib/siunitx/siunit
dc.relation.urihttps://www.ptb.de/empir2018/smartcom/project
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectsensor network
dc.subjectmeasurement uncertainty
dc.subjectInternet of Things
dc.subjectdigital calibration
dc.titleFundamental aspects of metrological support in IoT
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v85n1_Honsor_O-Fundamental_aspects_of_metrological_50-56.pdf
Size:
236.44 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v85n1_Honsor_O-Fundamental_aspects_of_metrological_50-56__COVER.png
Size:
522.81 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: