Analysis of parts machining by cutting using approaches of reliability engineering
| dc.citation.epage | 43 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Український журнал із машинобудування і матеріалознавства | |
| dc.citation.spage | 36 | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | University of Brescia | |
| dc.contributor.author | Kusyi, Yaroslav | |
| dc.contributor.author | Brukhal, Pavlo | |
| dc.contributor.author | Konyukh, Oleg | |
| dc.contributor.author | Cocca, Paola | |
| dc.coverage.placename | Львів | |
| dc.date.accessioned | 2025-11-18T11:50:42Z | |
| dc.date.created | 2025-02-27 | |
| dc.date.issued | 2025-02-27 | |
| dc.description.abstract | Digitalization of important processes related to parts machining and product manufacturing requires searching for new approaches and techniques for technological process planning during product manufacturing. Product life cycle is prioritized in scientific research in manufacturing engineering, and materials sciences. Object-oriented and functionally-oriented technologies are used for technological process planning at product manufacturing for current manufacturing engineering. Object-oriented technologies characterized by step-by-step execution of interrelated activities based on the prototyping sequence are used in conventional automated systems of design and technological preparation of manufacturing products. A characteristic feature of smart manufacturing, as the highest level of functionallyoriented technologies, is the technological assurance of reliability metrics, operational characteristics, and sustainable development goals at product manufacture by the main requirements of Industry 4.0/5.0. Nowadays, the prediction of products’ behaviour during their life cycles is an important task of current manufacturing engineering. Reliability engineering, as a combination of physics, statistics, and engineering, allows for analysing the product behaviour for different production processes in different operational conditions. A technique for analysing the influence of technological system elements for parts machining by cutting on technological assurance of the product quality using Markov chains is developed. The influence of a metal-cutting machine, a metal-cutting tool, and a fixture (clamping device) providing the regulated product quality of the machined product is calculated. Further research in this direction should be carried out according to a comprehensive analysis of different machining methods and a wider range of components, because it is necessary to study the change in reliability parameters with different operating times of the technological system elements. | |
| dc.format.extent | 36-43 | |
| dc.format.pages | 8 | |
| dc.identifier.citation | Analysis of parts machining by cutting using approaches of reliability engineering / Yaroslav Kusyi, Pavlo Brukhal, Oleg Konyukh, Paola Cocca // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv Politechnic Publishing House, 2025. — Vol 11. — No 2. — P. 36–43. | |
| dc.identifier.citationen | Analysis of parts machining by cutting using approaches of reliability engineering / Yaroslav Kusyi, Pavlo Brukhal, Oleg Konyukh, Paola Cocca // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv Politechnic Publishing House, 2025. — Vol 11. — No 2. — P. 36–43. | |
| dc.identifier.doi | doi.org/10.23939/ujmems2025.02.036 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/120183 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Український журнал із машинобудування і матеріалознавства, 2 (11), 2025 | |
| dc.relation.ispartof | Ukrainian Journal of Mechanical Engineering and Materials Science, 2 (11), 2025 | |
| dc.relation.references | [1] J. P. Davim, Sustainable Machining. Materials Forming, Machining and Tribology. Cham, Switzerland, 2017. | |
| dc.relation.references | [2] K. P. Tran, Artificial Intelligence for Safety and Reliability Engineering. Methods, Applications, and Challenges, Springer, Cham, Switzerland, 2024. | |
| dc.relation.references | [3] V. Stupnytskyy and I. Hrytsay, "Simulation study of cutting-induced residual stress", In Advances in Design, Simulation and Manufacturing II: Proceedings of the 2nd International Conference on Design, Simulation, Manufacturing: The Innovation Exchange, DSMIE-2019, June 11-14, 2019, Lutsk, Ukraine Springer International Publishing, pp. 341-350, 2020. DOI:10.1007/978-3-030-22365-6_34 | |
| dc.relation.references | [4] K. K. Wang and V. W. Wang, "Computer-aided mold design and manufacturing", Injection and Compression Molding Fundamentals, pp. 607-669, 2017. DOI:10.1201/9780203750810-9 | |
| dc.relation.references | [5] Y. Kusyi, V. Stupnytskyy, O. Onysko, E. Dragašius, S. Baskutis, and R. Chatys, "Optimization synthesis of technological parameters during manufacturing of the parts", Eksploatacja i Niezawodnosc - Maintenance and Reliability, vol. 24, no. 4, pp. 655-667, 2022. DOI: http://doi.org/10.17531/ ein.2022.4.6 | |
| dc.relation.references | [6] V. Stupnytskyy, E. Dragašius, S. Baskutis and S. Xianning, "Modeling and simulation of machined surface layer microgeometry parameters", Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 8, no. 1, pp. 1-11, 2022. DOI:10.23939/ujmems2022.01.001 | |
| dc.relation.references | [7] T. Altan, B. Lilly, and Y. C. Yen, "Manufacturing of dies and molds", CIRP Annals, vol. 50, no. 2, pp.404- 422, 2001. DOI:10.1016/S0007-8506(07)62988-6 | |
| dc.relation.references | [8] K.B. Akhilesh and D. Möller, Smart Technologies. Scope and Aplications, Springer Nature, Singapore, Pte Ltd, 2020. | |
| dc.relation.references | [9] F. Psarommatis and V. Azamfireic, "Zero Defect Manufacturing: A complete guide for advanced and sustainable quality management", Journal of Manufacturing Systems, vol. 77, pp. 764-779, 2024. DOI: 10.1016/j.jmsy.2024.10.022. | |
| dc.relation.references | [10] F. Psarommatis and G. Bravos, "A holistic approach for achieving Sustainable manufacturing using Zero Defect Manufacturing: a conceptual Framework", Procedia CIRP, vol. 107, pp. 107-112, 2022. DOI: 10.1016/J. PROCIR.2022.04.018 | |
| dc.relation.references | [11] F. Nagashima, Y. Nakagawa, and M. Yoshino, "Numerical analysis of subgrain formation during metal cutting and rolling based on the crystal plasticity theory", International Journal of Material Forming, vol. 15, no. 9, 2022. DOI:10.1007/s12289-022-01652-0 | |
| dc.relation.references | [12] Y. Kusyi, O. Kostiuk, A. Kuk, A. Attanasio, and P. Cocca, "Optimization of Cutting Modes During Sustainable Machining of Products Based on Economic Criteria". In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes V. InterPartner 2023. Lecture Notes in Mechanical Engineering. Springer, Cham, 2024. DOI: 10.1007/978-3-031-42778-7_16 | |
| dc.relation.referencesen | [1] J. P. Davim, Sustainable Machining. Materials Forming, Machining and Tribology. Cham, Switzerland, 2017. | |
| dc.relation.referencesen | [2] K. P. Tran, Artificial Intelligence for Safety and Reliability Engineering. Methods, Applications, and Challenges, Springer, Cham, Switzerland, 2024. | |
| dc.relation.referencesen | [3] V. Stupnytskyy and I. Hrytsay, "Simulation study of cutting-induced residual stress", In Advances in Design, Simulation and Manufacturing II: Proceedings of the 2nd International Conference on Design, Simulation, Manufacturing: The Innovation Exchange, DSMIE-2019, June 11-14, 2019, Lutsk, Ukraine Springer International Publishing, pp. 341-350, 2020. DOI:10.1007/978-3-030-22365-6_34 | |
| dc.relation.referencesen | [4] K. K. Wang and V. W. Wang, "Computer-aided mold design and manufacturing", Injection and Compression Molding Fundamentals, pp. 607-669, 2017. DOI:10.1201/9780203750810-9 | |
| dc.relation.referencesen | [5] Y. Kusyi, V. Stupnytskyy, O. Onysko, E. Dragašius, S. Baskutis, and R. Chatys, "Optimization synthesis of technological parameters during manufacturing of the parts", Eksploatacja i Niezawodnosc - Maintenance and Reliability, vol. 24, no. 4, pp. 655-667, 2022. DOI: http://doi.org/10.17531/ ein.2022.4.6 | |
| dc.relation.referencesen | [6] V. Stupnytskyy, E. Dragašius, S. Baskutis and S. Xianning, "Modeling and simulation of machined surface layer microgeometry parameters", Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 8, no. 1, pp. 1-11, 2022. DOI:10.23939/ujmems2022.01.001 | |
| dc.relation.referencesen | [7] T. Altan, B. Lilly, and Y. C. Yen, "Manufacturing of dies and molds", CIRP Annals, vol. 50, no. 2, pp.404- 422, 2001. DOI:10.1016/S0007-8506(07)62988-6 | |
| dc.relation.referencesen | [8] K.B. Akhilesh and D. Möller, Smart Technologies. Scope and Aplications, Springer Nature, Singapore, Pte Ltd, 2020. | |
| dc.relation.referencesen | [9] F. Psarommatis and V. Azamfireic, "Zero Defect Manufacturing: A complete guide for advanced and sustainable quality management", Journal of Manufacturing Systems, vol. 77, pp. 764-779, 2024. DOI: 10.1016/j.jmsy.2024.10.022. | |
| dc.relation.referencesen | [10] F. Psarommatis and G. Bravos, "A holistic approach for achieving Sustainable manufacturing using Zero Defect Manufacturing: a conceptual Framework", Procedia CIRP, vol. 107, pp. 107-112, 2022. DOI: 10.1016/J. PROCIR.2022.04.018 | |
| dc.relation.referencesen | [11] F. Nagashima, Y. Nakagawa, and M. Yoshino, "Numerical analysis of subgrain formation during metal cutting and rolling based on the crystal plasticity theory", International Journal of Material Forming, vol. 15, no. 9, 2022. DOI:10.1007/s12289-022-01652-0 | |
| dc.relation.referencesen | [12] Y. Kusyi, O. Kostiuk, A. Kuk, A. Attanasio, and P. Cocca, "Optimization of Cutting Modes During Sustainable Machining of Products Based on Economic Criteria". In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes V. InterPartner 2023. Lecture Notes in Mechanical Engineering. Springer, Cham, 2024. DOI: 10.1007/978-3-031-42778-7_16 | |
| dc.relation.uri | http://doi.org/10.17531/ | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2025 | |
| dc.rights.holder | © Kusyi Y., Brukhal P., Konyukh O., Cocca P., 2025 | |
| dc.subject | sustainable manufacturing | |
| dc.subject | sustainable machining | |
| dc.subject | reliability engineering | |
| dc.subject | Markov chains | |
| dc.subject | technological system | |
| dc.subject | technological medium | |
| dc.title | Analysis of parts machining by cutting using approaches of reliability engineering | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1