A study of the influence of water level fluctuations on the geodynamic situation in the natural and technical geosystem of the Dniester HPP and PSPP cascade
dc.citation.epage | 31 | |
dc.citation.issue | 97 | |
dc.citation.journalTitle | Геодезія, картографія і аерофотознімання | |
dc.citation.spage | 24 | |
dc.contributor.affiliation | Чернівецький національний університет ім. Юрія Федьковича | |
dc.contributor.affiliation | Національний університет “Львівська Політехніка” | |
dc.contributor.affiliation | Yuriy Fedkovych Chernivtsi National University | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Зигар, Андрій | |
dc.contributor.author | Ющенко, Юрій | |
dc.contributor.author | Савчин, Ігор | |
dc.contributor.author | Zyhar, Andrii | |
dc.contributor.author | Yushchenko, Yuriy | |
dc.contributor.author | Savchyn, Ihor | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-19T10:14:42Z | |
dc.date.available | 2024-02-19T10:14:42Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Метою досліджень є виявлення залежності між змінами рівня води та локальною сейсмічною активністю регіону, в якому функціонує каскад Дністровських ГЕС та ГАЕС. Методика. Для аналізу сейсмічної активності використано статистичну інформацію за період 2016–2021 рр. Використовуючи фільтрацію, відібрано гіпоцентри землетрусів в радіусі 30 км від сейсмічної станції з індексом NDNU, за допомогою інструментів геоінформаційних технологій, гіпоцентри землетрусів співставлені з геологічною будовою регіону. Результати. Під час проведених досліджень встановлено залежність між сейсмічними подіями та коливаннями рівня води у резервуарі водосховища, щільність епізодів, сконцентрованих в зоні експлуатації водосховища, а також магнітуда і невелика глибина вказують на ймовірність активації розломів, розташованих у геологічних шарах, близьких до поверхні землі. Виконана оцінка напруги в ґрунтах. За допомогою теорії Кулона-Мора наближено вирахувано граничні напруження, які призводять до руйнування структурних зав’язків, визначено оптимальні режими роботи водосховища. Наукова новизна. Дослідження в статті дають змогу точніше оцінити вплив градіента напруги в грунтах на фонову сейсмічність в зоні експлуатації водосховища. Практичне значення цього дослідження полягає в розумінні впливу градієнта напруги на індукційні землетруси. Описаний метод, який базується на принципах закону Кулона та теорії Мора, дає змогу дистанційно дослідити поведінку матеріалу за різних умов навантаження. Це дослідження і розробка геомеханічної моделі допомагають краще зрозуміти і передбачати поведінку землетрусів, визначити безпечні зони навантаження. Це має практичне значення під час проєктування та будівництва споруд, а також для оцінювання ризиків і вжиття відповідних заходів щодо забезпечення безпеки. | |
dc.description.abstract | Statistical information for the period from 2016 to 2021 was used to analyze seismic activity. Objective. The aim of the study is to identify the relationship between changes in water level and local seismic activity in the region. Using HPP and Psing filtering, the hypocenters of earthquakes within a radius of 30 km from the seismic station with the NDNU index were selected, and using geographic information technology tools, the hypocenters of earthquakes were compared with the geological structure of the region. Methodology. Statistical information for the period from 2016 to 2021 was used to analyze seismic activity. Using filtering, the hypocenters of earthquakes within a radius of 30 km from the seismic station with the NDNU index were selected, and using geographic information technology tools, the hypocenters of earthquakes were compared with the geological structure of the region. Results. The studies revealed a correlation between seismic events and water level fluctuations in the reservoir. The paper also established the density of episodes concentrated in the reservoir operation area, as well as the magnitude and shallow depth, indicated the probability of activation of faults located in geological layers close to the ground surface. The stresses in the soils were assessed. Using the Coulomb-Mohr theory, the ultimate stresses leading to the destruction of structural ties were calculated approximately, and the optimal modes of operation of the reservoir were determined. Originality. The research in the article allows us to more accurately assess the effect of the stress gradient in the soils on the background seismicity in the reservoir operation area. Practical significance. The practical significance of this study is understanding the effect of the stress gradient on induction earthquakes. The described method, which is based on the principles of Coulomb’s law and Mohr’s theory, allows us to remotely study the behavior of the material under different loading conditions. This study and the development of a geomechanical model helps to better understand and predict earthquake behavior and determine safe loading zones. This has practical implications for the design and construction of structures, as well as for risk assessment and appropriate safety measures. | |
dc.format.extent | 24-31 | |
dc.format.pages | 8 | |
dc.identifier.citation | Zyhar A. A study of the influence of water level fluctuations on the geodynamic situation in the natural and technical geosystem of the Dniester HPP and PSPP cascade / Andrii Zyhar, Yuriy Yushchenko, Ihor Savchyn // Geodesy, Cartography and Aerial Photography. — Lviv : Lviv Politechnic Publishing House, 2023. — No 97. — P. 24–31. | |
dc.identifier.citationen | Zyhar A. A study of the influence of water level fluctuations on the geodynamic situation in the natural and technical geosystem of the Dniester HPP and PSPP cascade / Andrii Zyhar, Yuriy Yushchenko, Ihor Savchyn // Geodesy, Cartography and Aerial Photography. — Lviv : Lviv Politechnic Publishing House, 2023. — No 97. — P. 24–31. | |
dc.identifier.doi | doi.org/10.23939/istcgcap2023.97.024 | |
dc.identifier.issn | 0130-1039 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61349 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Геодезія, картографія і аерофотознімання, 97, 2023 | |
dc.relation.ispartof | Geodesy, Cartography 6 and Aerial photography, 97, 2023 | |
dc.relation.references | Укргідроенерго, (2023). https://uhe.gov.ua/filiyi/dyrektsiya_z_budivnytstva_dnistrovskoyi_haes | |
dc.relation.references | Anderson, E. M. (1905). The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3), 387–402. https://doi.org/10.1144/transed.8.3.387 | |
dc.relation.references | Brusak, I., & Tretyak, K. (2021, October). On the impact of non-tidal atmospheric loading on the GNSS stations of regional networks and engineering facilities. In International Conference of Young Professionals «GeoTerrace-2021» (Vol. 2021, No. 1, pp. 1-5). EAGE Publications BV. https://doi.org/10.3997/2214-4609.20215K3013 | |
dc.relation.references | Brusak, I., Tretyak, K., & Pronyshyn, R. (2022). Preliminary Studies of Seismicity Caused by the Water Level Changes in Dnister Upper Reservoir. International Conference of Young Professionals «GeoTerrace-2022». https://doi.org/10.3997/2214-4609.2022590022 | |
dc.relation.references | Célérier, B. (2008). Seeking Anderson’s faulting in seismicity: A centennial celebration. Reviews of Geophysics, 46(4). https://doi.org/10.1029/2007rg000240 | |
dc.relation.references | Chopra, A. K., & Chakrabarti, P. (1973, April 1). The Koyna earthquake and the damage to Koyna Dam. Bulletin of the Seismological Society of America, 63(2), 381-397. https://doi.org/10.1785/bssa0630020381 | |
dc.relation.references | Day, S. M., Yu, G., & Wald, D. J. (1998, April 1). Dynamic stress changes during earthquake rupture. Bulletin of the Seismological Society of America, 88(2), 512-522. https://doi.org/10.1785/bssa0880020512 | |
dc.relation.references | Geidt, V. D., Geidt, L. V., Geidt, A. V., & Sheshukova, S. V. (2021, December). Effect of Deep Vibration on Physical State of Soil Being Changed. Civil Engineering and Architecture, 9(7), 2273-2277. https://doi.org/10.13189/cea.2021.090714 | |
dc.relation.references | Gupta, H. K. (1992). Reservoir induced earthquakes. Elsevier. | |
dc.relation.references | Howells, D. A. (1974). The time for a significant change of pore pressure. Engineering Geology, 8(1-2), 135-138. https://doi.org/10.1016/0013-7952(74)90020-9 | |
dc.relation.references | International Seismological Centre. (n.d.). Retrieved from http://www.isc.ac.uk/ | |
dc.relation.references | Karl, T. (1962, June). Measurement of Stresses in Rock. Géotechnique, 12(2), 105–124. https://doi.org/10.1680/geot.1962.12.2.105 | |
dc.relation.references | Keith, C. M., Simpson, D. W., & Soboleva, O. V. (1982, June 10). Induced seismicity and style of deformation at Nurek Reservoir, Tadjik SSR. Journal of Geophysical Research: Solid Earth, 87(B6), 4609-4624. https://doi.org/10.1029/jb087ib06p04609 | |
dc.relation.references | Parotidis, M., Rothert, E., & Shapiro, S. A. (2003). Pore-pressure diffusion: A possible triggering mechanism for the earthquake swarms 2000 in Vogtland/NW-Bohemia, central Europe. Geophysical Research Letters, 30(20), n/a–n/a. https://doi.org/10.1029/2003gl018110 | |
dc.relation.references | Petruccelli, A., Schorlemmer, D., Tormann, T., Rinaldi, A. P., Wiemer, S., Gasperini, P., & Vannucci, G. (2019). The influence of faulting style on the size-distribution of global earthquakes. Earth and Planetary Science Letters, 527, 115791. doi:10.1016/j.epsl.2019.115791 | |
dc.relation.references | Purcaru, G., & Berckhemer, H. (1982, April). Quantitative relations of seismic source parameters and a classification of earthquakes. Tectonophysics, 84(1), 57-128. https://doi.org/10.1016/0040-1951(82)90154-8 | |
dc.relation.references | Savchyn, I., & Vaskovets, S. (2018, January 18). Local geodynamics of the territory of dniester pumped storage power PLANT. Acta Geodynamica Et Geomaterialia, 41–46. https://doi.org/10.13168/agg.2018.0002 | |
dc.relation.references | Savchyn, I., & Pronyshyn, R. (2020, September). Differentiation of recent local geodynamic and seismic processes of technogenic-loaded territories based on the example of Dnister Hydro Power Complex (Ukraine). Geodesy and Geodynamics, 11(5), 391-400. https://doi.org/10.1016/j.geog.2020.06.001 | |
dc.relation.references | State Service of Geology and Mineral Resources of Ukraine. (2021). State geological map of Ukraine on scale of 1:200,000 sheets M-35-XXVIII (Bar), M-35-XXXIV (Mohyliv-Podilskyi). https://www.geo.gov.ua/ | |
dc.relation.references | Talwani, P. (1976). Earthquakes associated with the Clark Hill reservoir, South Carolina — A case of induced seismicity. Engineering Geology, 10(2-4), 239–253. https://doi.org/10.1016/0013-7952(76)90024-7 | |
dc.relation.references | Talwani, P. (1997, December). On the Nature of Reservoir-induced Seismicity. Pure and Applied Geophysics, 150(3-4), 473-492. https://doi.org/10.1007/s000240050089 | |
dc.relation.references | Talwani, P., & Acree, S. (1986). Pore pressure diffusion and the mechanism of reservoir-induced seismicity. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 23(4), 126. https://doi.org/10.1016/0148-9062(86)90658-3 | |
dc.relation.references | Tretyak, K., & Brusak, V. (2022, June 28). Modern deformations of Earth crust of territory of Western Ukraine based on «GEOTERRACE» GNSS network data. Geodynamics, 1(32)), 16–25. https://doi.org/10.23939/jgd2022.02.016 | |
dc.relation.references | Wang, C. Y., & Manga, M. (2021). Earthquakes influenced by water. In Water and Earthquakes (pp. 61-82). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-64308-9_4 | |
dc.relation.references | Zhao, R., Xue, J., & Deng, K. (2022, September 15). Modelling seismicity pattern of reservoir-induced earthquakes including poroelastic stressing and nucleation effects. Geophysical Journal International, 232(2), 739-749. https://doi.org/10.1093/gji/ggac361 | |
dc.relation.references | Zoback, M. D. (2010, April 1). Reservoir Geomechanics. | |
dc.relation.references | Zyhar, A., Savchyn, I., Yushchenko, Y., & Pasichnyk, M. (2021, June 29). Analysis of inclinometric observations and prediction of soils deformations in the area of the Dnister PSPP. Geodynamics, 1(30), 17-24. https://doi.org/10.23939/jgd2021.01.017 | |
dc.relation.referencesen | Ukrhidroenerho, (2023). https://uhe.gov.ua/filiyi/dyrektsiya_z_budivnytstva_dnistrovskoyi_haes | |
dc.relation.referencesen | Anderson, E. M. (1905). The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3), 387–402. https://doi.org/10.1144/transed.8.3.387 | |
dc.relation.referencesen | Brusak, I., & Tretyak, K. (2021, October). On the impact of non-tidal atmospheric loading on the GNSS stations of regional networks and engineering facilities. In International Conference of Young Professionals "GeoTerrace-2021" (Vol. 2021, No. 1, pp. 1-5). EAGE Publications BV. https://doi.org/10.3997/2214-4609.20215K3013 | |
dc.relation.referencesen | Brusak, I., Tretyak, K., & Pronyshyn, R. (2022). Preliminary Studies of Seismicity Caused by the Water Level Changes in Dnister Upper Reservoir. International Conference of Young Professionals "GeoTerrace-2022". https://doi.org/10.3997/2214-4609.2022590022 | |
dc.relation.referencesen | Célérier, B. (2008). Seeking Anderson’s faulting in seismicity: A centennial celebration. Reviews of Geophysics, 46(4). https://doi.org/10.1029/2007rg000240 | |
dc.relation.referencesen | Chopra, A. K., & Chakrabarti, P. (1973, April 1). The Koyna earthquake and the damage to Koyna Dam. Bulletin of the Seismological Society of America, 63(2), 381-397. https://doi.org/10.1785/bssa0630020381 | |
dc.relation.referencesen | Day, S. M., Yu, G., & Wald, D. J. (1998, April 1). Dynamic stress changes during earthquake rupture. Bulletin of the Seismological Society of America, 88(2), 512-522. https://doi.org/10.1785/bssa0880020512 | |
dc.relation.referencesen | Geidt, V. D., Geidt, L. V., Geidt, A. V., & Sheshukova, S. V. (2021, December). Effect of Deep Vibration on Physical State of Soil Being Changed. Civil Engineering and Architecture, 9(7), 2273-2277. https://doi.org/10.13189/cea.2021.090714 | |
dc.relation.referencesen | Gupta, H. K. (1992). Reservoir induced earthquakes. Elsevier. | |
dc.relation.referencesen | Howells, D. A. (1974). The time for a significant change of pore pressure. Engineering Geology, 8(1-2), 135-138. https://doi.org/10.1016/0013-7952(74)90020-9 | |
dc.relation.referencesen | International Seismological Centre. (n.d.). Retrieved from http://www.isc.ac.uk/ | |
dc.relation.referencesen | Karl, T. (1962, June). Measurement of Stresses in Rock. Géotechnique, 12(2), 105–124. https://doi.org/10.1680/geot.1962.12.2.105 | |
dc.relation.referencesen | Keith, C. M., Simpson, D. W., & Soboleva, O. V. (1982, June 10). Induced seismicity and style of deformation at Nurek Reservoir, Tadjik SSR. Journal of Geophysical Research: Solid Earth, 87(B6), 4609-4624. https://doi.org/10.1029/jb087ib06p04609 | |
dc.relation.referencesen | Parotidis, M., Rothert, E., & Shapiro, S. A. (2003). Pore-pressure diffusion: A possible triggering mechanism for the earthquake swarms 2000 in Vogtland/NW-Bohemia, central Europe. Geophysical Research Letters, 30(20), n/a–n/a. https://doi.org/10.1029/2003gl018110 | |
dc.relation.referencesen | Petruccelli, A., Schorlemmer, D., Tormann, T., Rinaldi, A. P., Wiemer, S., Gasperini, P., & Vannucci, G. (2019). The influence of faulting style on the size-distribution of global earthquakes. Earth and Planetary Science Letters, 527, 115791. doi:10.1016/j.epsl.2019.115791 | |
dc.relation.referencesen | Purcaru, G., & Berckhemer, H. (1982, April). Quantitative relations of seismic source parameters and a classification of earthquakes. Tectonophysics, 84(1), 57-128. https://doi.org/10.1016/0040-1951(82)90154-8 | |
dc.relation.referencesen | Savchyn, I., & Vaskovets, S. (2018, January 18). Local geodynamics of the territory of dniester pumped storage power PLANT. Acta Geodynamica Et Geomaterialia, 41–46. https://doi.org/10.13168/agg.2018.0002 | |
dc.relation.referencesen | Savchyn, I., & Pronyshyn, R. (2020, September). Differentiation of recent local geodynamic and seismic processes of technogenic-loaded territories based on the example of Dnister Hydro Power Complex (Ukraine). Geodesy and Geodynamics, 11(5), 391-400. https://doi.org/10.1016/j.geog.2020.06.001 | |
dc.relation.referencesen | State Service of Geology and Mineral Resources of Ukraine. (2021). State geological map of Ukraine on scale of 1:200,000 sheets M-35-XXVIII (Bar), M-35-XXXIV (Mohyliv-Podilskyi). https://www.geo.gov.ua/ | |
dc.relation.referencesen | Talwani, P. (1976). Earthquakes associated with the Clark Hill reservoir, South Carolina - A case of induced seismicity. Engineering Geology, 10(2-4), 239–253. https://doi.org/10.1016/0013-7952(76)90024-7 | |
dc.relation.referencesen | Talwani, P. (1997, December). On the Nature of Reservoir-induced Seismicity. Pure and Applied Geophysics, 150(3-4), 473-492. https://doi.org/10.1007/s000240050089 | |
dc.relation.referencesen | Talwani, P., & Acree, S. (1986). Pore pressure diffusion and the mechanism of reservoir-induced seismicity. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 23(4), 126. https://doi.org/10.1016/0148-9062(86)90658-3 | |
dc.relation.referencesen | Tretyak, K., & Brusak, V. (2022, June 28). Modern deformations of Earth crust of territory of Western Ukraine based on "GEOTERRACE" GNSS network data. Geodynamics, 1(32)), 16–25. https://doi.org/10.23939/jgd2022.02.016 | |
dc.relation.referencesen | Wang, C. Y., & Manga, M. (2021). Earthquakes influenced by water. In Water and Earthquakes (pp. 61-82). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-64308-9_4 | |
dc.relation.referencesen | Zhao, R., Xue, J., & Deng, K. (2022, September 15). Modelling seismicity pattern of reservoir-induced earthquakes including poroelastic stressing and nucleation effects. Geophysical Journal International, 232(2), 739-749. https://doi.org/10.1093/gji/ggac361 | |
dc.relation.referencesen | Zoback, M. D. (2010, April 1). Reservoir Geomechanics. | |
dc.relation.referencesen | Zyhar, A., Savchyn, I., Yushchenko, Y., & Pasichnyk, M. (2021, June 29). Analysis of inclinometric observations and prediction of soils deformations in the area of the Dnister PSPP. Geodynamics, 1(30), 17-24. https://doi.org/10.23939/jgd2021.01.017 | |
dc.relation.uri | https://uhe.gov.ua/filiyi/dyrektsiya_z_budivnytstva_dnistrovskoyi_haes | |
dc.relation.uri | https://doi.org/10.1144/transed.8.3.387 | |
dc.relation.uri | https://doi.org/10.3997/2214-4609.20215K3013 | |
dc.relation.uri | https://doi.org/10.3997/2214-4609.2022590022 | |
dc.relation.uri | https://doi.org/10.1029/2007rg000240 | |
dc.relation.uri | https://doi.org/10.1785/bssa0630020381 | |
dc.relation.uri | https://doi.org/10.1785/bssa0880020512 | |
dc.relation.uri | https://doi.org/10.13189/cea.2021.090714 | |
dc.relation.uri | https://doi.org/10.1016/0013-7952(74)90020-9 | |
dc.relation.uri | http://www.isc.ac.uk/ | |
dc.relation.uri | https://doi.org/10.1680/geot.1962.12.2.105 | |
dc.relation.uri | https://doi.org/10.1029/jb087ib06p04609 | |
dc.relation.uri | https://doi.org/10.1029/2003gl018110 | |
dc.relation.uri | https://doi.org/10.1016/0040-1951(82)90154-8 | |
dc.relation.uri | https://doi.org/10.13168/agg.2018.0002 | |
dc.relation.uri | https://doi.org/10.1016/j.geog.2020.06.001 | |
dc.relation.uri | https://www.geo.gov.ua/ | |
dc.relation.uri | https://doi.org/10.1016/0013-7952(76)90024-7 | |
dc.relation.uri | https://doi.org/10.1007/s000240050089 | |
dc.relation.uri | https://doi.org/10.1016/0148-9062(86)90658-3 | |
dc.relation.uri | https://doi.org/10.23939/jgd2022.02.016 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-64308-9_4 | |
dc.relation.uri | https://doi.org/10.1093/gji/ggac361 | |
dc.relation.uri | https://doi.org/10.23939/jgd2021.01.017 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | сейсмостанція | |
dc.subject | ГЕС | |
dc.subject | ГАЕС | |
dc.subject | геосистема | |
dc.subject | геодинаміка | |
dc.subject | землетрус | |
dc.subject | геологія | |
dc.subject | коливання рівнів води | |
dc.subject | водосховище | |
dc.subject | індукований землетрус | |
dc.subject | магнітуда | |
dc.subject | тектонічний розлом | |
dc.subject | seismic station | |
dc.subject | hydroelectric power plant | |
dc.subject | PSPP | |
dc.subject | geosystem | |
dc.subject | geodynamics | |
dc.subject | earthquake | |
dc.subject | geology | |
dc.subject | water level fluctuations | |
dc.subject | reservoir | |
dc.subject | induced earthquake | |
dc.subject | magnitude | |
dc.subject | tectonic fault | |
dc.subject.udc | 550.36. | |
dc.subject.udc | 551.1/.4 | |
dc.title | A study of the influence of water level fluctuations on the geodynamic situation in the natural and technical geosystem of the Dniester HPP and PSPP cascade | |
dc.title.alternative | Дослідження впливу зміни рівня води Дністровського водосховища на геодинамічну ситуацію в природно-технічній геосистемі каскаду Дністровських ГЕС і ГАЕС | |
dc.type | Article |
Files
License bundle
1 - 1 of 1