A study of the influence of water level fluctuations on the geodynamic situation in the natural and technical geosystem of the Dniester HPP and PSPP cascade

dc.citation.epage31
dc.citation.issue97
dc.citation.journalTitleГеодезія, картографія і аерофотознімання
dc.citation.spage24
dc.contributor.affiliationЧернівецький національний університет ім. Юрія Федьковича
dc.contributor.affiliationНаціональний університет “Львівська Політехніка”
dc.contributor.affiliationYuriy Fedkovych Chernivtsi National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЗигар, Андрій
dc.contributor.authorЮщенко, Юрій
dc.contributor.authorСавчин, Ігор
dc.contributor.authorZyhar, Andrii
dc.contributor.authorYushchenko, Yuriy
dc.contributor.authorSavchyn, Ihor
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-19T10:14:42Z
dc.date.available2024-02-19T10:14:42Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractМетою досліджень є виявлення залежності між змінами рівня води та локальною сейсмічною активністю регіону, в якому функціонує каскад Дністровських ГЕС та ГАЕС. Методика. Для аналізу сейсмічної активності використано статистичну інформацію за період 2016–2021 рр. Використовуючи фільтрацію, відібрано гіпоцентри землетрусів в радіусі 30 км від сейсмічної станції з індексом NDNU, за допомогою інструментів геоінформаційних технологій, гіпоцентри землетрусів співставлені з геологічною будовою регіону. Результати. Під час проведених досліджень встановлено залежність між сейсмічними подіями та коливаннями рівня води у резервуарі водосховища, щільність епізодів, сконцентрованих в зоні експлуатації водосховища, а також магнітуда і невелика глибина вказують на ймовірність активації розломів, розташованих у геологічних шарах, близьких до поверхні землі. Виконана оцінка напруги в ґрунтах. За допомогою теорії Кулона-Мора наближено вирахувано граничні напруження, які призводять до руйнування структурних зав’язків, визначено оптимальні режими роботи водосховища. Наукова новизна. Дослідження в статті дають змогу точніше оцінити вплив градіента напруги в грунтах на фонову сейсмічність в зоні експлуатації водосховища. Практичне значення цього дослідження полягає в розумінні впливу градієнта напруги на індукційні землетруси. Описаний метод, який базується на принципах закону Кулона та теорії Мора, дає змогу дистанційно дослідити поведінку матеріалу за різних умов навантаження. Це дослідження і розробка геомеханічної моделі допомагають краще зрозуміти і передбачати поведінку землетрусів, визначити безпечні зони навантаження. Це має практичне значення під час проєктування та будівництва споруд, а також для оцінювання ризиків і вжиття відповідних заходів щодо забезпечення безпеки.
dc.description.abstractStatistical information for the period from 2016 to 2021 was used to analyze seismic activity. Objective. The aim of the study is to identify the relationship between changes in water level and local seismic activity in the region. Using HPP and Psing filtering, the hypocenters of earthquakes within a radius of 30 km from the seismic station with the NDNU index were selected, and using geographic information technology tools, the hypocenters of earthquakes were compared with the geological structure of the region. Methodology. Statistical information for the period from 2016 to 2021 was used to analyze seismic activity. Using filtering, the hypocenters of earthquakes within a radius of 30 km from the seismic station with the NDNU index were selected, and using geographic information technology tools, the hypocenters of earthquakes were compared with the geological structure of the region. Results. The studies revealed a correlation between seismic events and water level fluctuations in the reservoir. The paper also established the density of episodes concentrated in the reservoir operation area, as well as the magnitude and shallow depth, indicated the probability of activation of faults located in geological layers close to the ground surface. The stresses in the soils were assessed. Using the Coulomb-Mohr theory, the ultimate stresses leading to the destruction of structural ties were calculated approximately, and the optimal modes of operation of the reservoir were determined. Originality. The research in the article allows us to more accurately assess the effect of the stress gradient in the soils on the background seismicity in the reservoir operation area. Practical significance. The practical significance of this study is understanding the effect of the stress gradient on induction earthquakes. The described method, which is based on the principles of Coulomb’s law and Mohr’s theory, allows us to remotely study the behavior of the material under different loading conditions. This study and the development of a geomechanical model helps to better understand and predict earthquake behavior and determine safe loading zones. This has practical implications for the design and construction of structures, as well as for risk assessment and appropriate safety measures.
dc.format.extent24-31
dc.format.pages8
dc.identifier.citationZyhar A. A study of the influence of water level fluctuations on the geodynamic situation in the natural and technical geosystem of the Dniester HPP and PSPP cascade / Andrii Zyhar, Yuriy Yushchenko, Ihor Savchyn // Geodesy, Cartography and Aerial Photography. — Lviv : Lviv Politechnic Publishing House, 2023. — No 97. — P. 24–31.
dc.identifier.citationenZyhar A. A study of the influence of water level fluctuations on the geodynamic situation in the natural and technical geosystem of the Dniester HPP and PSPP cascade / Andrii Zyhar, Yuriy Yushchenko, Ihor Savchyn // Geodesy, Cartography and Aerial Photography. — Lviv : Lviv Politechnic Publishing House, 2023. — No 97. — P. 24–31.
dc.identifier.doidoi.org/10.23939/istcgcap2023.97.024
dc.identifier.issn0130-1039
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61349
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодезія, картографія і аерофотознімання, 97, 2023
dc.relation.ispartofGeodesy, Cartography 6 and Aerial photography, 97, 2023
dc.relation.referencesУкргідроенерго, (2023). https://uhe.gov.ua/filiyi/dyrektsiya_z_budivnytstva_dnistrovskoyi_haes
dc.relation.referencesAnderson, E. M. (1905). The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3), 387–402. https://doi.org/10.1144/transed.8.3.387
dc.relation.referencesBrusak, I., & Tretyak, K. (2021, October). On the impact of non-tidal atmospheric loading on the GNSS stations of regional networks and engineering facilities. In International Conference of Young Professionals «GeoTerrace-2021» (Vol. 2021, No. 1, pp. 1-5). EAGE Publications BV. https://doi.org/10.3997/2214-4609.20215K3013
dc.relation.referencesBrusak, I., Tretyak, K., & Pronyshyn, R. (2022). Preliminary Studies of Seismicity Caused by the Water Level Changes in Dnister Upper Reservoir. International Conference of Young Professionals «GeoTerrace-2022». https://doi.org/10.3997/2214-4609.2022590022
dc.relation.referencesCélérier, B. (2008). Seeking Anderson’s faulting in seismicity: A centennial celebration. Reviews of Geophysics, 46(4). https://doi.org/10.1029/2007rg000240
dc.relation.referencesChopra, A. K., & Chakrabarti, P. (1973, April 1). The Koyna earthquake and the damage to Koyna Dam. Bulletin of the Seismological Society of America, 63(2), 381-397. https://doi.org/10.1785/bssa0630020381
dc.relation.referencesDay, S. M., Yu, G., & Wald, D. J. (1998, April 1). Dynamic stress changes during earthquake rupture. Bulletin of the Seismological Society of America, 88(2), 512-522. https://doi.org/10.1785/bssa0880020512
dc.relation.referencesGeidt, V. D., Geidt, L. V., Geidt, A. V., & Sheshukova, S. V. (2021, December). Effect of Deep Vibration on Physical State of Soil Being Changed. Civil Engineering and Architecture, 9(7), 2273-2277. https://doi.org/10.13189/cea.2021.090714
dc.relation.referencesGupta, H. K. (1992). Reservoir induced earthquakes. Elsevier.
dc.relation.referencesHowells, D. A. (1974). The time for a significant change of pore pressure. Engineering Geology, 8(1-2), 135-138. https://doi.org/10.1016/0013-7952(74)90020-9
dc.relation.referencesInternational Seismological Centre. (n.d.). Retrieved from http://www.isc.ac.uk/
dc.relation.referencesKarl, T. (1962, June). Measurement of Stresses in Rock. Géotechnique, 12(2), 105–124. https://doi.org/10.1680/geot.1962.12.2.105
dc.relation.referencesKeith, C. M., Simpson, D. W., & Soboleva, O. V. (1982, June 10). Induced seismicity and style of deformation at Nurek Reservoir, Tadjik SSR. Journal of Geophysical Research: Solid Earth, 87(B6), 4609-4624. https://doi.org/10.1029/jb087ib06p04609
dc.relation.referencesParotidis, M., Rothert, E., & Shapiro, S. A. (2003). Pore-pressure diffusion: A possible triggering mechanism for the earthquake swarms 2000 in Vogtland/NW-Bohemia, central Europe. Geophysical Research Letters, 30(20), n/a–n/a. https://doi.org/10.1029/2003gl018110
dc.relation.referencesPetruccelli, A., Schorlemmer, D., Tormann, T., Rinaldi, A. P., Wiemer, S., Gasperini, P., & Vannucci, G. (2019). The influence of faulting style on the size-distribution of global earthquakes. Earth and Planetary Science Letters, 527, 115791. doi:10.1016/j.epsl.2019.115791
dc.relation.referencesPurcaru, G., & Berckhemer, H. (1982, April). Quantitative relations of seismic source parameters and a classification of earthquakes. Tectonophysics, 84(1), 57-128. https://doi.org/10.1016/0040-1951(82)90154-8
dc.relation.referencesSavchyn, I., & Vaskovets, S. (2018, January 18). Local geodynamics of the territory of dniester pumped storage power PLANT. Acta Geodynamica Et Geomaterialia, 41–46. https://doi.org/10.13168/agg.2018.0002
dc.relation.referencesSavchyn, I., & Pronyshyn, R. (2020, September). Differentiation of recent local geodynamic and seismic processes of technogenic-loaded territories based on the example of Dnister Hydro Power Complex (Ukraine). Geodesy and Geodynamics, 11(5), 391-400. https://doi.org/10.1016/j.geog.2020.06.001
dc.relation.referencesState Service of Geology and Mineral Resources of Ukraine. (2021). State geological map of Ukraine on scale of 1:200,000 sheets M-35-XXVIII (Bar), M-35-XXXIV (Mohyliv-Podilskyi). https://www.geo.gov.ua/
dc.relation.referencesTalwani, P. (1976). Earthquakes associated with the Clark Hill reservoir, South Carolina — A case of induced seismicity. Engineering Geology, 10(2-4), 239–253. https://doi.org/10.1016/0013-7952(76)90024-7
dc.relation.referencesTalwani, P. (1997, December). On the Nature of Reservoir-induced Seismicity. Pure and Applied Geophysics, 150(3-4), 473-492. https://doi.org/10.1007/s000240050089
dc.relation.referencesTalwani, P., & Acree, S. (1986). Pore pressure diffusion and the mechanism of reservoir-induced seismicity. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 23(4), 126. https://doi.org/10.1016/0148-9062(86)90658-3
dc.relation.referencesTretyak, K., & Brusak, V. (2022, June 28). Modern deformations of Earth crust of territory of Western Ukraine based on «GEOTERRACE» GNSS network data. Geodynamics, 1(32)), 16–25. https://doi.org/10.23939/jgd2022.02.016
dc.relation.referencesWang, C. Y., & Manga, M. (2021). Earthquakes influenced by water. In Water and Earthquakes (pp. 61-82). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-64308-9_4
dc.relation.referencesZhao, R., Xue, J., & Deng, K. (2022, September 15). Modelling seismicity pattern of reservoir-induced earthquakes including poroelastic stressing and nucleation effects. Geophysical Journal International, 232(2), 739-749. https://doi.org/10.1093/gji/ggac361
dc.relation.referencesZoback, M. D. (2010, April 1). Reservoir Geomechanics.
dc.relation.referencesZyhar, A., Savchyn, I., Yushchenko, Y., & Pasichnyk, M. (2021, June 29). Analysis of inclinometric observations and prediction of soils deformations in the area of the Dnister PSPP. Geodynamics, 1(30), 17-24. https://doi.org/10.23939/jgd2021.01.017
dc.relation.referencesenUkrhidroenerho, (2023). https://uhe.gov.ua/filiyi/dyrektsiya_z_budivnytstva_dnistrovskoyi_haes
dc.relation.referencesenAnderson, E. M. (1905). The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3), 387–402. https://doi.org/10.1144/transed.8.3.387
dc.relation.referencesenBrusak, I., & Tretyak, K. (2021, October). On the impact of non-tidal atmospheric loading on the GNSS stations of regional networks and engineering facilities. In International Conference of Young Professionals "GeoTerrace-2021" (Vol. 2021, No. 1, pp. 1-5). EAGE Publications BV. https://doi.org/10.3997/2214-4609.20215K3013
dc.relation.referencesenBrusak, I., Tretyak, K., & Pronyshyn, R. (2022). Preliminary Studies of Seismicity Caused by the Water Level Changes in Dnister Upper Reservoir. International Conference of Young Professionals "GeoTerrace-2022". https://doi.org/10.3997/2214-4609.2022590022
dc.relation.referencesenCélérier, B. (2008). Seeking Anderson’s faulting in seismicity: A centennial celebration. Reviews of Geophysics, 46(4). https://doi.org/10.1029/2007rg000240
dc.relation.referencesenChopra, A. K., & Chakrabarti, P. (1973, April 1). The Koyna earthquake and the damage to Koyna Dam. Bulletin of the Seismological Society of America, 63(2), 381-397. https://doi.org/10.1785/bssa0630020381
dc.relation.referencesenDay, S. M., Yu, G., & Wald, D. J. (1998, April 1). Dynamic stress changes during earthquake rupture. Bulletin of the Seismological Society of America, 88(2), 512-522. https://doi.org/10.1785/bssa0880020512
dc.relation.referencesenGeidt, V. D., Geidt, L. V., Geidt, A. V., & Sheshukova, S. V. (2021, December). Effect of Deep Vibration on Physical State of Soil Being Changed. Civil Engineering and Architecture, 9(7), 2273-2277. https://doi.org/10.13189/cea.2021.090714
dc.relation.referencesenGupta, H. K. (1992). Reservoir induced earthquakes. Elsevier.
dc.relation.referencesenHowells, D. A. (1974). The time for a significant change of pore pressure. Engineering Geology, 8(1-2), 135-138. https://doi.org/10.1016/0013-7952(74)90020-9
dc.relation.referencesenInternational Seismological Centre. (n.d.). Retrieved from http://www.isc.ac.uk/
dc.relation.referencesenKarl, T. (1962, June). Measurement of Stresses in Rock. Géotechnique, 12(2), 105–124. https://doi.org/10.1680/geot.1962.12.2.105
dc.relation.referencesenKeith, C. M., Simpson, D. W., & Soboleva, O. V. (1982, June 10). Induced seismicity and style of deformation at Nurek Reservoir, Tadjik SSR. Journal of Geophysical Research: Solid Earth, 87(B6), 4609-4624. https://doi.org/10.1029/jb087ib06p04609
dc.relation.referencesenParotidis, M., Rothert, E., & Shapiro, S. A. (2003). Pore-pressure diffusion: A possible triggering mechanism for the earthquake swarms 2000 in Vogtland/NW-Bohemia, central Europe. Geophysical Research Letters, 30(20), n/a–n/a. https://doi.org/10.1029/2003gl018110
dc.relation.referencesenPetruccelli, A., Schorlemmer, D., Tormann, T., Rinaldi, A. P., Wiemer, S., Gasperini, P., & Vannucci, G. (2019). The influence of faulting style on the size-distribution of global earthquakes. Earth and Planetary Science Letters, 527, 115791. doi:10.1016/j.epsl.2019.115791
dc.relation.referencesenPurcaru, G., & Berckhemer, H. (1982, April). Quantitative relations of seismic source parameters and a classification of earthquakes. Tectonophysics, 84(1), 57-128. https://doi.org/10.1016/0040-1951(82)90154-8
dc.relation.referencesenSavchyn, I., & Vaskovets, S. (2018, January 18). Local geodynamics of the territory of dniester pumped storage power PLANT. Acta Geodynamica Et Geomaterialia, 41–46. https://doi.org/10.13168/agg.2018.0002
dc.relation.referencesenSavchyn, I., & Pronyshyn, R. (2020, September). Differentiation of recent local geodynamic and seismic processes of technogenic-loaded territories based on the example of Dnister Hydro Power Complex (Ukraine). Geodesy and Geodynamics, 11(5), 391-400. https://doi.org/10.1016/j.geog.2020.06.001
dc.relation.referencesenState Service of Geology and Mineral Resources of Ukraine. (2021). State geological map of Ukraine on scale of 1:200,000 sheets M-35-XXVIII (Bar), M-35-XXXIV (Mohyliv-Podilskyi). https://www.geo.gov.ua/
dc.relation.referencesenTalwani, P. (1976). Earthquakes associated with the Clark Hill reservoir, South Carolina - A case of induced seismicity. Engineering Geology, 10(2-4), 239–253. https://doi.org/10.1016/0013-7952(76)90024-7
dc.relation.referencesenTalwani, P. (1997, December). On the Nature of Reservoir-induced Seismicity. Pure and Applied Geophysics, 150(3-4), 473-492. https://doi.org/10.1007/s000240050089
dc.relation.referencesenTalwani, P., & Acree, S. (1986). Pore pressure diffusion and the mechanism of reservoir-induced seismicity. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 23(4), 126. https://doi.org/10.1016/0148-9062(86)90658-3
dc.relation.referencesenTretyak, K., & Brusak, V. (2022, June 28). Modern deformations of Earth crust of territory of Western Ukraine based on "GEOTERRACE" GNSS network data. Geodynamics, 1(32)), 16–25. https://doi.org/10.23939/jgd2022.02.016
dc.relation.referencesenWang, C. Y., & Manga, M. (2021). Earthquakes influenced by water. In Water and Earthquakes (pp. 61-82). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-64308-9_4
dc.relation.referencesenZhao, R., Xue, J., & Deng, K. (2022, September 15). Modelling seismicity pattern of reservoir-induced earthquakes including poroelastic stressing and nucleation effects. Geophysical Journal International, 232(2), 739-749. https://doi.org/10.1093/gji/ggac361
dc.relation.referencesenZoback, M. D. (2010, April 1). Reservoir Geomechanics.
dc.relation.referencesenZyhar, A., Savchyn, I., Yushchenko, Y., & Pasichnyk, M. (2021, June 29). Analysis of inclinometric observations and prediction of soils deformations in the area of the Dnister PSPP. Geodynamics, 1(30), 17-24. https://doi.org/10.23939/jgd2021.01.017
dc.relation.urihttps://uhe.gov.ua/filiyi/dyrektsiya_z_budivnytstva_dnistrovskoyi_haes
dc.relation.urihttps://doi.org/10.1144/transed.8.3.387
dc.relation.urihttps://doi.org/10.3997/2214-4609.20215K3013
dc.relation.urihttps://doi.org/10.3997/2214-4609.2022590022
dc.relation.urihttps://doi.org/10.1029/2007rg000240
dc.relation.urihttps://doi.org/10.1785/bssa0630020381
dc.relation.urihttps://doi.org/10.1785/bssa0880020512
dc.relation.urihttps://doi.org/10.13189/cea.2021.090714
dc.relation.urihttps://doi.org/10.1016/0013-7952(74)90020-9
dc.relation.urihttp://www.isc.ac.uk/
dc.relation.urihttps://doi.org/10.1680/geot.1962.12.2.105
dc.relation.urihttps://doi.org/10.1029/jb087ib06p04609
dc.relation.urihttps://doi.org/10.1029/2003gl018110
dc.relation.urihttps://doi.org/10.1016/0040-1951(82)90154-8
dc.relation.urihttps://doi.org/10.13168/agg.2018.0002
dc.relation.urihttps://doi.org/10.1016/j.geog.2020.06.001
dc.relation.urihttps://www.geo.gov.ua/
dc.relation.urihttps://doi.org/10.1016/0013-7952(76)90024-7
dc.relation.urihttps://doi.org/10.1007/s000240050089
dc.relation.urihttps://doi.org/10.1016/0148-9062(86)90658-3
dc.relation.urihttps://doi.org/10.23939/jgd2022.02.016
dc.relation.urihttps://doi.org/10.1007/978-3-030-64308-9_4
dc.relation.urihttps://doi.org/10.1093/gji/ggac361
dc.relation.urihttps://doi.org/10.23939/jgd2021.01.017
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectсейсмостанція
dc.subjectГЕС
dc.subjectГАЕС
dc.subjectгеосистема
dc.subjectгеодинаміка
dc.subjectземлетрус
dc.subjectгеологія
dc.subjectколивання рівнів води
dc.subjectводосховище
dc.subjectіндукований землетрус
dc.subjectмагнітуда
dc.subjectтектонічний розлом
dc.subjectseismic station
dc.subjecthydroelectric power plant
dc.subjectPSPP
dc.subjectgeosystem
dc.subjectgeodynamics
dc.subjectearthquake
dc.subjectgeology
dc.subjectwater level fluctuations
dc.subjectreservoir
dc.subjectinduced earthquake
dc.subjectmagnitude
dc.subjecttectonic fault
dc.subject.udc550.36.
dc.subject.udc551.1/.4
dc.titleA study of the influence of water level fluctuations on the geodynamic situation in the natural and technical geosystem of the Dniester HPP and PSPP cascade
dc.title.alternativeДослідження впливу зміни рівня води Дністровського водосховища на геодинамічну ситуацію в природно-технічній геосистемі каскаду Дністровських ГЕС і ГАЕС
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023n97_Zyhar_A-A_study_of_the_influence_of_24-31.pdf
Size:
848.15 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023n97_Zyhar_A-A_study_of_the_influence_of_24-31__COVER.png
Size:
533.19 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: