Mathematical modelling and factors affecting aerated concrete with floating ash cenospheres

dc.citation.epage105
dc.citation.issue2
dc.citation.journalTitleАрхітектурні дослідження
dc.citation.spage97
dc.contributor.affiliationТорайгиров Університет
dc.contributor.affiliationТорайгиров Університет
dc.contributor.affiliationТорайгиров Університет
dc.contributor.affiliationПівденно-Казахстанський університет імені Мухтара Ауєзова
dc.contributor.affiliationМіжнародна освітня корпорація (Республіка Казахстан)
dc.contributor.affiliationToraighyrov University
dc.contributor.affiliationToraighyrov University
dc.contributor.affiliationToraighyrov University
dc.contributor.affiliationMukhtar Auezov South Kazakhstan University
dc.contributor.affiliationInternational Educational Corporation
dc.contributor.authorТакібайули, Шайхіслам
dc.contributor.authorЧаканов, Куандик
dc.contributor.authorКурманов, Аскар
dc.contributor.authorУсенкулов, Женісбек
dc.contributor.authorСейтказінов, Оразали
dc.contributor.authorTakibayuly, Shaykhislam
dc.contributor.authorCakanov, Kuandyk
dc.contributor.authorKurmanov, Askar
dc.contributor.authorUssenkulov, Zhenisbek
dc.contributor.authorSeitkazinov, Orazaly
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-24T13:27:09Z
dc.date.created2025-11-10
dc.date.issued2025-11-10
dc.description.abstractВключення плаваючих зольних ценофер із теплових електростанцій у газобетон та інші будівельні матеріали має важливе значення для вирішення екологічних і економічних проблем. Основною метою дослідження було вивчення можливості використання ценофер з летючої золи, добутих у Казахстані, у виробництві газобетону. У роботі застосовувалось математичне моделювання з використанням методів аналізу, порівняння, синтезу та системного підходу. Було отримано суттєві результати щодо властивостей газобетону з плаваючими зольних ценоферами. За допомогою строгого математичного моделювання та експериментальних досліджень було виявлено важливі залежності між різними факторами, такими як склад, умови твердіння, методи виробництва, і властивостями кінцевого матеріалу. Спостереження показали, що використання плаваючих ценофер призводить до помітного покращення ключових властивостей газобетону: суттєвого зростання міцності на стиск, значного зниження щільності та відчутного покращення теплоізоляційних характеристик порівняно з традиційними бетонними сумішами. Крім того, було продемонстровано ефективність математичного моделювання у точному прогнозуванні та оптимізації властивостей газобетону. Використання цього підходу дозволяє не лише передбачити вплив різних факторів на характеристики матеріалу, але й удосконалити виробничі процеси для досягнення бажаних результатів з максимальною ефективністю. Результати дослідження мають практичне значення для будівельної галузі, відкриваючи шляхи вдосконалення технології виробництва газобетону та підвищення його ефективності
dc.description.abstractIncorporating floating ash cenospheres from thermal power plants in aerated concrete and other construction materials is crucial for addressing environmental and economic challenges. The principal objective of the research was to explore the incorporation of fly ash cenospheres sourced from Kazakhstan into the production of aerated concrete. The study used mathematical modelling employing methods such as analysis, comparison, synthesis, and a systematic approach. Significant findings were obtained from investigation into the properties of aerated concrete incorporating floating ash cenospheres. Through rigorous mathematical modelling and experimentation, vital correlations were uncovered between various factors, such as composition, curing conditions, and production methods – and the resulting properties of the concrete. Observations revealed that the utilisation of floating ash cenospheres led to tangible improvements in multiple key properties of aerated concrete. Notably, a substantial increase in compressive strength, a significant decrease in density, and a remarkable enhancement in thermal insulation properties were noted compared to conventional concrete formulations. Furthermore, the efficacy of mathematical modelling in accurately predicting and optimising concrete properties was showcased. By leveraging this approach, not only could the impact of different factors on concrete performance be anticipated, but production processes could also be refined to achieve desired outcomes efficiently. The results of this study carry practical significance for the construction sector, presenting avenues to refine the manufacturing process of aerated concrete and elevate its efficacy
dc.format.extent97-105
dc.format.pages9
dc.identifier.citationMathematical modelling and factors affecting aerated concrete with floating ash cenospheres / Shaykhislam Takibayuly, Kuandyk Cakanov, Askar Kurmanov, Zhenisbek Ussenkulov, Orazaly Seitkazinov // Architectural Studies. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 11. — No 2. — P. 97–105.
dc.identifier.citation2015Mathematical modelling and factors affecting aerated concrete with floating ash cenospheres / Takibayuly S. та ін. // Architectural Studies, Lviv. 2025. Vol 11. No 2. P. 97–105.
dc.identifier.citationenAPATakibayuly, S., Cakanov, K., Kurmanov, A., Ussenkulov, Z., & Seitkazinov, O. (2025). Mathematical modelling and factors affecting aerated concrete with floating ash cenospheres. Architectural Studies, 11(2), 97-105. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOTakibayuly S., Cakanov K., Kurmanov A., Ussenkulov Z., Seitkazinov O. (2025) Mathematical modelling and factors affecting aerated concrete with floating ash cenospheres. Architectural Studies (Lviv), vol. 11, no 2, pp. 97-105.
dc.identifier.doi10.56318/as/2.2025.97
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/121632
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofАрхітектурні дослідження, 2 (11), 2025
dc.relation.ispartofArchitectural Studies, 2 (11), 2025
dc.relation.references[1] Agrawal, U.S., & Wanjari, S.P. (2023). Light-weight and high thermal insulation building material; A comparative study between cenosphere & fly ash. Materials Today: Proceedings. doi: 10.1016/j.matpr.2023.04.088.
dc.relation.references[2] Banda, M.F., Matabane, D.L., & Munyengabe, A. (2024). A phytoremediation approach for the restoration of coal fly ash polluted sites: A review. Heliyon, 10(13), article number e40741. doi: 10.1016/j.heliyon.2024.e40741.
dc.relation.references[3] Banerjee, S. (2021). Mathematical modeling: Models, analysis and applications (2nd ed.). New York: Chapman and Hall/CRC. doi: 10.1201/9781351022941.
dc.relation.references[4] Bugaevsky, S., Smirnova, N., Filatova, A., Sinkovskaya, E., & Ignatenko, A. (2020). Creation of reinforced concrete structures of a complex geometric shape. ARPN Journal of Engineering and Applied Sciences, 15(2), 242-257.
dc.relation.references[5] Chen, W., Qi, Z., Zhang, L., & Huang, Z. (2020). Effects of cenosphere on the mechanical properties of cement-based composites. Construction and Building Materials, 261, article number 120527. doi: 10.1016/j.conbuildmat.2020.120527.
dc.relation.references[6] Dovhopolov, A., Nekrasov, S., Zhyhylii, D., Savchenko, Y., & Stupin, B. (2020). Modeling of a stress-strain state of detachable connection in details of reinforced composite materials with cea method. Strojnícky Časopis – Journal of Mechanical Engineering, 70(1), 17-28. doi: 10.2478/scjme-2020-0002.
dc.relation.references[7] Dzhusupova, M., Kulshikova, S., Talantbek, A., Baimenova, G., & Ospanov, A. (2024). Utilisation of industrial waste in heat and power industry. Machinery & Energetics, 15(2), 57-68. doi: 10.31548/machinery/2.2024.57.
dc.relation.references[8] Gupta, T., & Bokare, P.S. (2021). A review on characterization and application of fly ash cenosphere. IOP Conference Series: Materials Science and Engineering, 1120, article number 012025. doi: 10.1088/1757-899X/1120/1/012025.
dc.relation.references[9] Ibrasheva, R., Yemelyanova, V., Sassykova, L., Dossumova, B., Shakiyeva, T., Shakiyev, E., & Baizhomartov, B. (2021). Synthesis and testing of catalysts based on the cenospheres of fly ash of thermal power plant for processing of hydrocarbon raw materials. Journal of Chemical Technology and Metallurgy, 56(1), 104-115.
dc.relation.references[10] Jaworek, A., Sobczyk, A.T., Czech, T., Marchewicz, A., & Krupa, A. (2023). Recovery of cenospheres from solid waste produced by coal-fired power plants. Cleaner Waste Systems, 6, article number 100109. doi: 10.1016/j.clwas.2023.100109.
dc.relation.references[11] Johar, A.D., et al. (2024). A review on methods of cenosphere separation from fly ash. Applied Mechanics and Materials, 919, 57-65. doi: 10.4028/p-q3DAmX.
dc.relation.references[12] Kavinkumar, V., Priya, A.K., & Praneeth, R. (2023). Strength of light weight concrete containing fly ash cenosphere. Materials Today: Proceedings. doi: 10.1016/j.matpr.2023.04.094.
dc.relation.references[13] Koshlak, G., & Pavlenko, A. (2021). Prospects for using ash from thermal power plants for manufacturing building materials. Ecological Safety and Balanced Use of Resources, 12(1), 92-101. doi: 10.31471/2415-3184-2021-1(23)-92-101.
dc.relation.references[14] Kowsalya, M., Sindhu Nachiar, S., & Anandh, S. (2024). Desirability analysis of sustainable concrete containing fly ash cenosphere as fine aggregate replacement using RSM approach. Journal of Building Pathology and Rehabilitation, 9, article number 83. doi: 10.1007/s41024-024-00441-3.
dc.relation.references[15] Makyeyeva, I., Kyslova, O., Patlun, D., Khomenko, V., & Nikulin, D. (2024). Development of methods for improving the efficiency of natural graphite chemical purification. Technologies and Engineering, 25(2), 117-124. doi: 10.30857/2786-5371.2024.2.11.
dc.relation.references[16] Nenastina, T.O., Berezhna, K.V., Sakhnenko, M.D., & Buhaievskyi, S.O. (2024). Degradation of reinforced concrete construction of bridge structures: Corrosion aspect. Materials Science, 59(5), 538-545. doi: 10.1007/s11003-024-00809-3.
dc.relation.references[17] Orfanova, M. (2023). Decarbonization and disposal of ash and slag waste of thermal power plants. Ecological Safety and Balanced Use of Resources, 14(1), 7-15. doi: 10.31471/2415-3184-2023-1(27)-7-15.
dc.relation.references[18] Satayeva, A., Baimenov, A., Azat, S., Zhantikeyev, U., Seisenova, A., & Tauanov, Z. (2022). Review on coal fly ash generation and utilization for resolving mercury contamination issues in Central Asia: Kazakhstan. Environmental Reviews, 30(3), 418-437. doi: 10.1139/er-2021-0035.
dc.relation.references[19] Shi, J., Liu, Y., Wang, E., Wang, L., Li, C., Xu, H., Zheng, X., & Yuan, Q. (2022b). Physico-mechanical, thermal properties and durability of foamed geopolymer concrete containing cenospheres. Construction and Building Materials, 325, article number 126841. doi: 10.1016/j.conbuildmat.2022.126841.
dc.relation.references[20] Shi, J., Liu, Y., Xu, H., Peng, Y., Yuan, Q., & Gao, J. (2022a). The roles of cenosphere in ultra-lightweight foamed geopolymer concrete (UFGC). Ceramics International, 48(9), 12884-12896. doi: 10.1016/j.ceramint.2022.01.161.
dc.relation.references[21] Shokanov, A., Vereshchak, M., & Manakova, I. (2020). Mössbauer and X-ray studies of phase composition of fly ashes formed after combustion of Ekibastuz coal (Kazakhstan). Metals, 10(7), article number 929. doi: 10.3390/met10070929.
dc.relation.references[22] Sidliarenko, A. (2023). Mathematical models of road construction, reconstruction and repair under conditions of uncertainty. Bulletin of Cherkasy State Technological University, 28(3), 113-127. doi: 10.24025/2306-4412.3.2023.287845.
dc.relation.references[23] Strzałkowski, J., Stolarska, A., Kożuch, D., & Dmitruk, J. (2023). Hygrothermal and strength properties of cement mortars containing cenospheres. Cement and Concrete Research, 174, article number 107325. doi: 10.1016/j.cemconres.2023.107325.
dc.relation.references[24] Sunjidmaa, D., Batdemberel, G., & Takibai, S. (2019). A study of ferrospheres in the coal fly ash. Open Journal of Applied Sciences, 9(1), 10-16. doi: 10.4236/ojapps.2019.91002.
dc.relation.references[25] Takibai, S., Cakanov, K., Sungidmaa, D., Kuderin, M., & Kudryshova, B. (2022). Thermal analysis of the cenosphere of floating ashes of thermal power plants for the production of aerated concrete. Journal of Chemical Technology and Metallurgy, 57(2), 267-270.
dc.relation.references[26] Tanirbergenova, S.K., Dinistanova, B.K., Zhylybayeva, N.K., Tugelbayeva, D.A., Moldazhanova, G.M., Aitugan, A., Taju, K., & Nazhipkyzy, M. (2023). Synthesis of cenospheres from ash and their application. Journal of Composites Science, 7(7), article number 276. doi: 10.3390/jcs7070276.
dc.relation.references[27] Tauanov, Z., Azat, S., & Baibatyrova, A. (2022). A mini-review on coal fly ash properties, utilization and synthesis of zeolites. International Journal of Coal Preparation and Utilization, 42(7), 1968-1990. doi: 10.1080/19392699.2020.1788545.
dc.relation.references[28] Yang, J., Mahato, J., & Moon, J. (2023). Effects of various sizes of cenospheres on microstructural, mechanical, and thermal properties of high-strength and lightweight cementitious composites. Journal of Building Engineering, 76, article number 107214. doi: 10.1016/j.jobe.2023.107214.
dc.relation.references[29] Zhangabay, N., Baidilla, I., Tagybayev, A., & Sultan, B. (2023). Analysis of thermal resistance of developed energy-saving external enclosing structures with air gaps and horizontal channels. Buildings, 13(2), article number 356. doi: 10.3390/buildings13020356
dc.relation.referencesen[1] Agrawal, U.S., & Wanjari, S.P. (2023). Light-weight and high thermal insulation building material; A comparative study between cenosphere & fly ash. Materials Today: Proceedings. doi: 10.1016/j.matpr.2023.04.088.
dc.relation.referencesen[2] Banda, M.F., Matabane, D.L., & Munyengabe, A. (2024). A phytoremediation approach for the restoration of coal fly ash polluted sites: A review. Heliyon, 10(13), article number e40741. doi: 10.1016/j.heliyon.2024.e40741.
dc.relation.referencesen[3] Banerjee, S. (2021). Mathematical modeling: Models, analysis and applications (2nd ed.). New York: Chapman and Hall/CRC. doi: 10.1201/9781351022941.
dc.relation.referencesen[4] Bugaevsky, S., Smirnova, N., Filatova, A., Sinkovskaya, E., & Ignatenko, A. (2020). Creation of reinforced concrete structures of a complex geometric shape. ARPN Journal of Engineering and Applied Sciences, 15(2), 242-257.
dc.relation.referencesen[5] Chen, W., Qi, Z., Zhang, L., & Huang, Z. (2020). Effects of cenosphere on the mechanical properties of cement-based composites. Construction and Building Materials, 261, article number 120527. doi: 10.1016/j.conbuildmat.2020.120527.
dc.relation.referencesen[6] Dovhopolov, A., Nekrasov, S., Zhyhylii, D., Savchenko, Y., & Stupin, B. (2020). Modeling of a stress-strain state of detachable connection in details of reinforced composite materials with cea method. Strojnícky Časopis – Journal of Mechanical Engineering, 70(1), 17-28. doi: 10.2478/scjme-2020-0002.
dc.relation.referencesen[7] Dzhusupova, M., Kulshikova, S., Talantbek, A., Baimenova, G., & Ospanov, A. (2024). Utilisation of industrial waste in heat and power industry. Machinery & Energetics, 15(2), 57-68. doi: 10.31548/machinery/2.2024.57.
dc.relation.referencesen[8] Gupta, T., & Bokare, P.S. (2021). A review on characterization and application of fly ash cenosphere. IOP Conference Series: Materials Science and Engineering, 1120, article number 012025. doi: 10.1088/1757-899X/1120/1/012025.
dc.relation.referencesen[9] Ibrasheva, R., Yemelyanova, V., Sassykova, L., Dossumova, B., Shakiyeva, T., Shakiyev, E., & Baizhomartov, B. (2021). Synthesis and testing of catalysts based on the cenospheres of fly ash of thermal power plant for processing of hydrocarbon raw materials. Journal of Chemical Technology and Metallurgy, 56(1), 104-115.
dc.relation.referencesen[10] Jaworek, A., Sobczyk, A.T., Czech, T., Marchewicz, A., & Krupa, A. (2023). Recovery of cenospheres from solid waste produced by coal-fired power plants. Cleaner Waste Systems, 6, article number 100109. doi: 10.1016/j.clwas.2023.100109.
dc.relation.referencesen[11] Johar, A.D., et al. (2024). A review on methods of cenosphere separation from fly ash. Applied Mechanics and Materials, 919, 57-65. doi: 10.4028/p-q3DAmX.
dc.relation.referencesen[12] Kavinkumar, V., Priya, A.K., & Praneeth, R. (2023). Strength of light weight concrete containing fly ash cenosphere. Materials Today: Proceedings. doi: 10.1016/j.matpr.2023.04.094.
dc.relation.referencesen[13] Koshlak, G., & Pavlenko, A. (2021). Prospects for using ash from thermal power plants for manufacturing building materials. Ecological Safety and Balanced Use of Resources, 12(1), 92-101. doi: 10.31471/2415-3184-2021-1(23)-92-101.
dc.relation.referencesen[14] Kowsalya, M., Sindhu Nachiar, S., & Anandh, S. (2024). Desirability analysis of sustainable concrete containing fly ash cenosphere as fine aggregate replacement using RSM approach. Journal of Building Pathology and Rehabilitation, 9, article number 83. doi: 10.1007/s41024-024-00441-3.
dc.relation.referencesen[15] Makyeyeva, I., Kyslova, O., Patlun, D., Khomenko, V., & Nikulin, D. (2024). Development of methods for improving the efficiency of natural graphite chemical purification. Technologies and Engineering, 25(2), 117-124. doi: 10.30857/2786-5371.2024.2.11.
dc.relation.referencesen[16] Nenastina, T.O., Berezhna, K.V., Sakhnenko, M.D., & Buhaievskyi, S.O. (2024). Degradation of reinforced concrete construction of bridge structures: Corrosion aspect. Materials Science, 59(5), 538-545. doi: 10.1007/s11003-024-00809-3.
dc.relation.referencesen[17] Orfanova, M. (2023). Decarbonization and disposal of ash and slag waste of thermal power plants. Ecological Safety and Balanced Use of Resources, 14(1), 7-15. doi: 10.31471/2415-3184-2023-1(27)-7-15.
dc.relation.referencesen[18] Satayeva, A., Baimenov, A., Azat, S., Zhantikeyev, U., Seisenova, A., & Tauanov, Z. (2022). Review on coal fly ash generation and utilization for resolving mercury contamination issues in Central Asia: Kazakhstan. Environmental Reviews, 30(3), 418-437. doi: 10.1139/er-2021-0035.
dc.relation.referencesen[19] Shi, J., Liu, Y., Wang, E., Wang, L., Li, C., Xu, H., Zheng, X., & Yuan, Q. (2022b). Physico-mechanical, thermal properties and durability of foamed geopolymer concrete containing cenospheres. Construction and Building Materials, 325, article number 126841. doi: 10.1016/j.conbuildmat.2022.126841.
dc.relation.referencesen[20] Shi, J., Liu, Y., Xu, H., Peng, Y., Yuan, Q., & Gao, J. (2022a). The roles of cenosphere in ultra-lightweight foamed geopolymer concrete (UFGC). Ceramics International, 48(9), 12884-12896. doi: 10.1016/j.ceramint.2022.01.161.
dc.relation.referencesen[21] Shokanov, A., Vereshchak, M., & Manakova, I. (2020). Mössbauer and X-ray studies of phase composition of fly ashes formed after combustion of Ekibastuz coal (Kazakhstan). Metals, 10(7), article number 929. doi: 10.3390/met10070929.
dc.relation.referencesen[22] Sidliarenko, A. (2023). Mathematical models of road construction, reconstruction and repair under conditions of uncertainty. Bulletin of Cherkasy State Technological University, 28(3), 113-127. doi: 10.24025/2306-4412.3.2023.287845.
dc.relation.referencesen[23] Strzałkowski, J., Stolarska, A., Kożuch, D., & Dmitruk, J. (2023). Hygrothermal and strength properties of cement mortars containing cenospheres. Cement and Concrete Research, 174, article number 107325. doi: 10.1016/j.cemconres.2023.107325.
dc.relation.referencesen[24] Sunjidmaa, D., Batdemberel, G., & Takibai, S. (2019). A study of ferrospheres in the coal fly ash. Open Journal of Applied Sciences, 9(1), 10-16. doi: 10.4236/ojapps.2019.91002.
dc.relation.referencesen[25] Takibai, S., Cakanov, K., Sungidmaa, D., Kuderin, M., & Kudryshova, B. (2022). Thermal analysis of the cenosphere of floating ashes of thermal power plants for the production of aerated concrete. Journal of Chemical Technology and Metallurgy, 57(2), 267-270.
dc.relation.referencesen[26] Tanirbergenova, S.K., Dinistanova, B.K., Zhylybayeva, N.K., Tugelbayeva, D.A., Moldazhanova, G.M., Aitugan, A., Taju, K., & Nazhipkyzy, M. (2023). Synthesis of cenospheres from ash and their application. Journal of Composites Science, 7(7), article number 276. doi: 10.3390/jcs7070276.
dc.relation.referencesen[27] Tauanov, Z., Azat, S., & Baibatyrova, A. (2022). A mini-review on coal fly ash properties, utilization and synthesis of zeolites. International Journal of Coal Preparation and Utilization, 42(7), 1968-1990. doi: 10.1080/19392699.2020.1788545.
dc.relation.referencesen[28] Yang, J., Mahato, J., & Moon, J. (2023). Effects of various sizes of cenospheres on microstructural, mechanical, and thermal properties of high-strength and lightweight cementitious composites. Journal of Building Engineering, 76, article number 107214. doi: 10.1016/j.jobe.2023.107214.
dc.relation.referencesen[29] Zhangabay, N., Baidilla, I., Tagybayev, A., & Sultan, B. (2023). Analysis of thermal resistance of developed energy-saving external enclosing structures with air gaps and horizontal channels. Buildings, 13(2), article number 356. doi: 10.3390/buildings13020356
dc.rights.holder© Національний університет „Львівська політехніка“, 2025
dc.subjectбудівельні матеріали
dc.subjectсталеве будівництво
dc.subjectінженерні застосування
dc.subjectаналіз властивостей
dc.subjectмеханічна поведінка
dc.subjectconstruction materials
dc.subjectsustainable building
dc.subjectengineering applications
dc.subjectproperties analysis
dc.subjectmechanical behaviour
dc.subject.udc691.3
dc.titleMathematical modelling and factors affecting aerated concrete with floating ash cenospheres
dc.title.alternativeМатематичне моделювання та фактори, що впливають на газобетон з плаваючими зольними ценосферами
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2025v11n2_Takibayuly_S-Mathematical_modelling_97-105.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.98 KB
Format:
Plain Text
Description: