Preventing potential robbery crimes using deep learning algorithm of data processing

dc.citation.epage22
dc.citation.issue3
dc.citation.journalTitleВимірювальна техніка та метрологія
dc.citation.spage16
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorShutka, Denys
dc.contributor.authorProdan, Roman
dc.contributor.authorTataryn, Vasyl
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-03-11T09:15:13Z
dc.date.available2024-03-11T09:15:13Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractRecently, deep learning technologies, namely Neural Networks [1], are attracting more and more attention from businesses and the scientific community, as they help optimize processes and find real solutions to problems much more efficiently and economically than many other approaches. In particular, Neural Networks are well suited for situations when you need to detect objects or look for similar patterns in videos and images, making them relevant in the field of information and measurement technologies in mechatronics and robotics. With the increasing number of robbed apartments and houses every year, addressing this issue has become one of the highest priorities in today’s society. By leveraging deep learning techniques, such as Neural Networks, in mechatronics and robotics, innovative solutions can be developed to enhance security systems, enabling more effective detection and prevention of apartment crimes. To evaluate the performance of our trained network, we conducted extensive experiments on a separate test dataset that was distinct from the training data. We meticulously labeled this dataset to obtain accurate ground truth annotations for comparison. By measuring precision scores, we determined the effectiveness of our model in detecting potential crimes. Our experiments yielded an accuracy rate of 97 % in the detection of potential crimes. This achievement demonstrates the capability of YOLO and the effectiveness of our trained network in accurately identifying criminal activities. The high accuracy rate indicates that our system can effectively assist in property protection efforts, providing a valuable tool for security personnel and law enforcement agencies.
dc.format.extent16-22
dc.format.pages7
dc.identifier.citationShutka D. Preventing potential robbery crimes using deep learning algorithm of data processing / Denys Shutka, Roman Prodan, Vasyl Tataryn // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 84. — No 3. — P. 16–22.
dc.identifier.citationenShutka D. Preventing potential robbery crimes using deep learning algorithm of data processing / Denys Shutka, Roman Prodan, Vasyl Tataryn // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 84. — No 3. — P. 16–22.
dc.identifier.doidoi.org/10.23939/istcmtm2023.03.016
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61439
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВимірювальна техніка та метрологія, 3 (84), 2023
dc.relation.ispartofMeasuring Equipment and Metrology, 3 (84), 2023
dc.relation.references[1] Rosenblatt, F. (1958). “The Perceptron: A ProbabilisticModel for Information Storage And Organization In The Brain”. Available: http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.335.3398&rep=rep 1&type=pdf
dc.relation.references[2] Diederik P. Kingma, Jimmy Ba (2010). “Adam: A Method for Stochastic Optimization”. Available: https://arxiv.org/abs/1412.6980
dc.relation.references[3] Bengio, Y. & Lecun, Yann (1997). “Convolutional Networks for Images, Speech, and Time-Series”. Available: https://www.researchgate.net/publication/216792820_Convolutional_Networks_for_Images_Speech_and_Time-Series.
dc.relation.references[4] Ian Goodfellow and Yoshua Bengio and Aaron Courville (2016). “Deep learning book”. Available: https://www.deeplearningbook.org/
dc.relation.references[5] Keiron O’Shea, Ryan Nash (2015). “An Introduction to Convolutional Neural Networks”. Available: https://arxiv.org/abs/1511.08458
dc.relation.references[6] Hossein Gholamalinezhad1, Hossein Khosravi. “Pooling Methods in Deep Neural Networks” (2009). Available - https://arxiv.org/pdf/2009.07485.pdf
dc.relation.references[7] Shiv Ram Dubey, Satish Kumar Singh, Bidyut Baran Chaudhuri. (2021). “Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark”. Available: https://arxiv.org/abs/2109.14545
dc.relation.references[8] Geoffrey Hinton (2022). “The Forward-Forward Algorithm: Some Preliminary Investigations”. Available: https://arxiv.org/abs/2212.13345
dc.relation.references[9] Katarzyna Janocha, Wojciech Marian Czarnecki (2017). “On Loss Functions for Deep Neural Networks in Classification”. Available: https://arxiv.org/abs/1702.05659
dc.relation.references[10] David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams (1986). “Learning representations by back-propagating errors”. Available: https://www.nature.com/articles/323533a0
dc.relation.references[11] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg (2015). “SSD: Single Shot MultiBox Detector”. Available: https://arxiv.org/abs/1512.02325.
dc.relation.references[12] Bernacki, Mariusz; Włodarczyk, Przemysław (2004). “Principles of training Multi-layer Neural Network using backpropagation”. Available: http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html
dc.relation.references[13] Rafael Padilla, Sergio L. Netto, Eduardo A. B. da Silva (2022). “A Survey on Performance Metrics for Object-Detection Algorithms”. Available: https://ieeexplore.ieee.org/document/9145130
dc.relation.referencesen[1] Rosenblatt, F. (1958). "The Perceptron: A ProbabilisticModel for Information Storage And Organization In The Brain". Available: http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.335.3398&rep=rep 1&type=pdf
dc.relation.referencesen[2] Diederik P. Kingma, Jimmy Ba (2010). "Adam: A Method for Stochastic Optimization". Available: https://arxiv.org/abs/1412.6980
dc.relation.referencesen[3] Bengio, Y. & Lecun, Yann (1997). "Convolutional Networks for Images, Speech, and Time-Series". Available: https://www.researchgate.net/publication/216792820_Convolutional_Networks_for_Images_Speech_and_Time-Series.
dc.relation.referencesen[4] Ian Goodfellow and Yoshua Bengio and Aaron Courville (2016). "Deep learning book". Available: https://www.deeplearningbook.org/
dc.relation.referencesen[5] Keiron O’Shea, Ryan Nash (2015). "An Introduction to Convolutional Neural Networks". Available: https://arxiv.org/abs/1511.08458
dc.relation.referencesen[6] Hossein Gholamalinezhad1, Hossein Khosravi. "Pooling Methods in Deep Neural Networks" (2009). Available - https://arxiv.org/pdf/2009.07485.pdf
dc.relation.referencesen[7] Shiv Ram Dubey, Satish Kumar Singh, Bidyut Baran Chaudhuri. (2021). "Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark". Available: https://arxiv.org/abs/2109.14545
dc.relation.referencesen[8] Geoffrey Hinton (2022). "The Forward-Forward Algorithm: Some Preliminary Investigations". Available: https://arxiv.org/abs/2212.13345
dc.relation.referencesen[9] Katarzyna Janocha, Wojciech Marian Czarnecki (2017). "On Loss Functions for Deep Neural Networks in Classification". Available: https://arxiv.org/abs/1702.05659
dc.relation.referencesen[10] David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams (1986). "Learning representations by back-propagating errors". Available: https://www.nature.com/articles/323533a0
dc.relation.referencesen[11] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg (2015). "SSD: Single Shot MultiBox Detector". Available: https://arxiv.org/abs/1512.02325.
dc.relation.referencesen[12] Bernacki, Mariusz; Włodarczyk, Przemysław (2004). "Principles of training Multi-layer Neural Network using backpropagation". Available: http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html
dc.relation.referencesen[13] Rafael Padilla, Sergio L. Netto, Eduardo A. B. da Silva (2022). "A Survey on Performance Metrics for Object-Detection Algorithms". Available: https://ieeexplore.ieee.org/document/9145130
dc.relation.urihttp://citeseerx.ist.psu.edu/viewdoc/download?
dc.relation.urihttps://arxiv.org/abs/1412.6980
dc.relation.urihttps://www.researchgate.net/publication/216792820_Convolutional_Networks_for_Images_Speech_and_Time-Series
dc.relation.urihttps://www.deeplearningbook.org/
dc.relation.urihttps://arxiv.org/abs/1511.08458
dc.relation.urihttps://arxiv.org/pdf/2009.07485.pdf
dc.relation.urihttps://arxiv.org/abs/2109.14545
dc.relation.urihttps://arxiv.org/abs/2212.13345
dc.relation.urihttps://arxiv.org/abs/1702.05659
dc.relation.urihttps://www.nature.com/articles/323533a0
dc.relation.urihttps://arxiv.org/abs/1512.02325
dc.relation.urihttp://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html
dc.relation.urihttps://ieeexplore.ieee.org/document/9145130
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectCrimes
dc.subjectRobbery
dc.subjectNeural Networks
dc.subjectObject detection
dc.subjectMachine Learning
dc.titlePreventing potential robbery crimes using deep learning algorithm of data processing
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v84n3_Shutka_D-Preventing_potential_robbery_16-22.pdf
Size:
254.18 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v84n3_Shutka_D-Preventing_potential_robbery_16-22__COVER.png
Size:
515.71 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: