Synthesis and study of the structure of copolymers of rarely crosslinked polyacrylic acid
| dc.citation.epage | 201 | |
| dc.citation.issue | 7 | |
| dc.citation.journalTitle | Хімія, технологія речовин та їх застосування | |
| dc.citation.spage | 196 | |
| dc.citation.volume | 1 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Упсальський університет | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Uppsala University | |
| dc.contributor.author | Борденюк, О. Ю. | |
| dc.contributor.author | Капаціла, С. М. | |
| dc.contributor.author | Цикунков, С. С. | |
| dc.contributor.author | Надашкевич, З. Я. | |
| dc.contributor.author | Фігурка, Н. В. | |
| dc.contributor.author | Самарик, В. Я. | |
| dc.contributor.author | Bordenyuk, O. Y. | |
| dc.contributor.author | Kapatsila, S. M. | |
| dc.contributor.author | Tsykunkov, S. S. | |
| dc.contributor.author | Nadashkevych, Z. Ya. | |
| dc.contributor.author | Fihurka, N. V. | |
| dc.contributor.author | Samaryk, V. Ya. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-09-12T07:59:57Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | Досліджено взаємозв’язок структури кополімерів акрилової кислоти та N,N-метиленбісакриламіду від умов їх отримання. Встановлені оптимальні умови одержання полімерів із лінійною, деревоподібною та просторово-структурованою будовою макромолекул. Досліджено їх властивості, а саме густину, ступінь набрякання, гель-фракцію тощо. Показано, що кополімери із просторово-структурованими макромолекулами утворюють гідрогелі, ступінь набрякання яких істотно залежить від умов одержання. Для кополімерів, що утворюють гідрогелі, на основі залежностей густини та рівноважного ступеня набрякання визначено густину вузлів зшивок. | |
| dc.description.abstract | The effect of synthesis conditions on the structure of acrylic acid and N,N-methylene bisacrylamide copolymers has been investigated. Optimal conditions for the synthesis of polymers with linear, tree-like, and crosslinked macromolecular structures have been established. The properties of the synthesized polymers, namely density, degree of swelling, gel fraction, etc., were investigated. It has been shown that copolymers with crosslinked macromolecules form hydrogels, the swelling degree of which considerably depends on the synthesis conditions. For copolymers forming hydrogels, the density of crosslinking units was determined based on the dependence of the density and equilibrium swelling degree. | |
| dc.format.extent | 196-201 | |
| dc.format.pages | 6 | |
| dc.identifier.citation | Synthesis and study of the structure of copolymers of rarely crosslinked polyacrylic acid / O. Y. Bordenyuk, S. M. Kapatsila, S. S. Tsykunkov, Z. Ya. Nadashkevych, N. V. Fihurka, V. Ya. Samaryk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 196–201. | |
| dc.identifier.citationen | Synthesis and study of the structure of copolymers of rarely crosslinked polyacrylic acid / O. Y. Bordenyuk, S. M. Kapatsila, S. S. Tsykunkov, Z. Ya. Nadashkevych, N. V. Fihurka, V. Ya. Samaryk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 196–201. | |
| dc.identifier.doi | doi.org/10.23939/ctas2024.01.196 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111746 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Хімія, технологія речовин та їх застосування, 7 (1), 2024 | |
| dc.relation.ispartof | Chemistry, Technology and Application of Substances, 7 (1), 2024 | |
| dc.relation.references | 1. Doppalapudi, S., Jain, A., Khan, W., Domb, A.J. (2014) Biodegradable polymers-an overview. Polym. Adv. Technol. 25, 427-435. https://doi.org/10.1002/pat.3305 | |
| dc.relation.references | 2. Mallawarachchi, S., Mahadevan, A., Gejji, V., Fernando, S. (2019) Mechanics of controlled release of insulin entrapped in polyacrylic acid gels via variable electrical stimuli. Drug Deliv. Transl. Res. 9, 783-794. DOI: 10.1007/s13346-019-00620-7 | |
| dc.relation.references | 3. Arkaban, H., Barani, M., Akbarizadeh, MR., Pal Singh Chauhan, N., Jadoun, S., Dehghani Soltani, M., Zarrintaj, P. (2022) Polyacrylic Acid Nanoplatforms: Antimicrobial, Tissue Engineering, and Cancer Theranostic Applications. Polymers (Basel). 14(6),1259. doi: 10.3390/polym14061259 | |
| dc.relation.references | 4. Chai, Q., Jiao, Y., & Yu, X. (2017). Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels, 3(1), 6. doi:10.3390/gels3010006 | |
| dc.relation.references | 5. Ganeswar, Dalei., Subhraseema, Das. (2022) Polyacrylic acid-based drug delivery systems: A comprehensive review on the state-of-art. Journal of Drug Delivery Science and Technology. 78, 103988. https://doi.org/10.1016/j.jddst.2022.103988 | |
| dc.relation.references | 6. Jeon, I.-Y., Noh, H.-J., Baek, J.-B. (2018) Hyperbranched Macromolecules: From Synthesis to Applications. Molecules, 23, 657. https://doi.org/10.3390/molecules23030657 | |
| dc.relation.references | 7. Niamh, Bayliss., Bernhard, V.K.J. Schmidt, (2023). Hydrophilic polymers: Current trends and visions for the future, Progress in Polymer Science. 147, 101753. DOI: 10.1016/j.progpolymsci.2023.101753 | |
| dc.relation.references | 8. Zenoozi, S., Sadeghi, G.M.M., Rafiee, M. (2020). Synthesis and characterization of biocompatible semi-interpenetrating polymer networks based on polyurethane and cross-linked poly (acrylic acid). Eur. Polym. J. 140, 109974. https://doi.org/10.1016/j.eurpolymj.2020.109974 | |
| dc.relation.references | 9. Yee, S.Y.Y. (2021). Medicinal properties of bioactive compounds and antioxidant activity in Durio zibethinus. Malays. J. Sustain. Agric. (MJSA). 5, 82-89. DOI: 10.26480/mjsa.02.2021.82.89 | |
| dc.relation.references | 10. Tavakoli, S., & Klar, A. S. (2020). Advanced Hydrogels as Wound Dressings. Biomolecules, 10(8), 1169. doi:10.3390/biom10081169 | |
| dc.relation.references | 11. Swilem, A.E, Elshazly, A.H.M, Hamed, A.A, Hegazy, E.A, Abd El-Rehim, H.A. (2020) Nanoscale poly(acrylic acid)-based hydrogels prepared via a green single-step approach for application as low-viscosity biomimetic fluid tears. Mater. Sci. Eng. C Mater. Biol. Appl. 110, 110726. doi: 10.1016/j.msec.2020.110726 | |
| dc.relation.references | 12. Koetting, M.C., Guido, J.F., Gupta, M., Zhang, A., Peppas, N.A. (2016) pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery. Journal of Controlled Release, 221, 18-25. doi: 10.1016/j.jconrel.2015.11.023 | |
| dc.relation.references | 13. Caló, E., Khutoryanskiy, V.V.(2015). Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polymer Journal, 65, 252-267. DOI: 10.1016/j.eurpolymj.2014.11.024 | |
| dc.relation.references | 14. Maikovych, O., Nosova, N., Bukartyk, N., Fihurka, N., Ostapiv, D., Samaryk, V., Pasetto, P., & Varvarenko, S. (2023). Gelatin-based hydrogel with antiseptic properties: Synthesis and properties. Applied Nanoscience, 13(12), 7611-7623. https://doi.org/10.1007/s13204-023-02956-6 | |
| dc.relation.references | 15. Flory P.J. (1953) Principles of polymer chemistry. N.Y.: Cornell Univ. Press. 672. | |
| dc.relation.references | 16. Worsfold, D.J. (1974) Effect of chain interpenetration on polymer-polymer interaction in solution. J Polym Sci Part A-1 Polym Chem. 12(2), 337-345. https://doi.org/10.1002/pol.1974.170120207 | |
| dc.relation.references | 17. Flory, P.J., Rehner, B.D. (1943) Statistical mechanics of cross-linked polymer networks. J. Chem. Phys, 11, 521-526. https://doi.org/10.1063/1.1723792 | |
| dc.relation.referencesen | 1. Doppalapudi, S., Jain, A., Khan, W., Domb, A.J. (2014) Biodegradable polymers-an overview. Polym. Adv. Technol. 25, 427-435. https://doi.org/10.1002/pat.3305 | |
| dc.relation.referencesen | 2. Mallawarachchi, S., Mahadevan, A., Gejji, V., Fernando, S. (2019) Mechanics of controlled release of insulin entrapped in polyacrylic acid gels via variable electrical stimuli. Drug Deliv. Transl. Res. 9, 783-794. DOI: 10.1007/s13346-019-00620-7 | |
| dc.relation.referencesen | 3. Arkaban, H., Barani, M., Akbarizadeh, MR., Pal Singh Chauhan, N., Jadoun, S., Dehghani Soltani, M., Zarrintaj, P. (2022) Polyacrylic Acid Nanoplatforms: Antimicrobial, Tissue Engineering, and Cancer Theranostic Applications. Polymers (Basel). 14(6),1259. doi: 10.3390/polym14061259 | |
| dc.relation.referencesen | 4. Chai, Q., Jiao, Y., & Yu, X. (2017). Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels, 3(1), 6. doi:10.3390/gels3010006 | |
| dc.relation.referencesen | 5. Ganeswar, Dalei., Subhraseema, Das. (2022) Polyacrylic acid-based drug delivery systems: A comprehensive review on the state-of-art. Journal of Drug Delivery Science and Technology. 78, 103988. https://doi.org/10.1016/j.jddst.2022.103988 | |
| dc.relation.referencesen | 6. Jeon, I.-Y., Noh, H.-J., Baek, J.-B. (2018) Hyperbranched Macromolecules: From Synthesis to Applications. Molecules, 23, 657. https://doi.org/10.3390/molecules23030657 | |
| dc.relation.referencesen | 7. Niamh, Bayliss., Bernhard, V.K.J. Schmidt, (2023). Hydrophilic polymers: Current trends and visions for the future, Progress in Polymer Science. 147, 101753. DOI: 10.1016/j.progpolymsci.2023.101753 | |
| dc.relation.referencesen | 8. Zenoozi, S., Sadeghi, G.M.M., Rafiee, M. (2020). Synthesis and characterization of biocompatible semi-interpenetrating polymer networks based on polyurethane and cross-linked poly (acrylic acid). Eur. Polym. J. 140, 109974. https://doi.org/10.1016/j.eurpolymj.2020.109974 | |
| dc.relation.referencesen | 9. Yee, S.Y.Y. (2021). Medicinal properties of bioactive compounds and antioxidant activity in Durio zibethinus. Malays. J. Sustain. Agric. (MJSA). 5, 82-89. DOI: 10.26480/mjsa.02.2021.82.89 | |
| dc.relation.referencesen | 10. Tavakoli, S., & Klar, A. S. (2020). Advanced Hydrogels as Wound Dressings. Biomolecules, 10(8), 1169. doi:10.3390/biom10081169 | |
| dc.relation.referencesen | 11. Swilem, A.E, Elshazly, A.H.M, Hamed, A.A, Hegazy, E.A, Abd El-Rehim, H.A. (2020) Nanoscale poly(acrylic acid)-based hydrogels prepared via a green single-step approach for application as low-viscosity biomimetic fluid tears. Mater. Sci. Eng. C Mater. Biol. Appl. 110, 110726. doi: 10.1016/j.msec.2020.110726 | |
| dc.relation.referencesen | 12. Koetting, M.C., Guido, J.F., Gupta, M., Zhang, A., Peppas, N.A. (2016) pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery. Journal of Controlled Release, 221, 18-25. doi: 10.1016/j.jconrel.2015.11.023 | |
| dc.relation.referencesen | 13. Caló, E., Khutoryanskiy, V.V.(2015). Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polymer Journal, 65, 252-267. DOI: 10.1016/j.eurpolymj.2014.11.024 | |
| dc.relation.referencesen | 14. Maikovych, O., Nosova, N., Bukartyk, N., Fihurka, N., Ostapiv, D., Samaryk, V., Pasetto, P., & Varvarenko, S. (2023). Gelatin-based hydrogel with antiseptic properties: Synthesis and properties. Applied Nanoscience, 13(12), 7611-7623. https://doi.org/10.1007/s13204-023-02956-6 | |
| dc.relation.referencesen | 15. Flory P.J. (1953) Principles of polymer chemistry. N.Y., Cornell Univ. Press. 672. | |
| dc.relation.referencesen | 16. Worsfold, D.J. (1974) Effect of chain interpenetration on polymer-polymer interaction in solution. J Polym Sci Part A-1 Polym Chem. 12(2), 337-345. https://doi.org/10.1002/pol.1974.170120207 | |
| dc.relation.referencesen | 17. Flory, P.J., Rehner, B.D. (1943) Statistical mechanics of cross-linked polymer networks. J. Chem. Phys, 11, 521-526. https://doi.org/10.1063/1.1723792 | |
| dc.relation.uri | https://doi.org/10.1002/pat.3305 | |
| dc.relation.uri | https://doi.org/10.1016/j.jddst.2022.103988 | |
| dc.relation.uri | https://doi.org/10.3390/molecules23030657 | |
| dc.relation.uri | https://doi.org/10.1016/j.eurpolymj.2020.109974 | |
| dc.relation.uri | https://doi.org/10.1007/s13204-023-02956-6 | |
| dc.relation.uri | https://doi.org/10.1002/pol.1974.170120207 | |
| dc.relation.uri | https://doi.org/10.1063/1.1723792 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.subject | акрилова кислота | |
| dc.subject | кополімер | |
| dc.subject | структура | |
| dc.subject | гель- та золь-фракція | |
| dc.subject | ступінь зшивки | |
| dc.subject | acrylic acid | |
| dc.subject | copolymer | |
| dc.subject | structure | |
| dc.subject | gel and sol fractions | |
| dc.subject | crosslinking degree | |
| dc.title | Synthesis and study of the structure of copolymers of rarely crosslinked polyacrylic acid | |
| dc.title.alternative | Синтез та дослідження будови кополімерів рідкоструктурованої поліакрилової кислоти | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1