Synthesis and study of the structure of copolymers of rarely crosslinked polyacrylic acid

dc.citation.epage201
dc.citation.issue7
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage196
dc.citation.volume1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationУпсальський університет
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationUppsala University
dc.contributor.authorБорденюк, О. Ю.
dc.contributor.authorКапаціла, С. М.
dc.contributor.authorЦикунков, С. С.
dc.contributor.authorНадашкевич, З. Я.
dc.contributor.authorФігурка, Н. В.
dc.contributor.authorСамарик, В. Я.
dc.contributor.authorBordenyuk, O. Y.
dc.contributor.authorKapatsila, S. M.
dc.contributor.authorTsykunkov, S. S.
dc.contributor.authorNadashkevych, Z. Ya.
dc.contributor.authorFihurka, N. V.
dc.contributor.authorSamaryk, V. Ya.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-12T07:59:57Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractДосліджено взаємозв’язок структури кополімерів акрилової кислоти та N,N-метиленбісакриламіду від умов їх отримання. Встановлені оптимальні умови одержання полімерів із лінійною, деревоподібною та просторово-структурованою будовою макромолекул. Досліджено їх властивості, а саме густину, ступінь набрякання, гель-фракцію тощо. Показано, що кополімери із просторово-структурованими макромолекулами утворюють гідрогелі, ступінь набрякання яких істотно залежить від умов одержання. Для кополімерів, що утворюють гідрогелі, на основі залежностей густини та рівноважного ступеня набрякання визначено густину вузлів зшивок.
dc.description.abstractThe effect of synthesis conditions on the structure of acrylic acid and N,N-methylene bisacrylamide copolymers has been investigated. Optimal conditions for the synthesis of polymers with linear, tree-like, and crosslinked macromolecular structures have been established. The properties of the synthesized polymers, namely density, degree of swelling, gel fraction, etc., were investigated. It has been shown that copolymers with crosslinked macromolecules form hydrogels, the swelling degree of which considerably depends on the synthesis conditions. For copolymers forming hydrogels, the density of crosslinking units was determined based on the dependence of the density and equilibrium swelling degree.
dc.format.extent196-201
dc.format.pages6
dc.identifier.citationSynthesis and study of the structure of copolymers of rarely crosslinked polyacrylic acid / O. Y. Bordenyuk, S. M. Kapatsila, S. S. Tsykunkov, Z. Ya. Nadashkevych, N. V. Fihurka, V. Ya. Samaryk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 196–201.
dc.identifier.citationenSynthesis and study of the structure of copolymers of rarely crosslinked polyacrylic acid / O. Y. Bordenyuk, S. M. Kapatsila, S. S. Tsykunkov, Z. Ya. Nadashkevych, N. V. Fihurka, V. Ya. Samaryk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 196–201.
dc.identifier.doidoi.org/10.23939/ctas2024.01.196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111746
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 7 (1), 2024
dc.relation.ispartofChemistry, Technology and Application of Substances, 7 (1), 2024
dc.relation.references1. Doppalapudi, S., Jain, A., Khan, W., Domb, A.J. (2014) Biodegradable polymers-an overview. Polym. Adv. Technol. 25, 427-435. https://doi.org/10.1002/pat.3305
dc.relation.references2. Mallawarachchi, S., Mahadevan, A., Gejji, V., Fernando, S. (2019) Mechanics of controlled release of insulin entrapped in polyacrylic acid gels via variable electrical stimuli. Drug Deliv. Transl. Res. 9, 783-794. DOI: 10.1007/s13346-019-00620-7
dc.relation.references3. Arkaban, H., Barani, M., Akbarizadeh, MR., Pal Singh Chauhan, N., Jadoun, S., Dehghani Soltani, M., Zarrintaj, P. (2022) Polyacrylic Acid Nanoplatforms: Antimicrobial, Tissue Engineering, and Cancer Theranostic Applications. Polymers (Basel). 14(6),1259. doi: 10.3390/polym14061259
dc.relation.references4. Chai, Q., Jiao, Y., & Yu, X. (2017). Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels, 3(1), 6. doi:10.3390/gels3010006
dc.relation.references5. Ganeswar, Dalei., Subhraseema, Das. (2022) Polyacrylic acid-based drug delivery systems: A comprehensive review on the state-of-art. Journal of Drug Delivery Science and Technology. 78, 103988. https://doi.org/10.1016/j.jddst.2022.103988
dc.relation.references6. Jeon, I.-Y., Noh, H.-J., Baek, J.-B. (2018) Hyperbranched Macromolecules: From Synthesis to Applications. Molecules, 23, 657. https://doi.org/10.3390/molecules23030657
dc.relation.references7. Niamh, Bayliss., Bernhard, V.K.J. Schmidt, (2023). Hydrophilic polymers: Current trends and visions for the future, Progress in Polymer Science. 147, 101753. DOI: 10.1016/j.progpolymsci.2023.101753
dc.relation.references8. Zenoozi, S., Sadeghi, G.M.M., Rafiee, M. (2020). Synthesis and characterization of biocompatible semi-interpenetrating polymer networks based on polyurethane and cross-linked poly (acrylic acid). Eur. Polym. J. 140, 109974. https://doi.org/10.1016/j.eurpolymj.2020.109974
dc.relation.references9. Yee, S.Y.Y. (2021). Medicinal properties of bioactive compounds and antioxidant activity in Durio zibethinus. Malays. J. Sustain. Agric. (MJSA). 5, 82-89. DOI: 10.26480/mjsa.02.2021.82.89
dc.relation.references10. Tavakoli, S., & Klar, A. S. (2020). Advanced Hydrogels as Wound Dressings. Biomolecules, 10(8), 1169. doi:10.3390/biom10081169
dc.relation.references11. Swilem, A.E, Elshazly, A.H.M, Hamed, A.A, Hegazy, E.A, Abd El-Rehim, H.A. (2020) Nanoscale poly(acrylic acid)-based hydrogels prepared via a green single-step approach for application as low-viscosity biomimetic fluid tears. Mater. Sci. Eng. C Mater. Biol. Appl. 110, 110726. doi: 10.1016/j.msec.2020.110726
dc.relation.references12. Koetting, M.C., Guido, J.F., Gupta, M., Zhang, A., Peppas, N.A. (2016) pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery. Journal of Controlled Release, 221, 18-25. doi: 10.1016/j.jconrel.2015.11.023
dc.relation.references13. Caló, E., Khutoryanskiy, V.V.(2015). Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polymer Journal, 65, 252-267. DOI: 10.1016/j.eurpolymj.2014.11.024
dc.relation.references14. Maikovych, O., Nosova, N., Bukartyk, N., Fihurka, N., Ostapiv, D., Samaryk, V., Pasetto, P., & Varvarenko, S. (2023). Gelatin-based hydrogel with antiseptic properties: Synthesis and properties. Applied Nanoscience, 13(12), 7611-7623. https://doi.org/10.1007/s13204-023-02956-6
dc.relation.references15. Flory P.J. (1953) Principles of polymer chemistry. N.Y.: Cornell Univ. Press. 672.
dc.relation.references16. Worsfold, D.J. (1974) Effect of chain interpenetration on polymer-polymer interaction in solution. J Polym Sci Part A-1 Polym Chem. 12(2), 337-345. https://doi.org/10.1002/pol.1974.170120207
dc.relation.references17. Flory, P.J., Rehner, B.D. (1943) Statistical mechanics of cross-linked polymer networks. J. Chem. Phys, 11, 521-526. https://doi.org/10.1063/1.1723792
dc.relation.referencesen1. Doppalapudi, S., Jain, A., Khan, W., Domb, A.J. (2014) Biodegradable polymers-an overview. Polym. Adv. Technol. 25, 427-435. https://doi.org/10.1002/pat.3305
dc.relation.referencesen2. Mallawarachchi, S., Mahadevan, A., Gejji, V., Fernando, S. (2019) Mechanics of controlled release of insulin entrapped in polyacrylic acid gels via variable electrical stimuli. Drug Deliv. Transl. Res. 9, 783-794. DOI: 10.1007/s13346-019-00620-7
dc.relation.referencesen3. Arkaban, H., Barani, M., Akbarizadeh, MR., Pal Singh Chauhan, N., Jadoun, S., Dehghani Soltani, M., Zarrintaj, P. (2022) Polyacrylic Acid Nanoplatforms: Antimicrobial, Tissue Engineering, and Cancer Theranostic Applications. Polymers (Basel). 14(6),1259. doi: 10.3390/polym14061259
dc.relation.referencesen4. Chai, Q., Jiao, Y., & Yu, X. (2017). Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels, 3(1), 6. doi:10.3390/gels3010006
dc.relation.referencesen5. Ganeswar, Dalei., Subhraseema, Das. (2022) Polyacrylic acid-based drug delivery systems: A comprehensive review on the state-of-art. Journal of Drug Delivery Science and Technology. 78, 103988. https://doi.org/10.1016/j.jddst.2022.103988
dc.relation.referencesen6. Jeon, I.-Y., Noh, H.-J., Baek, J.-B. (2018) Hyperbranched Macromolecules: From Synthesis to Applications. Molecules, 23, 657. https://doi.org/10.3390/molecules23030657
dc.relation.referencesen7. Niamh, Bayliss., Bernhard, V.K.J. Schmidt, (2023). Hydrophilic polymers: Current trends and visions for the future, Progress in Polymer Science. 147, 101753. DOI: 10.1016/j.progpolymsci.2023.101753
dc.relation.referencesen8. Zenoozi, S., Sadeghi, G.M.M., Rafiee, M. (2020). Synthesis and characterization of biocompatible semi-interpenetrating polymer networks based on polyurethane and cross-linked poly (acrylic acid). Eur. Polym. J. 140, 109974. https://doi.org/10.1016/j.eurpolymj.2020.109974
dc.relation.referencesen9. Yee, S.Y.Y. (2021). Medicinal properties of bioactive compounds and antioxidant activity in Durio zibethinus. Malays. J. Sustain. Agric. (MJSA). 5, 82-89. DOI: 10.26480/mjsa.02.2021.82.89
dc.relation.referencesen10. Tavakoli, S., & Klar, A. S. (2020). Advanced Hydrogels as Wound Dressings. Biomolecules, 10(8), 1169. doi:10.3390/biom10081169
dc.relation.referencesen11. Swilem, A.E, Elshazly, A.H.M, Hamed, A.A, Hegazy, E.A, Abd El-Rehim, H.A. (2020) Nanoscale poly(acrylic acid)-based hydrogels prepared via a green single-step approach for application as low-viscosity biomimetic fluid tears. Mater. Sci. Eng. C Mater. Biol. Appl. 110, 110726. doi: 10.1016/j.msec.2020.110726
dc.relation.referencesen12. Koetting, M.C., Guido, J.F., Gupta, M., Zhang, A., Peppas, N.A. (2016) pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery. Journal of Controlled Release, 221, 18-25. doi: 10.1016/j.jconrel.2015.11.023
dc.relation.referencesen13. Caló, E., Khutoryanskiy, V.V.(2015). Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polymer Journal, 65, 252-267. DOI: 10.1016/j.eurpolymj.2014.11.024
dc.relation.referencesen14. Maikovych, O., Nosova, N., Bukartyk, N., Fihurka, N., Ostapiv, D., Samaryk, V., Pasetto, P., & Varvarenko, S. (2023). Gelatin-based hydrogel with antiseptic properties: Synthesis and properties. Applied Nanoscience, 13(12), 7611-7623. https://doi.org/10.1007/s13204-023-02956-6
dc.relation.referencesen15. Flory P.J. (1953) Principles of polymer chemistry. N.Y., Cornell Univ. Press. 672.
dc.relation.referencesen16. Worsfold, D.J. (1974) Effect of chain interpenetration on polymer-polymer interaction in solution. J Polym Sci Part A-1 Polym Chem. 12(2), 337-345. https://doi.org/10.1002/pol.1974.170120207
dc.relation.referencesen17. Flory, P.J., Rehner, B.D. (1943) Statistical mechanics of cross-linked polymer networks. J. Chem. Phys, 11, 521-526. https://doi.org/10.1063/1.1723792
dc.relation.urihttps://doi.org/10.1002/pat.3305
dc.relation.urihttps://doi.org/10.1016/j.jddst.2022.103988
dc.relation.urihttps://doi.org/10.3390/molecules23030657
dc.relation.urihttps://doi.org/10.1016/j.eurpolymj.2020.109974
dc.relation.urihttps://doi.org/10.1007/s13204-023-02956-6
dc.relation.urihttps://doi.org/10.1002/pol.1974.170120207
dc.relation.urihttps://doi.org/10.1063/1.1723792
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectакрилова кислота
dc.subjectкополімер
dc.subjectструктура
dc.subjectгель- та золь-фракція
dc.subjectступінь зшивки
dc.subjectacrylic acid
dc.subjectcopolymer
dc.subjectstructure
dc.subjectgel and sol fractions
dc.subjectcrosslinking degree
dc.titleSynthesis and study of the structure of copolymers of rarely crosslinked polyacrylic acid
dc.title.alternativeСинтез та дослідження будови кополімерів рідкоструктурованої поліакрилової кислоти
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v1n7_Bordenyuk_O_Y-Synthesis_and_study_196-201.pdf
Size:
640.71 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v1n7_Bordenyuk_O_Y-Synthesis_and_study_196-201__COVER.png
Size:
456.41 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.98 KB
Format:
Plain Text
Description: