Influence of tungsten compounds on reaction of 1-octene epoxidation by tert-butyl hydroperoxide and hydroperoxide decomposition
dc.citation.epage | 27 | |
dc.citation.issue | 2 | |
dc.citation.spage | 23 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Макота, О. І. | |
dc.contributor.author | Олійник, Л. П. | |
dc.contributor.author | Комаренська, З. М. | |
dc.contributor.author | Makota, O. I. | |
dc.contributor.author | Oliynyk, L. P. | |
dc.contributor.author | Komarenska, Z. M. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T08:47:17Z | |
dc.date.available | 2024-01-22T08:47:17Z | |
dc.date.created | 2020-03-16 | |
dc.date.issued | 2020-03-16 | |
dc.description.abstract | Досліджено каталітичну здатність сполук вольфраму в реакції гідропероксидного епоксидування октену-1 і розкладу гідропероксиду трет-бутилу. Показано, що природа ліганда істотно впливає на каталітичну активність сполук вольфраму в цих реакціях. Встановлено, що борид і силіцид вольфраму є найкращими для реакції епоксидування, тоді як карбід вольфраму проявляє низьку активність. Борид вольфраму є також найактивніший у реакції розкладу гідропероксиду. | |
dc.description.abstract | Catalytic ability of tungsten compounds in the reaction of hydroperoxide epoxidation of 1-octene and tert-butyl hydroperoxide decomposition was investigated. It is shown that the nature of ligand has significant effect on the catalytic activity of tungsten compounds in these reactions. It is established that boride and silicide of tungsten are the best choice for epoxidation reaction, whereas tungsten carbide exhibits poor activity. Tungsten boride is also the most active in the hydroxide decomposition reaction. | |
dc.format.extent | 23-27 | |
dc.format.pages | 5 | |
dc.identifier.citation | Makota O. I. Influence of tungsten compounds on reaction of 1-octene epoxidation by tert-butyl hydroperoxide and hydroperoxide decomposition / O. I. Makota, L. P. Oliynyk, Z. M. Komarenska // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 23–27. | |
dc.identifier.citationen | Makota O. I. Influence of tungsten compounds on reaction of 1-octene epoxidation by tert-butyl hydroperoxide and hydroperoxide decomposition / O. I. Makota, L. P. Oliynyk, Z. M. Komarenska // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 23–27. | |
dc.identifier.doi | doi.org/10.23939/ctas2021.02.023 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60903 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (4), 2021 | |
dc.relation.references | 1. Yudin A. K. (2006). Aziridines and Epoxides in Organic Synthesis. Wiley-VCH, Weinheim, Germany. doi: 10.1002/3527607862 | |
dc.relation.references | 2. Marco-Contelles J., Molina M. T., Anjum S.(2004). Naturally occurring cyclohexane epoxides: Sources, biological activities and synthesis. Chemical Reviews, 104(6), 2857–2899. doi: 10.1021/cr980013j | |
dc.relation.references | 3. Emami M., Bikas R., Noshiranzadeh N., Kozakiewicz A., Lis T. (2020). Cu(II)-Hydrazide coordination compound supported on silica gel as an efficient and recyclable heterogeneous catalyst for green click synthesis of β-hydroxy-1,2,3-triazoles in water. ACS Omega, 5, 13344–13357. doi: 10.1021/acsomega.0c01491 | |
dc.relation.references | 4. Arends I. W. C. E., Sheldon R. A. (2001). Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments. Applied Catalysis A, 212(1–2), 175–187. doi: 10.1016/S0926-860X(00)00855-3 | |
dc.relation.references | 5. Xia Q. H., Ge H. Q., Ye C. P., Liu Z. M., Su K. X. (2005). Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation. Chemical Reviews, 105(5), 1603–1662. doi: 10.1021/cr0406458 | |
dc.relation.references | 6. Wang X., You Q., Wu Y., Bi C., Chen H., Dai C., Hao Q., Zhang J., Ma X. (2021) Tungsten-substituted Silicalite-1 with an interconnected hollow structure for catalytic epoxidation of cyclohexene. Microporous and Mesoporous Materials, 317, 111028. doi: 10.1016/j.micromeso.2021.111028 | |
dc.relation.references | 7. Zhang H., Yang X., Song X., Chang X., Jia M. (2020) Hydrothermal synthesis of tungsten-tin bimetallic MFI type zeolites and their catalytic properties for cyclohexene epoxidation. Microporous and Mesoporous Materials, 303, 110277. doi: 10.1016/j.micromeso.2021.110277 | |
dc.relation.references | 8. Kawashima H., Okuda Y., Kijima M., Fujitani T., Choi J.-C. (2020) Epoxidation of microalgal biomassderived squalene with hydrogen peroxide using solid heterogeneous tungsten-based catalyst. Tetrahedron, 76(16), 131109. doi: 10.1016/j.tet.2020.131109 | |
dc.relation.references | 9. Vieira E.G., Filho N.L.D. (2017) Epoxidation of olefins using a novel synthesized tungsten dendritic catalyst. Materials Chemistry and Physics, 201(1), 262–270. doi: 10.1016/j.matchemphys.2017.08.045 | |
dc.relation.references | 10. Bisio C., Gallo A., Psaro R, Tiozzo C., Guidotti M., Carniato F. (2019) Tungstenocene-grafted silica catalysts for the selective epoxidation of alkenes. Applied Catalysis A: General, 581, 133–142. doi: 10.1016/j.apcata.2019.05.027 | |
dc.relation.references | 11. Milas N. A., Surgenor D. M. (1946). Studies in organic peroxides. VIII. t-Butyl hydroperoxide and di-tbutyl peroxide. Journal of the American Chemical Society, 68(2), 205-208. doi: 10.1021/ja01206a017 | |
dc.relation.referencesen | 1. Yudin A. K. (2006). Aziridines and Epoxides in Organic Synthesis. Wiley-VCH, Weinheim, Germany. doi: 10.1002/3527607862 | |
dc.relation.referencesen | 2. Marco-Contelles J., Molina M. T., Anjum S.(2004). Naturally occurring cyclohexane epoxides: Sources, biological activities and synthesis. Chemical Reviews, 104(6), 2857–2899. doi: 10.1021/cr980013j | |
dc.relation.referencesen | 3. Emami M., Bikas R., Noshiranzadeh N., Kozakiewicz A., Lis T. (2020). Cu(II)-Hydrazide coordination compound supported on silica gel as an efficient and recyclable heterogeneous catalyst for green click synthesis of b-hydroxy-1,2,3-triazoles in water. ACS Omega, 5, 13344–13357. doi: 10.1021/acsomega.0c01491 | |
dc.relation.referencesen | 4. Arends I. W. C. E., Sheldon R. A. (2001). Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments. Applied Catalysis A, 212(1–2), 175–187. doi: 10.1016/S0926-860X(00)00855-3 | |
dc.relation.referencesen | 5. Xia Q. H., Ge H. Q., Ye C. P., Liu Z. M., Su K. X. (2005). Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation. Chemical Reviews, 105(5), 1603–1662. doi: 10.1021/cr0406458 | |
dc.relation.referencesen | 6. Wang X., You Q., Wu Y., Bi C., Chen H., Dai C., Hao Q., Zhang J., Ma X. (2021) Tungsten-substituted Silicalite-1 with an interconnected hollow structure for catalytic epoxidation of cyclohexene. Microporous and Mesoporous Materials, 317, 111028. doi: 10.1016/j.micromeso.2021.111028 | |
dc.relation.referencesen | 7. Zhang H., Yang X., Song X., Chang X., Jia M. (2020) Hydrothermal synthesis of tungsten-tin bimetallic MFI type zeolites and their catalytic properties for cyclohexene epoxidation. Microporous and Mesoporous Materials, 303, 110277. doi: 10.1016/j.micromeso.2021.110277 | |
dc.relation.referencesen | 8. Kawashima H., Okuda Y., Kijima M., Fujitani T., Choi J.-C. (2020) Epoxidation of microalgal biomassderived squalene with hydrogen peroxide using solid heterogeneous tungsten-based catalyst. Tetrahedron, 76(16), 131109. doi: 10.1016/j.tet.2020.131109 | |
dc.relation.referencesen | 9. Vieira E.G., Filho N.L.D. (2017) Epoxidation of olefins using a novel synthesized tungsten dendritic catalyst. Materials Chemistry and Physics, 201(1), 262–270. doi: 10.1016/j.matchemphys.2017.08.045 | |
dc.relation.referencesen | 10. Bisio C., Gallo A., Psaro R, Tiozzo C., Guidotti M., Carniato F. (2019) Tungstenocene-grafted silica catalysts for the selective epoxidation of alkenes. Applied Catalysis A: General, 581, 133–142. doi: 10.1016/j.apcata.2019.05.027 | |
dc.relation.referencesen | 11. Milas N. A., Surgenor D. M. (1946). Studies in organic peroxides. VIII. t-Butyl hydroperoxide and di-tbutyl peroxide. Journal of the American Chemical Society, 68(2), 205-208. doi: 10.1021/ja01206a017 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | епоксидування | |
dc.subject | розклад | |
dc.subject | каталізатори | |
dc.subject | вольфрам | |
dc.subject | октен-1 | |
dc.subject | гідропероксид трет-бутилу | |
dc.subject | epoxidation | |
dc.subject | decomposition | |
dc.subject | catalysts | |
dc.subject | tungsten | |
dc.subject | 1-octene | |
dc.subject | tert-butyl hydroperoxide | |
dc.title | Influence of tungsten compounds on reaction of 1-octene epoxidation by tert-butyl hydroperoxide and hydroperoxide decomposition | |
dc.title.alternative | Вплив сполук вольфраму на реакцію епоксидування октену-1 трет-бутилгідропероксидом і розкладу гідропероксиду | |
dc.type | Article |
Files
License bundle
1 - 1 of 1