Influence of tungsten compounds on reaction of 1-octene epoxidation by tert-butyl hydroperoxide and hydroperoxide decomposition

dc.citation.epage27
dc.citation.issue2
dc.citation.spage23
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМакота, О. І.
dc.contributor.authorОлійник, Л. П.
dc.contributor.authorКомаренська, З. М.
dc.contributor.authorMakota, O. I.
dc.contributor.authorOliynyk, L. P.
dc.contributor.authorKomarenska, Z. M.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T08:47:17Z
dc.date.available2024-01-22T08:47:17Z
dc.date.created2020-03-16
dc.date.issued2020-03-16
dc.description.abstractДосліджено каталітичну здатність сполук вольфраму в реакції гідропероксидного епоксидування октену-1 і розкладу гідропероксиду трет-бутилу. Показано, що природа ліганда істотно впливає на каталітичну активність сполук вольфраму в цих реакціях. Встановлено, що борид і силіцид вольфраму є найкращими для реакції епоксидування, тоді як карбід вольфраму проявляє низьку активність. Борид вольфраму є також найактивніший у реакції розкладу гідропероксиду.
dc.description.abstractCatalytic ability of tungsten compounds in the reaction of hydroperoxide epoxidation of 1-octene and tert-butyl hydroperoxide decomposition was investigated. It is shown that the nature of ligand has significant effect on the catalytic activity of tungsten compounds in these reactions. It is established that boride and silicide of tungsten are the best choice for epoxidation reaction, whereas tungsten carbide exhibits poor activity. Tungsten boride is also the most active in the hydroxide decomposition reaction.
dc.format.extent23-27
dc.format.pages5
dc.identifier.citationMakota O. I. Influence of tungsten compounds on reaction of 1-octene epoxidation by tert-butyl hydroperoxide and hydroperoxide decomposition / O. I. Makota, L. P. Oliynyk, Z. M. Komarenska // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 23–27.
dc.identifier.citationenMakota O. I. Influence of tungsten compounds on reaction of 1-octene epoxidation by tert-butyl hydroperoxide and hydroperoxide decomposition / O. I. Makota, L. P. Oliynyk, Z. M. Komarenska // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 23–27.
dc.identifier.doidoi.org/10.23939/ctas2021.02.023
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60903
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (4), 2021
dc.relation.references1. Yudin A. K. (2006). Aziridines and Epoxides in Organic Synthesis. Wiley-VCH, Weinheim, Germany. doi: 10.1002/3527607862
dc.relation.references2. Marco-Contelles J., Molina M. T., Anjum S.(2004). Naturally occurring cyclohexane epoxides: Sources, biological activities and synthesis. Chemical Reviews, 104(6), 2857–2899. doi: 10.1021/cr980013j
dc.relation.references3. Emami M., Bikas R., Noshiranzadeh N., Kozakiewicz A., Lis T. (2020). Cu(II)-Hydrazide coordination compound supported on silica gel as an efficient and recyclable heterogeneous catalyst for green click synthesis of β-hydroxy-1,2,3-triazoles in water. ACS Omega, 5, 13344–13357. doi: 10.1021/acsomega.0c01491
dc.relation.references4. Arends I. W. C. E., Sheldon R. A. (2001). Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments. Applied Catalysis A, 212(1–2), 175–187. doi: 10.1016/S0926-860X(00)00855-3
dc.relation.references5. Xia Q. H., Ge H. Q., Ye C. P., Liu Z. M., Su K. X. (2005). Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation. Chemical Reviews, 105(5), 1603–1662. doi: 10.1021/cr0406458
dc.relation.references6. Wang X., You Q., Wu Y., Bi C., Chen H., Dai C., Hao Q., Zhang J., Ma X. (2021) Tungsten-substituted Silicalite-1 with an interconnected hollow structure for catalytic epoxidation of cyclohexene. Microporous and Mesoporous Materials, 317, 111028. doi: 10.1016/j.micromeso.2021.111028
dc.relation.references7. Zhang H., Yang X., Song X., Chang X., Jia M. (2020) Hydrothermal synthesis of tungsten-tin bimetallic MFI type zeolites and their catalytic properties for cyclohexene epoxidation. Microporous and Mesoporous Materials, 303, 110277. doi: 10.1016/j.micromeso.2021.110277
dc.relation.references8. Kawashima H., Okuda Y., Kijima M., Fujitani T., Choi J.-C. (2020) Epoxidation of microalgal biomassderived squalene with hydrogen peroxide using solid heterogeneous tungsten-based catalyst. Tetrahedron, 76(16), 131109. doi: 10.1016/j.tet.2020.131109
dc.relation.references9. Vieira E.G., Filho N.L.D. (2017) Epoxidation of olefins using a novel synthesized tungsten dendritic catalyst. Materials Chemistry and Physics, 201(1), 262–270. doi: 10.1016/j.matchemphys.2017.08.045
dc.relation.references10. Bisio C., Gallo A., Psaro R, Tiozzo C., Guidotti M., Carniato F. (2019) Tungstenocene-grafted silica catalysts for the selective epoxidation of alkenes. Applied Catalysis A: General, 581, 133–142. doi: 10.1016/j.apcata.2019.05.027
dc.relation.references11. Milas N. A., Surgenor D. M. (1946). Studies in organic peroxides. VIII. t-Butyl hydroperoxide and di-tbutyl peroxide. Journal of the American Chemical Society, 68(2), 205-208. doi: 10.1021/ja01206a017
dc.relation.referencesen1. Yudin A. K. (2006). Aziridines and Epoxides in Organic Synthesis. Wiley-VCH, Weinheim, Germany. doi: 10.1002/3527607862
dc.relation.referencesen2. Marco-Contelles J., Molina M. T., Anjum S.(2004). Naturally occurring cyclohexane epoxides: Sources, biological activities and synthesis. Chemical Reviews, 104(6), 2857–2899. doi: 10.1021/cr980013j
dc.relation.referencesen3. Emami M., Bikas R., Noshiranzadeh N., Kozakiewicz A., Lis T. (2020). Cu(II)-Hydrazide coordination compound supported on silica gel as an efficient and recyclable heterogeneous catalyst for green click synthesis of b-hydroxy-1,2,3-triazoles in water. ACS Omega, 5, 13344–13357. doi: 10.1021/acsomega.0c01491
dc.relation.referencesen4. Arends I. W. C. E., Sheldon R. A. (2001). Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments. Applied Catalysis A, 212(1–2), 175–187. doi: 10.1016/S0926-860X(00)00855-3
dc.relation.referencesen5. Xia Q. H., Ge H. Q., Ye C. P., Liu Z. M., Su K. X. (2005). Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation. Chemical Reviews, 105(5), 1603–1662. doi: 10.1021/cr0406458
dc.relation.referencesen6. Wang X., You Q., Wu Y., Bi C., Chen H., Dai C., Hao Q., Zhang J., Ma X. (2021) Tungsten-substituted Silicalite-1 with an interconnected hollow structure for catalytic epoxidation of cyclohexene. Microporous and Mesoporous Materials, 317, 111028. doi: 10.1016/j.micromeso.2021.111028
dc.relation.referencesen7. Zhang H., Yang X., Song X., Chang X., Jia M. (2020) Hydrothermal synthesis of tungsten-tin bimetallic MFI type zeolites and their catalytic properties for cyclohexene epoxidation. Microporous and Mesoporous Materials, 303, 110277. doi: 10.1016/j.micromeso.2021.110277
dc.relation.referencesen8. Kawashima H., Okuda Y., Kijima M., Fujitani T., Choi J.-C. (2020) Epoxidation of microalgal biomassderived squalene with hydrogen peroxide using solid heterogeneous tungsten-based catalyst. Tetrahedron, 76(16), 131109. doi: 10.1016/j.tet.2020.131109
dc.relation.referencesen9. Vieira E.G., Filho N.L.D. (2017) Epoxidation of olefins using a novel synthesized tungsten dendritic catalyst. Materials Chemistry and Physics, 201(1), 262–270. doi: 10.1016/j.matchemphys.2017.08.045
dc.relation.referencesen10. Bisio C., Gallo A., Psaro R, Tiozzo C., Guidotti M., Carniato F. (2019) Tungstenocene-grafted silica catalysts for the selective epoxidation of alkenes. Applied Catalysis A: General, 581, 133–142. doi: 10.1016/j.apcata.2019.05.027
dc.relation.referencesen11. Milas N. A., Surgenor D. M. (1946). Studies in organic peroxides. VIII. t-Butyl hydroperoxide and di-tbutyl peroxide. Journal of the American Chemical Society, 68(2), 205-208. doi: 10.1021/ja01206a017
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectепоксидування
dc.subjectрозклад
dc.subjectкаталізатори
dc.subjectвольфрам
dc.subjectоктен-1
dc.subjectгідропероксид трет-бутилу
dc.subjectepoxidation
dc.subjectdecomposition
dc.subjectcatalysts
dc.subjecttungsten
dc.subject1-octene
dc.subjecttert-butyl hydroperoxide
dc.titleInfluence of tungsten compounds on reaction of 1-octene epoxidation by tert-butyl hydroperoxide and hydroperoxide decomposition
dc.title.alternativeВплив сполук вольфраму на реакцію епоксидування октену-1 трет-бутилгідропероксидом і розкладу гідропероксиду
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2021v4n2_Makota_O_I-Influence_of_tungsten_compounds_23-27.pdf
Size:
416.07 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2021v4n2_Makota_O_I-Influence_of_tungsten_compounds_23-27__COVER.png
Size:
445.38 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: