3D model of the Turka quarry

dc.citation.epage15
dc.citation.issue97
dc.citation.journalTitleГеодезія, картографія і аерофотознімання
dc.citation.spage5
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationІнститут геологічних наук, Польська академія наук
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationInstitute of Geological Sciences, Polish Academy of Sciences
dc.contributor.authorБубняк, Ігор
dc.contributor.authorБубняк, Андрій
dc.contributor.authorШило, Євгеній
dc.contributor.authorОлійник, Марія
dc.contributor.authorБігун, Микола
dc.contributor.authorBubniak, Ihor
dc.contributor.authorBubniak, Andriy
dc.contributor.authorShylo, Yevhenii
dc.contributor.authorOliinyk, Mariia
dc.contributor.authorBihun, Mykola
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-19T10:14:41Z
dc.date.available2024-02-19T10:14:41Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractМета цієї роботи – дослідження Турківського кар’єру за допомогою наземного лазерного сканування, а також побудова 3D моделі об’єкта. Методика. Дослідження відслонення виконувалось за допомогою наземного лазерного сканування. Зазначено принципи роботи лазерних датчиків, надано класифікацію джерел похибок та наголошено на важливості досягнення максимальної точності, зазначеної виробниками сканерів. Положення досліджуваного об’єкта. Досліджуваний кар’єр знаходиться на північній окраїні м. Турка Львівської області. У геологічному відношенні об’єкт знаходиться у Зовнішніх Українських Карпатах, які належать до Карпатської гірської системи. Закинута каменеломня структурно приурочена до північно-західної частини Кросненського покриву Українських Карпат. У стінах каменеломні відслонюється характерний Турківський (кросненський) тип розрізу олігоцен-міоценового віку. Це перешарування потужних пачок масивних сірих дрібнозернистих пісковиків із аргілітами та алевролітами, які розбиті тріщинами, залікованими повздовжніми, поперечними та різноорієнтованими жилами і прожилками. Вони часто викли- нюються. Їхня товщина коливається від декількох мм до 55 мм і більше. По тріщинах спостерігаються сліди ковзання і вилуговування. Результати досліджень дають змогу проаналізувати геологічну будову, не знаходячись безпосередньо біля об’єкта. В роботі наведено схему робочого процесу наземного сканування: рекогностування об’єкта, встановлення та визначення координат опорних точок, визначення координат контрольних точок, виконання наземного 3D сканування, фотографування об’єкта, створення хмари точок за даними лазерного сканування, створення mash моделі на основі хмари точок та цифрових знімків. Оцінку точності mash моделі виконували шляхом порівняння координат контрольних точок, отриманих з mash моделі та тахеометричного знімання, абсолютна просторова різниця не перевищує п’яти сантиметрів. Наукова новизна та практична значущість полягають у створенні віртуальної моделі Турківського кар’єру. Вперше для досліджень цього об’єкта було використано технологію наземного лазерного сканування. В результаті отримано ЗD модель, яку можна застосувати для подальших досліджень в області геології, зокрема структурної геології, седиментології, підрахунків запасів корисних копалин та геотуризмі.
dc.description.abstractThe aim of this work is to study the Turka quarry using terrestrial laser scanning, as well as to build a 3D model of the object. Method. The study of the outcrop was carried out with terrestrial laser scanning. The article describes the principles of operation of laser sensors and provides a classification of error sources. It also emphasizes the importance of achieving the maximum accuracy specified by scanner manufacturers. The location of the researched object. The studied quarry is located on the northern outskirts of the city of Turka, Lviv region. From the geological point of view, the object is situated in the Outer Ukrainian Carpathians that belong to the Carpathian mountain system. The inactive quarry is structurally confined to the north-western part of the Krosno nappe of the Ukrainian Carpathians. The characteristic Turka (Krosno) type of cross-section of the Oligocene-Miocene age is exposed in the walls of the quarry. This is a layering of massive packs of gray fine-grained sandstones with argillites and siltstones which are broken with joints. The joints are filled with longitudinal, transverse and differently oriented veins. They are often wedged out. Their thickness ranges from a few mm to 55 mm or more. Slickensides and leaching are observed along the cracks. The research results make it possible to analyze the geological structure without being directly near the object. The paper provides a workflow diagram of the terrestrial scanning workflow. This includes object reconnaissance, establishing and determining the coordinates of reference and control points. It also involves performing terrestrial 3D scanning, photographing an object, creating a cloud of points based on laser scanning data, developing a mash model based on point clouds and digital images. The accuracy of the mash model was defined by comparison of the coordinates of the control points obtained from the mash model and tacheometric survey. The absolute spatial difference does not exceed five centimeters. The scientific novelty and practical significance are in the creation of a virtual model of the Turka quarry. For the first time, terrestrial laser scanning technology was used for the research of this object. As a result, a 3D model was obtained, which can be used for further research in the field of geology, in particular structural geology, sedimentology, mineral reserve calculations and geotourism.
dc.format.extent5-15
dc.format.pages11
dc.identifier.citation3D model of the Turka quarry / Ihor Bubniak, Andriy Bubniak, Yevhenii Shylo, Mariia Oliinyk, Mykola Bihun // Geodesy, Cartography and Aerial Photography. — Lviv : Lviv Politechnic Publishing House, 2023. — No 97. — P. 5–15.
dc.identifier.citationen3D model of the Turka quarry / Ihor Bubniak, Andriy Bubniak, Yevhenii Shylo, Mariia Oliinyk, Mykola Bihun // Geodesy, Cartography and Aerial Photography. — Lviv : Lviv Politechnic Publishing House, 2023. — No 97. — P. 5–15.
dc.identifier.doidoi.org/10.23939/istcgcap2023.97.005
dc.identifier.issn0130-1039
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61347
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодезія, картографія і аерофотознімання, 97, 2023
dc.relation.ispartofGeodesy, Cartography 6 and Aerial photography, 97, 2023
dc.relation.referencesОлійник, М., & Бубняк, І. (2022). Аналіз літературних джерел за темою “Віртуальне геологічне відслонення”. Cучасні досягнення геодезичної науки та виробництва, Вип. І (43), С. 30-39. https://doi.org/10.33841/1819-1339-1-43-30-39
dc.relation.referencesПузіков, Д. В. (2021). Тривимірне лазерне сканування, Харків. нац. ун-т радіоелектроніки. Харків, 56 с. https://openarchive.nure.ua/handle/document/19014
dc.relation.referencesAbellán, A., Vilaplana, J. M., Calvet, J., García-Sellés, D., & Asensio, E. (2011). Rockfall monitoring by Terrestrial Laser Scanning–case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain). Natural Hazards and Earth System Sciences, 11(3), 829-841. https://doi.org/10.5194/nhess-11-829-2011.
dc.relation.referencesArrowsmith, J. R., & Zielke, O. (2009). Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: An example from the Cholame segment. Geomorphology, 113(1-2), 70-81. https://doi.org/10.1016/j.geomorph.2009.01.002.
dc.relation.referencesBellian, J. A., Kerans, C., & Jennette, D. C. (2005). Digital outcrop models: applications of terrestrial scanning lidar technology in stratigraphic modeling. Journal of sedimentary research, 75(2), 166-176. https://doi.org/10.2110/jsr.2005.013
dc.relation.referencesBubniak, I. M., Bubniak, A. M., Vikhot, Y. M., Kril, S. Y., Oliinyk, M. A., & Bihun, M. V. (2023). The Sukil River valley: a natural geological laboratory (case studies from the Ukrainian Carpathians). Geological Society, London, Special Publications, 530(1), SP530-2022. https://doi.org/10.1144/SP530-2022-147.
dc.relation.referencesCalvo, R., & Ramos, E. (2015). Unlocking the correlation in fluvial outcrops by using a DOM-derived virtual datum: Method description and field tests in the Huesca fluvial fan, Ebro Basin (Spain). Geosphere, 11(5), 1507-1529. https://doi.org/10.1130/GES01058.1
dc.relation.referencesColombo, L., & Marana, B. (2010). Terrestrial laser scanning. https://aisberg.unibg.it/handle/10446/24478
dc.relation.referencesHodge, R., Brasington, J. & Richards, K. (2009). In situ characterization of grain‐scale fluvial morphology using Terrestrial Laser Scanning. Earth Surface Processes and Landforms, 34, 954-968. https://doi.org/10.1002/esp.1780
dc.relation.referencesHodge, R. A. (2010). Using simulated Terrestrial Laser Scanning to analyse errors in high-resolution scan data of irregular surfaces. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 227-240. https://doi.org/10.1016/j.isprsjprs.2010.01.001
dc.relation.referencesHolst, C. & Kuhlmann, H. (2016). Challenges and Present Fields of Action at Laser Scanner Based Deformation Analyses. Journal of Applied Geodesy, 10, 17-25. https://doi.org/10.1515/jag-2015-0025
dc.relation.referencesIsmail, A., Safuan, A. R. A., Sa'ari, R., Mustaffar, M., Abdullah, R. A., Kassim, A., ... & Kalatehjari, R. (2022). Application of combined terrestrial laser scanning and unmanned aerial vehicle digital photogrammetry method in high rock slope stability analysis: A case study. Measurement, 195, 111161. https://doi.org/10.1016/j.measurement.2022.111161
dc.relation.referencesJaafar, H. A. (2017). Detection and localisation of structural deformations using terrestrial laser scanning and generalised procrustes analysis (Doctoral dissertation, University of Nottingham). https://www.researchgate.net/profile/Hasan-Jaafar/publication/316086396_...
dc.relation.referencesJones, R. R., Mccaffrey, K. J., Imber, J., Wightman, R., Smith, S. A., Holdsworth, R. E., ... & Wilson, R. W. (2008). Calibration and validation of reservoir models: the importance of high resolution, quantitative outcrop analogues. Geological Society, London, Special Publications, 309(1), 87-98. https://doi.org/10.1144/SP309.7
dc.relation.referencesKaasalainen, S., Jaakkola, A., Kaasalainen, M., Kooks, A. & Kukko, A. (2011). Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: search for correction methods. Remote Sensing, 3, 2207-2221. https://doi.org/10.3390/rs3102207
dc.relation.referencesLapponi, F., Casini, G., Sharp, I., Blendinger, W., Fernández, N., Romaire, I., & Hunt, D. (2011). From outcrop to 3D modelling: a case study of a dolomitized carbonate reservoir, Zagros Mountains, Iran. https://doi.org/10.1144/1354-079310-040
dc.relation.referencesLemmens M (2004) 3D Laser mapping. GIM Int 18(12):44–47. https://doi.org/10.1007/978-94-007-1667-4_6
dc.relation.referencesLichti, D. D., & Gordon, S. J. (2004). Error propagation in directly georeferenced terrestrial laser scanner point clouds for cultural heritage recording. Proc. of FIG Working Week, Athens, Greece, May, 22-27.
dc.relation.referencesLukačić, H., Krkač, M., Gazibara, S. B., Arbanas, Ž., & Arbanas, S. M. (2023). Detection of geometric properties of discontinuities on the Špičunak rock slope (Croatia) using high-resolution 3D Point Cloud generated from Terrestrial Laser Scanning. In IOP Conference Series: Earth and Environmental Science (Vol. 1124, No. 1, p. 012006). IOP Publishing. https://doi.org/10.1088/1755-1315/1124/1/012006
dc.relation.referencesMaar, H., & Zogg, H. M. (2014). WFD-wave form digitizer technology. White Paper on the Leica Nova MS50, 506.
dc.relation.referencesMatasci, B., Carrea, D., Abellan, A., Derron, M. H., Humair, F., Jaboyedoff, M., & Metzger, R. (2015). Geological mapping and fold modeling using Terrestrial Laser Scanning point clouds: application to the Dents-du-Midi limestone massif (Switzerland). European Journal of Remote Sensing, 48(1), 569-591. https://doi.org/10.5721/EuJRS20154832
dc.relation.referencesOliinyk, M., Bubniak, I., Bubniak, A., & Bihun, M. (2022). Virtual geological road in Cheremosh river valley, Outer Ukrainian Carpathians In EGU General Assembly Conference Abstracts (No. EGU22-197). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu22-197
dc.relation.referencesOliinyk, M., Bubniak, I., Bihun, M., & Vikhot, Y. (2021, April). Sukil River valley – a natural geological laboratory. In EGU General Assembly Conference Abstracts (pp. EGU21-4467). https://doi.org/10.5194/egusphere-egu21-4467
dc.relation.referencesOliinyk, M., Bubniak, I., Bubniak, A., Shylo, Y., Bihun, M., & Vikhot, Y. (2023). Creation of 3D model of the Turkа quarry using terrestrial laser scanning (No. EGU23-364). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu23-364
dc.relation.referencesRarity, F., Van Lanen, X. M. T., Hodgetts, D., Gawthorpe, R. L., Wilson, P., Fabuel-Perez, I., & Redfern, J. (2014). LiDAR-based digital outcrops for sedimentological analysis: workflows and techniques. Geological Society, London, Special Publications, 387(1), 153-183. https://doi.org/10.1144/SP387.5
dc.relation.referencesSoudarissanane, S., Lindenbergh, R. & Gorte, B. (2008). Reducing the error in terrestrial laser scanning by optimizing the measurement set-up. XXI ISPRS Congress, Commission I-VIII, 3-11 July 2008, Beijing, China, 2008. International Society for Photogrammetry and Remote Sensing. https://www.researchgate.net/profile/Ben-Gorte/publication/229037307_Red...
dc.relation.referencesSoudarissanane, S., Lindenbergh, R., Menenti, M. & Teunissen, P. (2009). Incidence angle influence on the quality of terrestrial laser scanning points. ISPRS Workshop Laserscanning, 1-2 September 2009 Paris, France.
dc.relation.referencesSoudarissanane, S., Lindenbergh, R., Menenti, M. & Teunissen, P. (2011). Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 389-399. https://doi.org/10.1016/j.isprsjprs.2011.01.005
dc.relation.referencesStaiger, R. (2005). The geometrical quality of terrestrial laser scanner (TLS). Proceedings of FIG Working Week, 16-21 April 2005 Cairo, Egypt.
dc.relation.referencesTrinks, I., Clegg, P., McCaffrey, K., Jones, R., Hobbs, R., Holdsworth, B., ... & Wilson, R. (2005). Mapping and analysing virtual outcrops. Visual Geosciences, 10(1), 13-19. https://doi.org/10.1007/s10069-005-0026-9
dc.relation.referencesVan Genechten, B. (2008). Theory and practice on Terrestrial Laser Scanning: Training material based on practical applications. Universidad Politecnica de Valencia Editorial; Valencia, Spain. https://lirias.kuleuven.be/1773517?limo=0
dc.relation.referencesVerma, A. K., & Bourke, M. C. (2018). A Structure from Motion photogrammetry-based method to generate sub-millimetre resolution Digital Elevation Models for investigating rock breakdown features. Earth Surface Dynamics Discussions, 1-34. https://doi.org/10.5194/esurf-2018-53
dc.relation.referencesWang, M., Zhou, J., Chen, J., Jiang, N., Zhang, P., & Li, H. (2023). Automatic identification of rock discontinuity and stability analysis of tunnel rock blocks using terrestrial laser scanning. Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2022.12.015
dc.relation.referencesWang, X., Zou, L., Ren, Y., Qin, Y., Guo, Z., & Shen, X. (2017). Outcrop fracture characterization on suppositional planes cutting through digital outcrop models (DOMs). https://doi.org/10.48550/arXiv.1707.03437
dc.relation.referencesenOliinyk, M., & Bubniak, I. (2022). Analiz literaturnykh dzherel za temoiu "Virtualne heolohichne vidslonennia". Cuchasni dosiahnennia heodezychnoi nauky ta vyrobnytstva, Vyp. I (43), P. 30-39. https://doi.org/10.33841/1819-1339-1-43-30-39
dc.relation.referencesenPuzikov, D. V. (2021). Tryvymirne lazerne skanuvannia, Kharkiv. nats. un-t radioelektroniky. Kharkiv, 56 p. https://openarchive.nure.ua/handle/document/19014
dc.relation.referencesenAbellán, A., Vilaplana, J. M., Calvet, J., García-Sellés, D., & Asensio, E. (2011). Rockfall monitoring by Terrestrial Laser Scanning–case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain). Natural Hazards and Earth System Sciences, 11(3), 829-841. https://doi.org/10.5194/nhess-11-829-2011.
dc.relation.referencesenArrowsmith, J. R., & Zielke, O. (2009). Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: An example from the Cholame segment. Geomorphology, 113(1-2), 70-81. https://doi.org/10.1016/j.geomorph.2009.01.002.
dc.relation.referencesenBellian, J. A., Kerans, C., & Jennette, D. C. (2005). Digital outcrop models: applications of terrestrial scanning lidar technology in stratigraphic modeling. Journal of sedimentary research, 75(2), 166-176. https://doi.org/10.2110/jsr.2005.013
dc.relation.referencesenBubniak, I. M., Bubniak, A. M., Vikhot, Y. M., Kril, S. Y., Oliinyk, M. A., & Bihun, M. V. (2023). The Sukil River valley: a natural geological laboratory (case studies from the Ukrainian Carpathians). Geological Society, London, Special Publications, 530(1), SP530-2022. https://doi.org/10.1144/SP530-2022-147.
dc.relation.referencesenCalvo, R., & Ramos, E. (2015). Unlocking the correlation in fluvial outcrops by using a DOM-derived virtual datum: Method description and field tests in the Huesca fluvial fan, Ebro Basin (Spain). Geosphere, 11(5), 1507-1529. https://doi.org/10.1130/GES01058.1
dc.relation.referencesenColombo, L., & Marana, B. (2010). Terrestrial laser scanning. https://aisberg.unibg.it/handle/10446/24478
dc.relation.referencesenHodge, R., Brasington, J. & Richards, K. (2009). In situ characterization of grain‐scale fluvial morphology using Terrestrial Laser Scanning. Earth Surface Processes and Landforms, 34, 954-968. https://doi.org/10.1002/esp.1780
dc.relation.referencesenHodge, R. A. (2010). Using simulated Terrestrial Laser Scanning to analyse errors in high-resolution scan data of irregular surfaces. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 227-240. https://doi.org/10.1016/j.isprsjprs.2010.01.001
dc.relation.referencesenHolst, C. & Kuhlmann, H. (2016). Challenges and Present Fields of Action at Laser Scanner Based Deformation Analyses. Journal of Applied Geodesy, 10, 17-25. https://doi.org/10.1515/jag-2015-0025
dc.relation.referencesenIsmail, A., Safuan, A. R. A., Sa'ari, R., Mustaffar, M., Abdullah, R. A., Kassim, A., ... & Kalatehjari, R. (2022). Application of combined terrestrial laser scanning and unmanned aerial vehicle digital photogrammetry method in high rock slope stability analysis: A case study. Measurement, 195, 111161. https://doi.org/10.1016/j.measurement.2022.111161
dc.relation.referencesenJaafar, H. A. (2017). Detection and localisation of structural deformations using terrestrial laser scanning and generalised procrustes analysis (Doctoral dissertation, University of Nottingham). https://www.researchgate.net/profile/Hasan-Jaafar/publication/316086396_...
dc.relation.referencesenJones, R. R., Mccaffrey, K. J., Imber, J., Wightman, R., Smith, S. A., Holdsworth, R. E., ... & Wilson, R. W. (2008). Calibration and validation of reservoir models: the importance of high resolution, quantitative outcrop analogues. Geological Society, London, Special Publications, 309(1), 87-98. https://doi.org/10.1144/SP309.7
dc.relation.referencesenKaasalainen, S., Jaakkola, A., Kaasalainen, M., Kooks, A. & Kukko, A. (2011). Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: search for correction methods. Remote Sensing, 3, 2207-2221. https://doi.org/10.3390/rs3102207
dc.relation.referencesenLapponi, F., Casini, G., Sharp, I., Blendinger, W., Fernández, N., Romaire, I., & Hunt, D. (2011). From outcrop to 3D modelling: a case study of a dolomitized carbonate reservoir, Zagros Mountains, Iran. https://doi.org/10.1144/1354-079310-040
dc.relation.referencesenLemmens M (2004) 3D Laser mapping. GIM Int 18(12):44–47. https://doi.org/10.1007/978-94-007-1667-4_6
dc.relation.referencesenLichti, D. D., & Gordon, S. J. (2004). Error propagation in directly georeferenced terrestrial laser scanner point clouds for cultural heritage recording. Proc. of FIG Working Week, Athens, Greece, May, 22-27.
dc.relation.referencesenLukačić, H., Krkač, M., Gazibara, S. B., Arbanas, Ž., & Arbanas, S. M. (2023). Detection of geometric properties of discontinuities on the Špičunak rock slope (Croatia) using high-resolution 3D Point Cloud generated from Terrestrial Laser Scanning. In IOP Conference Series: Earth and Environmental Science (Vol. 1124, No. 1, p. 012006). IOP Publishing. https://doi.org/10.1088/1755-1315/1124/1/012006
dc.relation.referencesenMaar, H., & Zogg, H. M. (2014). WFD-wave form digitizer technology. White Paper on the Leica Nova MS50, 506.
dc.relation.referencesenMatasci, B., Carrea, D., Abellan, A., Derron, M. H., Humair, F., Jaboyedoff, M., & Metzger, R. (2015). Geological mapping and fold modeling using Terrestrial Laser Scanning point clouds: application to the Dents-du-Midi limestone massif (Switzerland). European Journal of Remote Sensing, 48(1), 569-591. https://doi.org/10.5721/EuJRS20154832
dc.relation.referencesenOliinyk, M., Bubniak, I., Bubniak, A., & Bihun, M. (2022). Virtual geological road in Cheremosh river valley, Outer Ukrainian Carpathians In EGU General Assembly Conference Abstracts (No. EGU22-197). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu22-197
dc.relation.referencesenOliinyk, M., Bubniak, I., Bihun, M., & Vikhot, Y. (2021, April). Sukil River valley – a natural geological laboratory. In EGU General Assembly Conference Abstracts (pp. EGU21-4467). https://doi.org/10.5194/egusphere-egu21-4467
dc.relation.referencesenOliinyk, M., Bubniak, I., Bubniak, A., Shylo, Y., Bihun, M., & Vikhot, Y. (2023). Creation of 3D model of the Turka quarry using terrestrial laser scanning (No. EGU23-364). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu23-364
dc.relation.referencesenRarity, F., Van Lanen, X. M. T., Hodgetts, D., Gawthorpe, R. L., Wilson, P., Fabuel-Perez, I., & Redfern, J. (2014). LiDAR-based digital outcrops for sedimentological analysis: workflows and techniques. Geological Society, London, Special Publications, 387(1), 153-183. https://doi.org/10.1144/SP387.5
dc.relation.referencesenSoudarissanane, S., Lindenbergh, R. & Gorte, B. (2008). Reducing the error in terrestrial laser scanning by optimizing the measurement set-up. XXI ISPRS Congress, Commission I-VIII, 3-11 July 2008, Beijing, China, 2008. International Society for Photogrammetry and Remote Sensing. https://www.researchgate.net/profile/Ben-Gorte/publication/229037307_Red...
dc.relation.referencesenSoudarissanane, S., Lindenbergh, R., Menenti, M. & Teunissen, P. (2009). Incidence angle influence on the quality of terrestrial laser scanning points. ISPRS Workshop Laserscanning, 1-2 September 2009 Paris, France.
dc.relation.referencesenSoudarissanane, S., Lindenbergh, R., Menenti, M. & Teunissen, P. (2011). Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 389-399. https://doi.org/10.1016/j.isprsjprs.2011.01.005
dc.relation.referencesenStaiger, R. (2005). The geometrical quality of terrestrial laser scanner (TLS). Proceedings of FIG Working Week, 16-21 April 2005 Cairo, Egypt.
dc.relation.referencesenTrinks, I., Clegg, P., McCaffrey, K., Jones, R., Hobbs, R., Holdsworth, B., ... & Wilson, R. (2005). Mapping and analysing virtual outcrops. Visual Geosciences, 10(1), 13-19. https://doi.org/10.1007/s10069-005-0026-9
dc.relation.referencesenVan Genechten, B. (2008). Theory and practice on Terrestrial Laser Scanning: Training material based on practical applications. Universidad Politecnica de Valencia Editorial; Valencia, Spain. https://lirias.kuleuven.be/1773517?limo=0
dc.relation.referencesenVerma, A. K., & Bourke, M. C. (2018). A Structure from Motion photogrammetry-based method to generate sub-millimetre resolution Digital Elevation Models for investigating rock breakdown features. Earth Surface Dynamics Discussions, 1-34. https://doi.org/10.5194/esurf-2018-53
dc.relation.referencesenWang, M., Zhou, J., Chen, J., Jiang, N., Zhang, P., & Li, H. (2023). Automatic identification of rock discontinuity and stability analysis of tunnel rock blocks using terrestrial laser scanning. Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2022.12.015
dc.relation.referencesenWang, X., Zou, L., Ren, Y., Qin, Y., Guo, Z., & Shen, X. (2017). Outcrop fracture characterization on suppositional planes cutting through digital outcrop models (DOMs). https://doi.org/10.48550/arXiv.1707.03437
dc.relation.urihttps://doi.org/10.33841/1819-1339-1-43-30-39
dc.relation.urihttps://openarchive.nure.ua/handle/document/19014
dc.relation.urihttps://doi.org/10.5194/nhess-11-829-2011
dc.relation.urihttps://doi.org/10.1016/j.geomorph.2009.01.002
dc.relation.urihttps://doi.org/10.2110/jsr.2005.013
dc.relation.urihttps://doi.org/10.1144/SP530-2022-147
dc.relation.urihttps://doi.org/10.1130/GES01058.1
dc.relation.urihttps://aisberg.unibg.it/handle/10446/24478
dc.relation.urihttps://doi.org/10.1002/esp.1780
dc.relation.urihttps://doi.org/10.1016/j.isprsjprs.2010.01.001
dc.relation.urihttps://doi.org/10.1515/jag-2015-0025
dc.relation.urihttps://doi.org/10.1016/j.measurement.2022.111161
dc.relation.urihttps://www.researchgate.net/profile/Hasan-Jaafar/publication/316086396_..
dc.relation.urihttps://doi.org/10.1144/SP309.7
dc.relation.urihttps://doi.org/10.3390/rs3102207
dc.relation.urihttps://doi.org/10.1144/1354-079310-040
dc.relation.urihttps://doi.org/10.1007/978-94-007-1667-4_6
dc.relation.urihttps://doi.org/10.1088/1755-1315/1124/1/012006
dc.relation.urihttps://doi.org/10.5721/EuJRS20154832
dc.relation.urihttps://doi.org/10.5194/egusphere-egu22-197
dc.relation.urihttps://doi.org/10.5194/egusphere-egu21-4467
dc.relation.urihttps://doi.org/10.5194/egusphere-egu23-364
dc.relation.urihttps://doi.org/10.1144/SP387.5
dc.relation.urihttps://www.researchgate.net/profile/Ben-Gorte/publication/229037307_Red..
dc.relation.urihttps://doi.org/10.1016/j.isprsjprs.2011.01.005
dc.relation.urihttps://doi.org/10.1007/s10069-005-0026-9
dc.relation.urihttps://lirias.kuleuven.be/1773517?limo=0
dc.relation.urihttps://doi.org/10.5194/esurf-2018-53
dc.relation.urihttps://doi.org/10.1016/j.jrmge.2022.12.015
dc.relation.urihttps://doi.org/10.48550/arXiv.1707.03437
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectназемне лазерне сканування
dc.subjectвіртуальне відслонення
dc.subject3D модель
dc.subjectробоча схема
dc.subjectТурківський кар’єр
dc.subjectЗовнішні Українські Карпати
dc.subjectterrestrial laser scanning
dc.subjectvirtual outcrop
dc.subject3D model
dc.subjectworkflow diagram
dc.subjectTurka quarry
dc.subjectOuter Ukrainian Carpathians
dc.subject.udc528.18
dc.subject.udc629.783
dc.title3D model of the Turka quarry
dc.title.alternative3D модель Турківського кар’єру
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2023n97_Bubniak_I-3D_model_of_the_Turka_quarry_5-15.pdf
Size:
896.97 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2023n97_Bubniak_I-3D_model_of_the_Turka_quarry_5-15__COVER.png
Size:
524.79 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: