3D model of the Turka quarry
dc.citation.epage | 15 | |
dc.citation.issue | 97 | |
dc.citation.journalTitle | Геодезія, картографія і аерофотознімання | |
dc.citation.spage | 5 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Інститут геологічних наук, Польська академія наук | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Institute of Geological Sciences, Polish Academy of Sciences | |
dc.contributor.author | Бубняк, Ігор | |
dc.contributor.author | Бубняк, Андрій | |
dc.contributor.author | Шило, Євгеній | |
dc.contributor.author | Олійник, Марія | |
dc.contributor.author | Бігун, Микола | |
dc.contributor.author | Bubniak, Ihor | |
dc.contributor.author | Bubniak, Andriy | |
dc.contributor.author | Shylo, Yevhenii | |
dc.contributor.author | Oliinyk, Mariia | |
dc.contributor.author | Bihun, Mykola | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-19T10:14:41Z | |
dc.date.available | 2024-02-19T10:14:41Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Мета цієї роботи – дослідження Турківського кар’єру за допомогою наземного лазерного сканування, а також побудова 3D моделі об’єкта. Методика. Дослідження відслонення виконувалось за допомогою наземного лазерного сканування. Зазначено принципи роботи лазерних датчиків, надано класифікацію джерел похибок та наголошено на важливості досягнення максимальної точності, зазначеної виробниками сканерів. Положення досліджуваного об’єкта. Досліджуваний кар’єр знаходиться на північній окраїні м. Турка Львівської області. У геологічному відношенні об’єкт знаходиться у Зовнішніх Українських Карпатах, які належать до Карпатської гірської системи. Закинута каменеломня структурно приурочена до північно-західної частини Кросненського покриву Українських Карпат. У стінах каменеломні відслонюється характерний Турківський (кросненський) тип розрізу олігоцен-міоценового віку. Це перешарування потужних пачок масивних сірих дрібнозернистих пісковиків із аргілітами та алевролітами, які розбиті тріщинами, залікованими повздовжніми, поперечними та різноорієнтованими жилами і прожилками. Вони часто викли- нюються. Їхня товщина коливається від декількох мм до 55 мм і більше. По тріщинах спостерігаються сліди ковзання і вилуговування. Результати досліджень дають змогу проаналізувати геологічну будову, не знаходячись безпосередньо біля об’єкта. В роботі наведено схему робочого процесу наземного сканування: рекогностування об’єкта, встановлення та визначення координат опорних точок, визначення координат контрольних точок, виконання наземного 3D сканування, фотографування об’єкта, створення хмари точок за даними лазерного сканування, створення mash моделі на основі хмари точок та цифрових знімків. Оцінку точності mash моделі виконували шляхом порівняння координат контрольних точок, отриманих з mash моделі та тахеометричного знімання, абсолютна просторова різниця не перевищує п’яти сантиметрів. Наукова новизна та практична значущість полягають у створенні віртуальної моделі Турківського кар’єру. Вперше для досліджень цього об’єкта було використано технологію наземного лазерного сканування. В результаті отримано ЗD модель, яку можна застосувати для подальших досліджень в області геології, зокрема структурної геології, седиментології, підрахунків запасів корисних копалин та геотуризмі. | |
dc.description.abstract | The aim of this work is to study the Turka quarry using terrestrial laser scanning, as well as to build a 3D model of the object. Method. The study of the outcrop was carried out with terrestrial laser scanning. The article describes the principles of operation of laser sensors and provides a classification of error sources. It also emphasizes the importance of achieving the maximum accuracy specified by scanner manufacturers. The location of the researched object. The studied quarry is located on the northern outskirts of the city of Turka, Lviv region. From the geological point of view, the object is situated in the Outer Ukrainian Carpathians that belong to the Carpathian mountain system. The inactive quarry is structurally confined to the north-western part of the Krosno nappe of the Ukrainian Carpathians. The characteristic Turka (Krosno) type of cross-section of the Oligocene-Miocene age is exposed in the walls of the quarry. This is a layering of massive packs of gray fine-grained sandstones with argillites and siltstones which are broken with joints. The joints are filled with longitudinal, transverse and differently oriented veins. They are often wedged out. Their thickness ranges from a few mm to 55 mm or more. Slickensides and leaching are observed along the cracks. The research results make it possible to analyze the geological structure without being directly near the object. The paper provides a workflow diagram of the terrestrial scanning workflow. This includes object reconnaissance, establishing and determining the coordinates of reference and control points. It also involves performing terrestrial 3D scanning, photographing an object, creating a cloud of points based on laser scanning data, developing a mash model based on point clouds and digital images. The accuracy of the mash model was defined by comparison of the coordinates of the control points obtained from the mash model and tacheometric survey. The absolute spatial difference does not exceed five centimeters. The scientific novelty and practical significance are in the creation of a virtual model of the Turka quarry. For the first time, terrestrial laser scanning technology was used for the research of this object. As a result, a 3D model was obtained, which can be used for further research in the field of geology, in particular structural geology, sedimentology, mineral reserve calculations and geotourism. | |
dc.format.extent | 5-15 | |
dc.format.pages | 11 | |
dc.identifier.citation | 3D model of the Turka quarry / Ihor Bubniak, Andriy Bubniak, Yevhenii Shylo, Mariia Oliinyk, Mykola Bihun // Geodesy, Cartography and Aerial Photography. — Lviv : Lviv Politechnic Publishing House, 2023. — No 97. — P. 5–15. | |
dc.identifier.citationen | 3D model of the Turka quarry / Ihor Bubniak, Andriy Bubniak, Yevhenii Shylo, Mariia Oliinyk, Mykola Bihun // Geodesy, Cartography and Aerial Photography. — Lviv : Lviv Politechnic Publishing House, 2023. — No 97. — P. 5–15. | |
dc.identifier.doi | doi.org/10.23939/istcgcap2023.97.005 | |
dc.identifier.issn | 0130-1039 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61347 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Геодезія, картографія і аерофотознімання, 97, 2023 | |
dc.relation.ispartof | Geodesy, Cartography 6 and Aerial photography, 97, 2023 | |
dc.relation.references | Олійник, М., & Бубняк, І. (2022). Аналіз літературних джерел за темою “Віртуальне геологічне відслонення”. Cучасні досягнення геодезичної науки та виробництва, Вип. І (43), С. 30-39. https://doi.org/10.33841/1819-1339-1-43-30-39 | |
dc.relation.references | Пузіков, Д. В. (2021). Тривимірне лазерне сканування, Харків. нац. ун-т радіоелектроніки. Харків, 56 с. https://openarchive.nure.ua/handle/document/19014 | |
dc.relation.references | Abellán, A., Vilaplana, J. M., Calvet, J., García-Sellés, D., & Asensio, E. (2011). Rockfall monitoring by Terrestrial Laser Scanning–case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain). Natural Hazards and Earth System Sciences, 11(3), 829-841. https://doi.org/10.5194/nhess-11-829-2011. | |
dc.relation.references | Arrowsmith, J. R., & Zielke, O. (2009). Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: An example from the Cholame segment. Geomorphology, 113(1-2), 70-81. https://doi.org/10.1016/j.geomorph.2009.01.002. | |
dc.relation.references | Bellian, J. A., Kerans, C., & Jennette, D. C. (2005). Digital outcrop models: applications of terrestrial scanning lidar technology in stratigraphic modeling. Journal of sedimentary research, 75(2), 166-176. https://doi.org/10.2110/jsr.2005.013 | |
dc.relation.references | Bubniak, I. M., Bubniak, A. M., Vikhot, Y. M., Kril, S. Y., Oliinyk, M. A., & Bihun, M. V. (2023). The Sukil River valley: a natural geological laboratory (case studies from the Ukrainian Carpathians). Geological Society, London, Special Publications, 530(1), SP530-2022. https://doi.org/10.1144/SP530-2022-147. | |
dc.relation.references | Calvo, R., & Ramos, E. (2015). Unlocking the correlation in fluvial outcrops by using a DOM-derived virtual datum: Method description and field tests in the Huesca fluvial fan, Ebro Basin (Spain). Geosphere, 11(5), 1507-1529. https://doi.org/10.1130/GES01058.1 | |
dc.relation.references | Colombo, L., & Marana, B. (2010). Terrestrial laser scanning. https://aisberg.unibg.it/handle/10446/24478 | |
dc.relation.references | Hodge, R., Brasington, J. & Richards, K. (2009). In situ characterization of grain‐scale fluvial morphology using Terrestrial Laser Scanning. Earth Surface Processes and Landforms, 34, 954-968. https://doi.org/10.1002/esp.1780 | |
dc.relation.references | Hodge, R. A. (2010). Using simulated Terrestrial Laser Scanning to analyse errors in high-resolution scan data of irregular surfaces. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 227-240. https://doi.org/10.1016/j.isprsjprs.2010.01.001 | |
dc.relation.references | Holst, C. & Kuhlmann, H. (2016). Challenges and Present Fields of Action at Laser Scanner Based Deformation Analyses. Journal of Applied Geodesy, 10, 17-25. https://doi.org/10.1515/jag-2015-0025 | |
dc.relation.references | Ismail, A., Safuan, A. R. A., Sa'ari, R., Mustaffar, M., Abdullah, R. A., Kassim, A., ... & Kalatehjari, R. (2022). Application of combined terrestrial laser scanning and unmanned aerial vehicle digital photogrammetry method in high rock slope stability analysis: A case study. Measurement, 195, 111161. https://doi.org/10.1016/j.measurement.2022.111161 | |
dc.relation.references | Jaafar, H. A. (2017). Detection and localisation of structural deformations using terrestrial laser scanning and generalised procrustes analysis (Doctoral dissertation, University of Nottingham). https://www.researchgate.net/profile/Hasan-Jaafar/publication/316086396_... | |
dc.relation.references | Jones, R. R., Mccaffrey, K. J., Imber, J., Wightman, R., Smith, S. A., Holdsworth, R. E., ... & Wilson, R. W. (2008). Calibration and validation of reservoir models: the importance of high resolution, quantitative outcrop analogues. Geological Society, London, Special Publications, 309(1), 87-98. https://doi.org/10.1144/SP309.7 | |
dc.relation.references | Kaasalainen, S., Jaakkola, A., Kaasalainen, M., Kooks, A. & Kukko, A. (2011). Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: search for correction methods. Remote Sensing, 3, 2207-2221. https://doi.org/10.3390/rs3102207 | |
dc.relation.references | Lapponi, F., Casini, G., Sharp, I., Blendinger, W., Fernández, N., Romaire, I., & Hunt, D. (2011). From outcrop to 3D modelling: a case study of a dolomitized carbonate reservoir, Zagros Mountains, Iran. https://doi.org/10.1144/1354-079310-040 | |
dc.relation.references | Lemmens M (2004) 3D Laser mapping. GIM Int 18(12):44–47. https://doi.org/10.1007/978-94-007-1667-4_6 | |
dc.relation.references | Lichti, D. D., & Gordon, S. J. (2004). Error propagation in directly georeferenced terrestrial laser scanner point clouds for cultural heritage recording. Proc. of FIG Working Week, Athens, Greece, May, 22-27. | |
dc.relation.references | Lukačić, H., Krkač, M., Gazibara, S. B., Arbanas, Ž., & Arbanas, S. M. (2023). Detection of geometric properties of discontinuities on the Špičunak rock slope (Croatia) using high-resolution 3D Point Cloud generated from Terrestrial Laser Scanning. In IOP Conference Series: Earth and Environmental Science (Vol. 1124, No. 1, p. 012006). IOP Publishing. https://doi.org/10.1088/1755-1315/1124/1/012006 | |
dc.relation.references | Maar, H., & Zogg, H. M. (2014). WFD-wave form digitizer technology. White Paper on the Leica Nova MS50, 506. | |
dc.relation.references | Matasci, B., Carrea, D., Abellan, A., Derron, M. H., Humair, F., Jaboyedoff, M., & Metzger, R. (2015). Geological mapping and fold modeling using Terrestrial Laser Scanning point clouds: application to the Dents-du-Midi limestone massif (Switzerland). European Journal of Remote Sensing, 48(1), 569-591. https://doi.org/10.5721/EuJRS20154832 | |
dc.relation.references | Oliinyk, M., Bubniak, I., Bubniak, A., & Bihun, M. (2022). Virtual geological road in Cheremosh river valley, Outer Ukrainian Carpathians In EGU General Assembly Conference Abstracts (No. EGU22-197). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu22-197 | |
dc.relation.references | Oliinyk, M., Bubniak, I., Bihun, M., & Vikhot, Y. (2021, April). Sukil River valley – a natural geological laboratory. In EGU General Assembly Conference Abstracts (pp. EGU21-4467). https://doi.org/10.5194/egusphere-egu21-4467 | |
dc.relation.references | Oliinyk, M., Bubniak, I., Bubniak, A., Shylo, Y., Bihun, M., & Vikhot, Y. (2023). Creation of 3D model of the Turkа quarry using terrestrial laser scanning (No. EGU23-364). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu23-364 | |
dc.relation.references | Rarity, F., Van Lanen, X. M. T., Hodgetts, D., Gawthorpe, R. L., Wilson, P., Fabuel-Perez, I., & Redfern, J. (2014). LiDAR-based digital outcrops for sedimentological analysis: workflows and techniques. Geological Society, London, Special Publications, 387(1), 153-183. https://doi.org/10.1144/SP387.5 | |
dc.relation.references | Soudarissanane, S., Lindenbergh, R. & Gorte, B. (2008). Reducing the error in terrestrial laser scanning by optimizing the measurement set-up. XXI ISPRS Congress, Commission I-VIII, 3-11 July 2008, Beijing, China, 2008. International Society for Photogrammetry and Remote Sensing. https://www.researchgate.net/profile/Ben-Gorte/publication/229037307_Red... | |
dc.relation.references | Soudarissanane, S., Lindenbergh, R., Menenti, M. & Teunissen, P. (2009). Incidence angle influence on the quality of terrestrial laser scanning points. ISPRS Workshop Laserscanning, 1-2 September 2009 Paris, France. | |
dc.relation.references | Soudarissanane, S., Lindenbergh, R., Menenti, M. & Teunissen, P. (2011). Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 389-399. https://doi.org/10.1016/j.isprsjprs.2011.01.005 | |
dc.relation.references | Staiger, R. (2005). The geometrical quality of terrestrial laser scanner (TLS). Proceedings of FIG Working Week, 16-21 April 2005 Cairo, Egypt. | |
dc.relation.references | Trinks, I., Clegg, P., McCaffrey, K., Jones, R., Hobbs, R., Holdsworth, B., ... & Wilson, R. (2005). Mapping and analysing virtual outcrops. Visual Geosciences, 10(1), 13-19. https://doi.org/10.1007/s10069-005-0026-9 | |
dc.relation.references | Van Genechten, B. (2008). Theory and practice on Terrestrial Laser Scanning: Training material based on practical applications. Universidad Politecnica de Valencia Editorial; Valencia, Spain. https://lirias.kuleuven.be/1773517?limo=0 | |
dc.relation.references | Verma, A. K., & Bourke, M. C. (2018). A Structure from Motion photogrammetry-based method to generate sub-millimetre resolution Digital Elevation Models for investigating rock breakdown features. Earth Surface Dynamics Discussions, 1-34. https://doi.org/10.5194/esurf-2018-53 | |
dc.relation.references | Wang, M., Zhou, J., Chen, J., Jiang, N., Zhang, P., & Li, H. (2023). Automatic identification of rock discontinuity and stability analysis of tunnel rock blocks using terrestrial laser scanning. Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2022.12.015 | |
dc.relation.references | Wang, X., Zou, L., Ren, Y., Qin, Y., Guo, Z., & Shen, X. (2017). Outcrop fracture characterization on suppositional planes cutting through digital outcrop models (DOMs). https://doi.org/10.48550/arXiv.1707.03437 | |
dc.relation.referencesen | Oliinyk, M., & Bubniak, I. (2022). Analiz literaturnykh dzherel za temoiu "Virtualne heolohichne vidslonennia". Cuchasni dosiahnennia heodezychnoi nauky ta vyrobnytstva, Vyp. I (43), P. 30-39. https://doi.org/10.33841/1819-1339-1-43-30-39 | |
dc.relation.referencesen | Puzikov, D. V. (2021). Tryvymirne lazerne skanuvannia, Kharkiv. nats. un-t radioelektroniky. Kharkiv, 56 p. https://openarchive.nure.ua/handle/document/19014 | |
dc.relation.referencesen | Abellán, A., Vilaplana, J. M., Calvet, J., García-Sellés, D., & Asensio, E. (2011). Rockfall monitoring by Terrestrial Laser Scanning–case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain). Natural Hazards and Earth System Sciences, 11(3), 829-841. https://doi.org/10.5194/nhess-11-829-2011. | |
dc.relation.referencesen | Arrowsmith, J. R., & Zielke, O. (2009). Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: An example from the Cholame segment. Geomorphology, 113(1-2), 70-81. https://doi.org/10.1016/j.geomorph.2009.01.002. | |
dc.relation.referencesen | Bellian, J. A., Kerans, C., & Jennette, D. C. (2005). Digital outcrop models: applications of terrestrial scanning lidar technology in stratigraphic modeling. Journal of sedimentary research, 75(2), 166-176. https://doi.org/10.2110/jsr.2005.013 | |
dc.relation.referencesen | Bubniak, I. M., Bubniak, A. M., Vikhot, Y. M., Kril, S. Y., Oliinyk, M. A., & Bihun, M. V. (2023). The Sukil River valley: a natural geological laboratory (case studies from the Ukrainian Carpathians). Geological Society, London, Special Publications, 530(1), SP530-2022. https://doi.org/10.1144/SP530-2022-147. | |
dc.relation.referencesen | Calvo, R., & Ramos, E. (2015). Unlocking the correlation in fluvial outcrops by using a DOM-derived virtual datum: Method description and field tests in the Huesca fluvial fan, Ebro Basin (Spain). Geosphere, 11(5), 1507-1529. https://doi.org/10.1130/GES01058.1 | |
dc.relation.referencesen | Colombo, L., & Marana, B. (2010). Terrestrial laser scanning. https://aisberg.unibg.it/handle/10446/24478 | |
dc.relation.referencesen | Hodge, R., Brasington, J. & Richards, K. (2009). In situ characterization of grain‐scale fluvial morphology using Terrestrial Laser Scanning. Earth Surface Processes and Landforms, 34, 954-968. https://doi.org/10.1002/esp.1780 | |
dc.relation.referencesen | Hodge, R. A. (2010). Using simulated Terrestrial Laser Scanning to analyse errors in high-resolution scan data of irregular surfaces. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 227-240. https://doi.org/10.1016/j.isprsjprs.2010.01.001 | |
dc.relation.referencesen | Holst, C. & Kuhlmann, H. (2016). Challenges and Present Fields of Action at Laser Scanner Based Deformation Analyses. Journal of Applied Geodesy, 10, 17-25. https://doi.org/10.1515/jag-2015-0025 | |
dc.relation.referencesen | Ismail, A., Safuan, A. R. A., Sa'ari, R., Mustaffar, M., Abdullah, R. A., Kassim, A., ... & Kalatehjari, R. (2022). Application of combined terrestrial laser scanning and unmanned aerial vehicle digital photogrammetry method in high rock slope stability analysis: A case study. Measurement, 195, 111161. https://doi.org/10.1016/j.measurement.2022.111161 | |
dc.relation.referencesen | Jaafar, H. A. (2017). Detection and localisation of structural deformations using terrestrial laser scanning and generalised procrustes analysis (Doctoral dissertation, University of Nottingham). https://www.researchgate.net/profile/Hasan-Jaafar/publication/316086396_... | |
dc.relation.referencesen | Jones, R. R., Mccaffrey, K. J., Imber, J., Wightman, R., Smith, S. A., Holdsworth, R. E., ... & Wilson, R. W. (2008). Calibration and validation of reservoir models: the importance of high resolution, quantitative outcrop analogues. Geological Society, London, Special Publications, 309(1), 87-98. https://doi.org/10.1144/SP309.7 | |
dc.relation.referencesen | Kaasalainen, S., Jaakkola, A., Kaasalainen, M., Kooks, A. & Kukko, A. (2011). Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: search for correction methods. Remote Sensing, 3, 2207-2221. https://doi.org/10.3390/rs3102207 | |
dc.relation.referencesen | Lapponi, F., Casini, G., Sharp, I., Blendinger, W., Fernández, N., Romaire, I., & Hunt, D. (2011). From outcrop to 3D modelling: a case study of a dolomitized carbonate reservoir, Zagros Mountains, Iran. https://doi.org/10.1144/1354-079310-040 | |
dc.relation.referencesen | Lemmens M (2004) 3D Laser mapping. GIM Int 18(12):44–47. https://doi.org/10.1007/978-94-007-1667-4_6 | |
dc.relation.referencesen | Lichti, D. D., & Gordon, S. J. (2004). Error propagation in directly georeferenced terrestrial laser scanner point clouds for cultural heritage recording. Proc. of FIG Working Week, Athens, Greece, May, 22-27. | |
dc.relation.referencesen | Lukačić, H., Krkač, M., Gazibara, S. B., Arbanas, Ž., & Arbanas, S. M. (2023). Detection of geometric properties of discontinuities on the Špičunak rock slope (Croatia) using high-resolution 3D Point Cloud generated from Terrestrial Laser Scanning. In IOP Conference Series: Earth and Environmental Science (Vol. 1124, No. 1, p. 012006). IOP Publishing. https://doi.org/10.1088/1755-1315/1124/1/012006 | |
dc.relation.referencesen | Maar, H., & Zogg, H. M. (2014). WFD-wave form digitizer technology. White Paper on the Leica Nova MS50, 506. | |
dc.relation.referencesen | Matasci, B., Carrea, D., Abellan, A., Derron, M. H., Humair, F., Jaboyedoff, M., & Metzger, R. (2015). Geological mapping and fold modeling using Terrestrial Laser Scanning point clouds: application to the Dents-du-Midi limestone massif (Switzerland). European Journal of Remote Sensing, 48(1), 569-591. https://doi.org/10.5721/EuJRS20154832 | |
dc.relation.referencesen | Oliinyk, M., Bubniak, I., Bubniak, A., & Bihun, M. (2022). Virtual geological road in Cheremosh river valley, Outer Ukrainian Carpathians In EGU General Assembly Conference Abstracts (No. EGU22-197). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu22-197 | |
dc.relation.referencesen | Oliinyk, M., Bubniak, I., Bihun, M., & Vikhot, Y. (2021, April). Sukil River valley – a natural geological laboratory. In EGU General Assembly Conference Abstracts (pp. EGU21-4467). https://doi.org/10.5194/egusphere-egu21-4467 | |
dc.relation.referencesen | Oliinyk, M., Bubniak, I., Bubniak, A., Shylo, Y., Bihun, M., & Vikhot, Y. (2023). Creation of 3D model of the Turka quarry using terrestrial laser scanning (No. EGU23-364). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu23-364 | |
dc.relation.referencesen | Rarity, F., Van Lanen, X. M. T., Hodgetts, D., Gawthorpe, R. L., Wilson, P., Fabuel-Perez, I., & Redfern, J. (2014). LiDAR-based digital outcrops for sedimentological analysis: workflows and techniques. Geological Society, London, Special Publications, 387(1), 153-183. https://doi.org/10.1144/SP387.5 | |
dc.relation.referencesen | Soudarissanane, S., Lindenbergh, R. & Gorte, B. (2008). Reducing the error in terrestrial laser scanning by optimizing the measurement set-up. XXI ISPRS Congress, Commission I-VIII, 3-11 July 2008, Beijing, China, 2008. International Society for Photogrammetry and Remote Sensing. https://www.researchgate.net/profile/Ben-Gorte/publication/229037307_Red... | |
dc.relation.referencesen | Soudarissanane, S., Lindenbergh, R., Menenti, M. & Teunissen, P. (2009). Incidence angle influence on the quality of terrestrial laser scanning points. ISPRS Workshop Laserscanning, 1-2 September 2009 Paris, France. | |
dc.relation.referencesen | Soudarissanane, S., Lindenbergh, R., Menenti, M. & Teunissen, P. (2011). Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 389-399. https://doi.org/10.1016/j.isprsjprs.2011.01.005 | |
dc.relation.referencesen | Staiger, R. (2005). The geometrical quality of terrestrial laser scanner (TLS). Proceedings of FIG Working Week, 16-21 April 2005 Cairo, Egypt. | |
dc.relation.referencesen | Trinks, I., Clegg, P., McCaffrey, K., Jones, R., Hobbs, R., Holdsworth, B., ... & Wilson, R. (2005). Mapping and analysing virtual outcrops. Visual Geosciences, 10(1), 13-19. https://doi.org/10.1007/s10069-005-0026-9 | |
dc.relation.referencesen | Van Genechten, B. (2008). Theory and practice on Terrestrial Laser Scanning: Training material based on practical applications. Universidad Politecnica de Valencia Editorial; Valencia, Spain. https://lirias.kuleuven.be/1773517?limo=0 | |
dc.relation.referencesen | Verma, A. K., & Bourke, M. C. (2018). A Structure from Motion photogrammetry-based method to generate sub-millimetre resolution Digital Elevation Models for investigating rock breakdown features. Earth Surface Dynamics Discussions, 1-34. https://doi.org/10.5194/esurf-2018-53 | |
dc.relation.referencesen | Wang, M., Zhou, J., Chen, J., Jiang, N., Zhang, P., & Li, H. (2023). Automatic identification of rock discontinuity and stability analysis of tunnel rock blocks using terrestrial laser scanning. Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2022.12.015 | |
dc.relation.referencesen | Wang, X., Zou, L., Ren, Y., Qin, Y., Guo, Z., & Shen, X. (2017). Outcrop fracture characterization on suppositional planes cutting through digital outcrop models (DOMs). https://doi.org/10.48550/arXiv.1707.03437 | |
dc.relation.uri | https://doi.org/10.33841/1819-1339-1-43-30-39 | |
dc.relation.uri | https://openarchive.nure.ua/handle/document/19014 | |
dc.relation.uri | https://doi.org/10.5194/nhess-11-829-2011 | |
dc.relation.uri | https://doi.org/10.1016/j.geomorph.2009.01.002 | |
dc.relation.uri | https://doi.org/10.2110/jsr.2005.013 | |
dc.relation.uri | https://doi.org/10.1144/SP530-2022-147 | |
dc.relation.uri | https://doi.org/10.1130/GES01058.1 | |
dc.relation.uri | https://aisberg.unibg.it/handle/10446/24478 | |
dc.relation.uri | https://doi.org/10.1002/esp.1780 | |
dc.relation.uri | https://doi.org/10.1016/j.isprsjprs.2010.01.001 | |
dc.relation.uri | https://doi.org/10.1515/jag-2015-0025 | |
dc.relation.uri | https://doi.org/10.1016/j.measurement.2022.111161 | |
dc.relation.uri | https://www.researchgate.net/profile/Hasan-Jaafar/publication/316086396_.. | |
dc.relation.uri | https://doi.org/10.1144/SP309.7 | |
dc.relation.uri | https://doi.org/10.3390/rs3102207 | |
dc.relation.uri | https://doi.org/10.1144/1354-079310-040 | |
dc.relation.uri | https://doi.org/10.1007/978-94-007-1667-4_6 | |
dc.relation.uri | https://doi.org/10.1088/1755-1315/1124/1/012006 | |
dc.relation.uri | https://doi.org/10.5721/EuJRS20154832 | |
dc.relation.uri | https://doi.org/10.5194/egusphere-egu22-197 | |
dc.relation.uri | https://doi.org/10.5194/egusphere-egu21-4467 | |
dc.relation.uri | https://doi.org/10.5194/egusphere-egu23-364 | |
dc.relation.uri | https://doi.org/10.1144/SP387.5 | |
dc.relation.uri | https://www.researchgate.net/profile/Ben-Gorte/publication/229037307_Red.. | |
dc.relation.uri | https://doi.org/10.1016/j.isprsjprs.2011.01.005 | |
dc.relation.uri | https://doi.org/10.1007/s10069-005-0026-9 | |
dc.relation.uri | https://lirias.kuleuven.be/1773517?limo=0 | |
dc.relation.uri | https://doi.org/10.5194/esurf-2018-53 | |
dc.relation.uri | https://doi.org/10.1016/j.jrmge.2022.12.015 | |
dc.relation.uri | https://doi.org/10.48550/arXiv.1707.03437 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | наземне лазерне сканування | |
dc.subject | віртуальне відслонення | |
dc.subject | 3D модель | |
dc.subject | робоча схема | |
dc.subject | Турківський кар’єр | |
dc.subject | Зовнішні Українські Карпати | |
dc.subject | terrestrial laser scanning | |
dc.subject | virtual outcrop | |
dc.subject | 3D model | |
dc.subject | workflow diagram | |
dc.subject | Turka quarry | |
dc.subject | Outer Ukrainian Carpathians | |
dc.subject.udc | 528.18 | |
dc.subject.udc | 629.783 | |
dc.title | 3D model of the Turka quarry | |
dc.title.alternative | 3D модель Турківського кар’єру | |
dc.type | Article |
Files
License bundle
1 - 1 of 1