Comparison of modern 3D measurement methods for special tasks of shipbuilding industry

dc.citation.epage23
dc.citation.issue98
dc.citation.journalTitleГеодезія, картографія і аерофотознімання
dc.citation.spage15
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationВаршавський технологічний університет
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationWarsaw University of Technology
dc.contributor.authorБрусак, Іван
dc.contributor.authorБакула, Кшиштоф
dc.contributor.authorСавчук, Наталія
dc.contributor.authorBrusak, Ivan
dc.contributor.authorBakuła, Krzysztof
dc.contributor.authorSavchuk, Nataliia
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-17T09:36:12Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ роботі розглянуто сучасні технології 3D-вимірювань при виробництві суднобудівних деталей. Для дослідження виготовлено спеціальний шаблон ділянки кіля. Вимірювання шаблону виконані за допомогою лазерного трекера, лазерного сканування, промислової фотограмметрії та ручного сканування. У дослідженні для 3D-вимірювань використано наступне обладнання: лазерний трекер Leica Absolute Tracker AT960-LR, лазерний сканер Z+F Imager 5010, фотокамера Nikon D2Xs для промислової фотограмметрії, ручний сканер DPI-7 від DotProduct. Усі зібрані дані було імпортовано в програмне забезпечення 3DReshaper для порівняння. Проведено порівняння точності для конкретного використаного у дослідженні обладнання. Також у дослідженні надані рекомендації щодо оптимального використання обладнання та програмного забезпечення. Автори представляють оцінку витрат і часу, витраченого на вимірювання. Результати дослідження дозволять ефективно приймати рішення щодо вибору оптичного обладнання та методів 3D вимірювання в суднобудівній промисловості.
dc.description.abstractResearch presents modern technologies of 3D measurements in shipbuilding production parts. Special template of the keel detail was made for the research. The detail measurements with a laser tracker, laser scanning, industrial photogrammetry and handheld scanning are performed. Leica Absolute Tracker AT960-LR was used for Laser tracker measurements. Laser scanning was performed with Z+F Imager 5010. Nikon D2Xs photo camera was used for Industrial photogrammetry. Handheld scanner DPI-7 from DotProduct was also used for 3D measurements of the details. All collected data were imported into 3DReshaper software for comparison. The accuracy comparison for the specific equipment used in the study is performed. The recommendations for optimal equipment use and software products in this research are also included. The authors also present the assessment of the cost and time spent on the measurements.
dc.format.extent15-23
dc.format.pages9
dc.identifier.citationBrusak I. Comparison of modern 3D measurement methods for special tasks of shipbuilding industry / Brusak Ivan, Bakuła Krzysztof, Savchuk Nataliia // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2023. — No 98. — P. 15–23.
dc.identifier.citationenBrusak I. Comparison of modern 3D measurement methods for special tasks of shipbuilding industry / Brusak Ivan, Bakuła Krzysztof, Savchuk Nataliia // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2023. — No 98. — P. 15–23.
dc.identifier.doidoi.org/10.23939/istcgcap2023.98.015
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64173
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодезія, картографія і аерофотознімання, 98, 2023
dc.relation.ispartofGeodesy, cartography and aerial photography, 98, 2023
dc.relation.referencesAbbas, M. A., Lichti, D. D., Chong, A. K., Setan, H., Majid, Z., Lau, C. L., ... & Ariff, M. F. M. (2017). Improvements to the accuracy of prototype ship models measurement method using terrestrial laser scanner. Measurement, 100, 301–310. https://doi.org/10.1016/j.measurement.2016.12.053.
dc.relation.referencesAckermann, S., Menna, F., Scamardella, A., & Troisi, S. (2008, January). Digital photogrammetry for high precision 3D measurements in shipbuilding field. In 6th CIRP International Conference on ICME-Intelligent Computation in Manufacturing Engineering.
dc.relation.referencesAhern, C., & Spring, R. (2015). Handheld 3D Capture. Geoinformatics, 18 (2), pp. 18–19. https://www.proquest.com/openview/d247ae7b800189b4d6edfd799b637679/1?pq-origsite=gscholar&cbl=178200
dc.relation.referencesAhmed, M., Guillemet, A., Shahi, A., Haas, C. T., West, J. S., & Haas, R. C. (2011, June). Comparison of point-cloud acquisition from laser-scanning and photogrammetry based on field experimentation. In Proceedings of the CSCE 3rd International/9th Construction Specialty Conference, Ottawa, ON, Canada, pp. 14–17.
dc.relation.referencesBurdziakowski, P., & Tysiac, P. (2019). Combined close range photogrammetry and terrestrial laser scanning for ship hull modelling. Geosciences, 9(5), 242. https://doi.org/10.3390/geosciences9050242
dc.relation.referencesBrusak, I. (2018). Geometric inspection of 3D production parts in shipbuilding-comparison and assessment of current optical measuring methods. Master thesis, Neubrandenburg University of Applied Sciences, 50. https://digibib.hsnb.de/resolve/id/dbhsnb_thesis_0000001931
dc.relation.referencesFord, D., Housel, T., Hom, S., & Mun, J. (2016). Benchmarking Naval Shipbuilding With 3D Laser Scanning, Additive Manufacturing, and Collaborative Product Lifecycle Management.
dc.relation.referencesGoldan, M., & Kroon, R. J. (2003). As-built product modeling and reverse engineering in shipbuilding through combined digital photogrammetry and CAD/CAM technology. Journal of ship production, 19(02), 98–104. https://doi.org/10.5957/jsp.2003.19.2.98
dc.relation.referencesGonzález-Jorge, H., Riveiro, B., Arias, P., & Armesto, J. (2012). Photogrammetry and laser scanner technology applied to length measurements in car testing laboratories. Measurement, 45(3), 354–363. https://doi.org/10.1016/j.measurement.2011.11.010
dc.relation.referencesHousel, T., Ford, D., Mun, J., & Hom, S. (2015). Benchmarking naval shipbuilding with 3D laser scanning, additive manufacturing, and collaborative product lifecycle management. Acquisition Research Program.
dc.relation.referencesHexagon Manufacturing Intelligence (2022). Leica Absolute Tracker AT960. http://www.hexagonmi.com/enGB/products/laser-tracker-systems/leica-absolutetracker-at960. Accessed: 25 Jun 2022
dc.relation.referencesHoffman, R., Friedman, P., & Wetherbee, D. (2023). Digital Twins in Shipbuilding and Ship Operation. In The Digital Twin, 799–847. Cham: Springer International Plishing. https://doi.org/10.1007/978-3-031-21343-4_28
dc.relation.referencesJahraus, A., Lichti, D., & Dawson, P. (2015, June). Selfcalibration of a structured light based scanner for use in archeological applications. In Videometrics, Range Imaging, and Applications XIII, Vol. 9528, pp. 116–126. SPIE. https://doi.org/10.1117/12.2184607
dc.relation.referencesKersten, T. P., Przybilla, H. J., Lindstaedt, M., Tschirschwitz, F., & Misgaiski-Hass, M. (2016). Comparative geometrical investigations of hand-held scanning systems. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 507–514. https://doi.org/10.5194/isprsarchives-XLI-B5-507-2016
dc.relation.referencesLuhmann, T. (2010). Close-range photogrammetry for industrial applications. ISPRS Journal of Photogrammetry and Remote Sensing, 65(6), 558–569. https://doi.org/10.1016/j.isprsjprs.2010.06.003
dc.relation.referencesMaisano, D. A., Mastrogiacomo, L., Franceschini, F., Capizzi, S., Pischedda, G., Laurenza, D., ... & Manca, G. (2022). Dimensional measurements in the shipbuilding industry: on-site comparison of a state-of-the-art laser tracker, total station and laser scanner. Production Engineering, 1–18. https://doi.org/10.1007/s11740-022-01170-7
dc.relation.referencesMartorelli, M., Pensa, C., & Speranza, D. (2014). Digital photogrammetry for documentation of maritime heritage. Journal of Maritime Archaeology, 9, 81–93. https://doi.org/10.1007/s11457-014-9124-x
dc.relation.referencesMoniuk B. (2012). The use of a laser tracker to solve engineering and geodetic tasks. Urban planning and territorial planning, (44), 359–365. http://nbuv.gov.ua/UJRN/MTP_2012_44_50
dc.relation.referencesRieke-Zapp, D., Tecklenburg, W., Peipe, J., Hastedt, H., & Haig, C. (2009). Evaluation of the geometric stability and the accuracy potential of digital cameras – Comparing mechanical stabilisation versus parameterisation. ISPRS Journal of Photogrammetry and Remote Sensing, 64(3), 248–258. https://doi.org/10.1016/j.isprsjprs.2008.09.010
dc.relation.referencesenAbbas, M. A., Lichti, D. D., Chong, A. K., Setan, H., Majid, Z., Lau, C. L., ... & Ariff, M. F. M. (2017). Improvements to the accuracy of prototype ship models measurement method using terrestrial laser scanner. Measurement, 100, 301–310. https://doi.org/10.1016/j.measurement.2016.12.053.
dc.relation.referencesenAckermann, S., Menna, F., Scamardella, A., & Troisi, S. (2008, January). Digital photogrammetry for high precision 3D measurements in shipbuilding field. In 6th CIRP International Conference on ICME-Intelligent Computation in Manufacturing Engineering.
dc.relation.referencesenAhern, C., & Spring, R. (2015). Handheld 3D Capture. Geoinformatics, 18 (2), pp. 18–19. https://www.proquest.com/openview/d247ae7b800189b4d6edfd799b637679/1?pq-origsite=gscholar&cbl=178200
dc.relation.referencesenAhmed, M., Guillemet, A., Shahi, A., Haas, C. T., West, J. S., & Haas, R. C. (2011, June). Comparison of point-cloud acquisition from laser-scanning and photogrammetry based on field experimentation. In Proceedings of the CSCE 3rd International/9th Construction Specialty Conference, Ottawa, ON, Canada, pp. 14–17.
dc.relation.referencesenBurdziakowski, P., & Tysiac, P. (2019). Combined close range photogrammetry and terrestrial laser scanning for ship hull modelling. Geosciences, 9(5), 242. https://doi.org/10.3390/geosciences9050242
dc.relation.referencesenBrusak, I. (2018). Geometric inspection of 3D production parts in shipbuilding-comparison and assessment of current optical measuring methods. Master thesis, Neubrandenburg University of Applied Sciences, 50. https://digibib.hsnb.de/resolve/id/dbhsnb_thesis_0000001931
dc.relation.referencesenFord, D., Housel, T., Hom, S., & Mun, J. (2016). Benchmarking Naval Shipbuilding With 3D Laser Scanning, Additive Manufacturing, and Collaborative Product Lifecycle Management.
dc.relation.referencesenGoldan, M., & Kroon, R. J. (2003). As-built product modeling and reverse engineering in shipbuilding through combined digital photogrammetry and CAD/CAM technology. Journal of ship production, 19(02), 98–104. https://doi.org/10.5957/jsp.2003.19.2.98
dc.relation.referencesenGonzález-Jorge, H., Riveiro, B., Arias, P., & Armesto, J. (2012). Photogrammetry and laser scanner technology applied to length measurements in car testing laboratories. Measurement, 45(3), 354–363. https://doi.org/10.1016/j.measurement.2011.11.010
dc.relation.referencesenHousel, T., Ford, D., Mun, J., & Hom, S. (2015). Benchmarking naval shipbuilding with 3D laser scanning, additive manufacturing, and collaborative product lifecycle management. Acquisition Research Program.
dc.relation.referencesenHexagon Manufacturing Intelligence (2022). Leica Absolute Tracker AT960. http://www.hexagonmi.com/enGB/products/laser-tracker-systems/leica-absolutetracker-at960. Accessed: 25 Jun 2022
dc.relation.referencesenHoffman, R., Friedman, P., & Wetherbee, D. (2023). Digital Twins in Shipbuilding and Ship Operation. In The Digital Twin, 799–847. Cham: Springer International Plishing. https://doi.org/10.1007/978-3-031-21343-4_28
dc.relation.referencesenJahraus, A., Lichti, D., & Dawson, P. (2015, June). Selfcalibration of a structured light based scanner for use in archeological applications. In Videometrics, Range Imaging, and Applications XIII, Vol. 9528, pp. 116–126. SPIE. https://doi.org/10.1117/12.2184607
dc.relation.referencesenKersten, T. P., Przybilla, H. J., Lindstaedt, M., Tschirschwitz, F., & Misgaiski-Hass, M. (2016). Comparative geometrical investigations of hand-held scanning systems. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 507–514. https://doi.org/10.5194/isprsarchives-XLI-B5-507-2016
dc.relation.referencesenLuhmann, T. (2010). Close-range photogrammetry for industrial applications. ISPRS Journal of Photogrammetry and Remote Sensing, 65(6), 558–569. https://doi.org/10.1016/j.isprsjprs.2010.06.003
dc.relation.referencesenMaisano, D. A., Mastrogiacomo, L., Franceschini, F., Capizzi, S., Pischedda, G., Laurenza, D., ... & Manca, G. (2022). Dimensional measurements in the shipbuilding industry: on-site comparison of a state-of-the-art laser tracker, total station and laser scanner. Production Engineering, 1–18. https://doi.org/10.1007/s11740-022-01170-7
dc.relation.referencesenMartorelli, M., Pensa, C., & Speranza, D. (2014). Digital photogrammetry for documentation of maritime heritage. Journal of Maritime Archaeology, 9, 81–93. https://doi.org/10.1007/s11457-014-9124-x
dc.relation.referencesenMoniuk B. (2012). The use of a laser tracker to solve engineering and geodetic tasks. Urban planning and territorial planning, (44), 359–365. http://nbuv.gov.ua/UJRN/MTP_2012_44_50
dc.relation.referencesenRieke-Zapp, D., Tecklenburg, W., Peipe, J., Hastedt, H., & Haig, C. (2009). Evaluation of the geometric stability and the accuracy potential of digital cameras – Comparing mechanical stabilisation versus parameterisation. ISPRS Journal of Photogrammetry and Remote Sensing, 64(3), 248–258. https://doi.org/10.1016/j.isprsjprs.2008.09.010
dc.relation.urihttps://doi.org/10.1016/j.measurement.2016.12.053
dc.relation.urihttps://www.proquest.com/openview/d247ae7b800189b4d6edfd799b637679/1?pq-origsite=gscholar&cbl=178200
dc.relation.urihttps://doi.org/10.3390/geosciences9050242
dc.relation.urihttps://digibib.hsnb.de/resolve/id/dbhsnb_thesis_0000001931
dc.relation.urihttps://doi.org/10.5957/jsp.2003.19.2.98
dc.relation.urihttps://doi.org/10.1016/j.measurement.2011.11.010
dc.relation.urihttp://www.hexagonmi.com/enGB/products/laser-tracker-systems/leica-absolutetracker-at960
dc.relation.urihttps://doi.org/10.1007/978-3-031-21343-4_28
dc.relation.urihttps://doi.org/10.1117/12.2184607
dc.relation.urihttps://doi.org/10.5194/isprsarchives-XLI-B5-507-2016
dc.relation.urihttps://doi.org/10.1016/j.isprsjprs.2010.06.003
dc.relation.urihttps://doi.org/10.1007/s11740-022-01170-7
dc.relation.urihttps://doi.org/10.1007/s11457-014-9124-x
dc.relation.urihttp://nbuv.gov.ua/UJRN/MTP_2012_44_50
dc.relation.urihttps://doi.org/10.1016/j.isprsjprs.2008.09.010
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subject3D-вимірювання
dc.subjectлазерний трекер
dc.subjectлазерне сканування
dc.subjectпромислова фотограмметрія
dc.subjectручне сканування
dc.subject3D measurements
dc.subjectlaser tracker
dc.subjectlaser scanning
dc.subjectindustrial photogrammetry
dc.subjecthandheld scanning
dc.subject.udc528.5
dc.subject.udc629.5
dc.subject.udc531.7
dc.titleComparison of modern 3D measurement methods for special tasks of shipbuilding industry
dc.title.alternativeПорівняння сучасних методів 3D-вимірювання для вирішення задач суднобудівної промисловості
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023n98_Brusak_I-Comparison_of_modern_3D_measurement_15-23.pdf
Size:
823.03 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023n98_Brusak_I-Comparison_of_modern_3D_measurement_15-23__COVER.png
Size:
1.49 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: