Comparison of modern 3D measurement methods for special tasks of shipbuilding industry
dc.citation.epage | 23 | |
dc.citation.issue | 98 | |
dc.citation.journalTitle | Геодезія, картографія і аерофотознімання | |
dc.citation.spage | 15 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Варшавський технологічний університет | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Warsaw University of Technology | |
dc.contributor.author | Брусак, Іван | |
dc.contributor.author | Бакула, Кшиштоф | |
dc.contributor.author | Савчук, Наталія | |
dc.contributor.author | Brusak, Ivan | |
dc.contributor.author | Bakuła, Krzysztof | |
dc.contributor.author | Savchuk, Nataliia | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-17T09:36:12Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | У роботі розглянуто сучасні технології 3D-вимірювань при виробництві суднобудівних деталей. Для дослідження виготовлено спеціальний шаблон ділянки кіля. Вимірювання шаблону виконані за допомогою лазерного трекера, лазерного сканування, промислової фотограмметрії та ручного сканування. У дослідженні для 3D-вимірювань використано наступне обладнання: лазерний трекер Leica Absolute Tracker AT960-LR, лазерний сканер Z+F Imager 5010, фотокамера Nikon D2Xs для промислової фотограмметрії, ручний сканер DPI-7 від DotProduct. Усі зібрані дані було імпортовано в програмне забезпечення 3DReshaper для порівняння. Проведено порівняння точності для конкретного використаного у дослідженні обладнання. Також у дослідженні надані рекомендації щодо оптимального використання обладнання та програмного забезпечення. Автори представляють оцінку витрат і часу, витраченого на вимірювання. Результати дослідження дозволять ефективно приймати рішення щодо вибору оптичного обладнання та методів 3D вимірювання в суднобудівній промисловості. | |
dc.description.abstract | Research presents modern technologies of 3D measurements in shipbuilding production parts. Special template of the keel detail was made for the research. The detail measurements with a laser tracker, laser scanning, industrial photogrammetry and handheld scanning are performed. Leica Absolute Tracker AT960-LR was used for Laser tracker measurements. Laser scanning was performed with Z+F Imager 5010. Nikon D2Xs photo camera was used for Industrial photogrammetry. Handheld scanner DPI-7 from DotProduct was also used for 3D measurements of the details. All collected data were imported into 3DReshaper software for comparison. The accuracy comparison for the specific equipment used in the study is performed. The recommendations for optimal equipment use and software products in this research are also included. The authors also present the assessment of the cost and time spent on the measurements. | |
dc.format.extent | 15-23 | |
dc.format.pages | 9 | |
dc.identifier.citation | Brusak I. Comparison of modern 3D measurement methods for special tasks of shipbuilding industry / Brusak Ivan, Bakuła Krzysztof, Savchuk Nataliia // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2023. — No 98. — P. 15–23. | |
dc.identifier.citationen | Brusak I. Comparison of modern 3D measurement methods for special tasks of shipbuilding industry / Brusak Ivan, Bakuła Krzysztof, Savchuk Nataliia // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2023. — No 98. — P. 15–23. | |
dc.identifier.doi | doi.org/10.23939/istcgcap2023.98.015 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64173 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Геодезія, картографія і аерофотознімання, 98, 2023 | |
dc.relation.ispartof | Geodesy, cartography and aerial photography, 98, 2023 | |
dc.relation.references | Abbas, M. A., Lichti, D. D., Chong, A. K., Setan, H., Majid, Z., Lau, C. L., ... & Ariff, M. F. M. (2017). Improvements to the accuracy of prototype ship models measurement method using terrestrial laser scanner. Measurement, 100, 301–310. https://doi.org/10.1016/j.measurement.2016.12.053. | |
dc.relation.references | Ackermann, S., Menna, F., Scamardella, A., & Troisi, S. (2008, January). Digital photogrammetry for high precision 3D measurements in shipbuilding field. In 6th CIRP International Conference on ICME-Intelligent Computation in Manufacturing Engineering. | |
dc.relation.references | Ahern, C., & Spring, R. (2015). Handheld 3D Capture. Geoinformatics, 18 (2), pp. 18–19. https://www.proquest.com/openview/d247ae7b800189b4d6edfd799b637679/1?pq-origsite=gscholar&cbl=178200 | |
dc.relation.references | Ahmed, M., Guillemet, A., Shahi, A., Haas, C. T., West, J. S., & Haas, R. C. (2011, June). Comparison of point-cloud acquisition from laser-scanning and photogrammetry based on field experimentation. In Proceedings of the CSCE 3rd International/9th Construction Specialty Conference, Ottawa, ON, Canada, pp. 14–17. | |
dc.relation.references | Burdziakowski, P., & Tysiac, P. (2019). Combined close range photogrammetry and terrestrial laser scanning for ship hull modelling. Geosciences, 9(5), 242. https://doi.org/10.3390/geosciences9050242 | |
dc.relation.references | Brusak, I. (2018). Geometric inspection of 3D production parts in shipbuilding-comparison and assessment of current optical measuring methods. Master thesis, Neubrandenburg University of Applied Sciences, 50. https://digibib.hsnb.de/resolve/id/dbhsnb_thesis_0000001931 | |
dc.relation.references | Ford, D., Housel, T., Hom, S., & Mun, J. (2016). Benchmarking Naval Shipbuilding With 3D Laser Scanning, Additive Manufacturing, and Collaborative Product Lifecycle Management. | |
dc.relation.references | Goldan, M., & Kroon, R. J. (2003). As-built product modeling and reverse engineering in shipbuilding through combined digital photogrammetry and CAD/CAM technology. Journal of ship production, 19(02), 98–104. https://doi.org/10.5957/jsp.2003.19.2.98 | |
dc.relation.references | González-Jorge, H., Riveiro, B., Arias, P., & Armesto, J. (2012). Photogrammetry and laser scanner technology applied to length measurements in car testing laboratories. Measurement, 45(3), 354–363. https://doi.org/10.1016/j.measurement.2011.11.010 | |
dc.relation.references | Housel, T., Ford, D., Mun, J., & Hom, S. (2015). Benchmarking naval shipbuilding with 3D laser scanning, additive manufacturing, and collaborative product lifecycle management. Acquisition Research Program. | |
dc.relation.references | Hexagon Manufacturing Intelligence (2022). Leica Absolute Tracker AT960. http://www.hexagonmi.com/enGB/products/laser-tracker-systems/leica-absolutetracker-at960. Accessed: 25 Jun 2022 | |
dc.relation.references | Hoffman, R., Friedman, P., & Wetherbee, D. (2023). Digital Twins in Shipbuilding and Ship Operation. In The Digital Twin, 799–847. Cham: Springer International Plishing. https://doi.org/10.1007/978-3-031-21343-4_28 | |
dc.relation.references | Jahraus, A., Lichti, D., & Dawson, P. (2015, June). Selfcalibration of a structured light based scanner for use in archeological applications. In Videometrics, Range Imaging, and Applications XIII, Vol. 9528, pp. 116–126. SPIE. https://doi.org/10.1117/12.2184607 | |
dc.relation.references | Kersten, T. P., Przybilla, H. J., Lindstaedt, M., Tschirschwitz, F., & Misgaiski-Hass, M. (2016). Comparative geometrical investigations of hand-held scanning systems. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 507–514. https://doi.org/10.5194/isprsarchives-XLI-B5-507-2016 | |
dc.relation.references | Luhmann, T. (2010). Close-range photogrammetry for industrial applications. ISPRS Journal of Photogrammetry and Remote Sensing, 65(6), 558–569. https://doi.org/10.1016/j.isprsjprs.2010.06.003 | |
dc.relation.references | Maisano, D. A., Mastrogiacomo, L., Franceschini, F., Capizzi, S., Pischedda, G., Laurenza, D., ... & Manca, G. (2022). Dimensional measurements in the shipbuilding industry: on-site comparison of a state-of-the-art laser tracker, total station and laser scanner. Production Engineering, 1–18. https://doi.org/10.1007/s11740-022-01170-7 | |
dc.relation.references | Martorelli, M., Pensa, C., & Speranza, D. (2014). Digital photogrammetry for documentation of maritime heritage. Journal of Maritime Archaeology, 9, 81–93. https://doi.org/10.1007/s11457-014-9124-x | |
dc.relation.references | Moniuk B. (2012). The use of a laser tracker to solve engineering and geodetic tasks. Urban planning and territorial planning, (44), 359–365. http://nbuv.gov.ua/UJRN/MTP_2012_44_50 | |
dc.relation.references | Rieke-Zapp, D., Tecklenburg, W., Peipe, J., Hastedt, H., & Haig, C. (2009). Evaluation of the geometric stability and the accuracy potential of digital cameras – Comparing mechanical stabilisation versus parameterisation. ISPRS Journal of Photogrammetry and Remote Sensing, 64(3), 248–258. https://doi.org/10.1016/j.isprsjprs.2008.09.010 | |
dc.relation.referencesen | Abbas, M. A., Lichti, D. D., Chong, A. K., Setan, H., Majid, Z., Lau, C. L., ... & Ariff, M. F. M. (2017). Improvements to the accuracy of prototype ship models measurement method using terrestrial laser scanner. Measurement, 100, 301–310. https://doi.org/10.1016/j.measurement.2016.12.053. | |
dc.relation.referencesen | Ackermann, S., Menna, F., Scamardella, A., & Troisi, S. (2008, January). Digital photogrammetry for high precision 3D measurements in shipbuilding field. In 6th CIRP International Conference on ICME-Intelligent Computation in Manufacturing Engineering. | |
dc.relation.referencesen | Ahern, C., & Spring, R. (2015). Handheld 3D Capture. Geoinformatics, 18 (2), pp. 18–19. https://www.proquest.com/openview/d247ae7b800189b4d6edfd799b637679/1?pq-origsite=gscholar&cbl=178200 | |
dc.relation.referencesen | Ahmed, M., Guillemet, A., Shahi, A., Haas, C. T., West, J. S., & Haas, R. C. (2011, June). Comparison of point-cloud acquisition from laser-scanning and photogrammetry based on field experimentation. In Proceedings of the CSCE 3rd International/9th Construction Specialty Conference, Ottawa, ON, Canada, pp. 14–17. | |
dc.relation.referencesen | Burdziakowski, P., & Tysiac, P. (2019). Combined close range photogrammetry and terrestrial laser scanning for ship hull modelling. Geosciences, 9(5), 242. https://doi.org/10.3390/geosciences9050242 | |
dc.relation.referencesen | Brusak, I. (2018). Geometric inspection of 3D production parts in shipbuilding-comparison and assessment of current optical measuring methods. Master thesis, Neubrandenburg University of Applied Sciences, 50. https://digibib.hsnb.de/resolve/id/dbhsnb_thesis_0000001931 | |
dc.relation.referencesen | Ford, D., Housel, T., Hom, S., & Mun, J. (2016). Benchmarking Naval Shipbuilding With 3D Laser Scanning, Additive Manufacturing, and Collaborative Product Lifecycle Management. | |
dc.relation.referencesen | Goldan, M., & Kroon, R. J. (2003). As-built product modeling and reverse engineering in shipbuilding through combined digital photogrammetry and CAD/CAM technology. Journal of ship production, 19(02), 98–104. https://doi.org/10.5957/jsp.2003.19.2.98 | |
dc.relation.referencesen | González-Jorge, H., Riveiro, B., Arias, P., & Armesto, J. (2012). Photogrammetry and laser scanner technology applied to length measurements in car testing laboratories. Measurement, 45(3), 354–363. https://doi.org/10.1016/j.measurement.2011.11.010 | |
dc.relation.referencesen | Housel, T., Ford, D., Mun, J., & Hom, S. (2015). Benchmarking naval shipbuilding with 3D laser scanning, additive manufacturing, and collaborative product lifecycle management. Acquisition Research Program. | |
dc.relation.referencesen | Hexagon Manufacturing Intelligence (2022). Leica Absolute Tracker AT960. http://www.hexagonmi.com/enGB/products/laser-tracker-systems/leica-absolutetracker-at960. Accessed: 25 Jun 2022 | |
dc.relation.referencesen | Hoffman, R., Friedman, P., & Wetherbee, D. (2023). Digital Twins in Shipbuilding and Ship Operation. In The Digital Twin, 799–847. Cham: Springer International Plishing. https://doi.org/10.1007/978-3-031-21343-4_28 | |
dc.relation.referencesen | Jahraus, A., Lichti, D., & Dawson, P. (2015, June). Selfcalibration of a structured light based scanner for use in archeological applications. In Videometrics, Range Imaging, and Applications XIII, Vol. 9528, pp. 116–126. SPIE. https://doi.org/10.1117/12.2184607 | |
dc.relation.referencesen | Kersten, T. P., Przybilla, H. J., Lindstaedt, M., Tschirschwitz, F., & Misgaiski-Hass, M. (2016). Comparative geometrical investigations of hand-held scanning systems. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 507–514. https://doi.org/10.5194/isprsarchives-XLI-B5-507-2016 | |
dc.relation.referencesen | Luhmann, T. (2010). Close-range photogrammetry for industrial applications. ISPRS Journal of Photogrammetry and Remote Sensing, 65(6), 558–569. https://doi.org/10.1016/j.isprsjprs.2010.06.003 | |
dc.relation.referencesen | Maisano, D. A., Mastrogiacomo, L., Franceschini, F., Capizzi, S., Pischedda, G., Laurenza, D., ... & Manca, G. (2022). Dimensional measurements in the shipbuilding industry: on-site comparison of a state-of-the-art laser tracker, total station and laser scanner. Production Engineering, 1–18. https://doi.org/10.1007/s11740-022-01170-7 | |
dc.relation.referencesen | Martorelli, M., Pensa, C., & Speranza, D. (2014). Digital photogrammetry for documentation of maritime heritage. Journal of Maritime Archaeology, 9, 81–93. https://doi.org/10.1007/s11457-014-9124-x | |
dc.relation.referencesen | Moniuk B. (2012). The use of a laser tracker to solve engineering and geodetic tasks. Urban planning and territorial planning, (44), 359–365. http://nbuv.gov.ua/UJRN/MTP_2012_44_50 | |
dc.relation.referencesen | Rieke-Zapp, D., Tecklenburg, W., Peipe, J., Hastedt, H., & Haig, C. (2009). Evaluation of the geometric stability and the accuracy potential of digital cameras – Comparing mechanical stabilisation versus parameterisation. ISPRS Journal of Photogrammetry and Remote Sensing, 64(3), 248–258. https://doi.org/10.1016/j.isprsjprs.2008.09.010 | |
dc.relation.uri | https://doi.org/10.1016/j.measurement.2016.12.053 | |
dc.relation.uri | https://www.proquest.com/openview/d247ae7b800189b4d6edfd799b637679/1?pq-origsite=gscholar&cbl=178200 | |
dc.relation.uri | https://doi.org/10.3390/geosciences9050242 | |
dc.relation.uri | https://digibib.hsnb.de/resolve/id/dbhsnb_thesis_0000001931 | |
dc.relation.uri | https://doi.org/10.5957/jsp.2003.19.2.98 | |
dc.relation.uri | https://doi.org/10.1016/j.measurement.2011.11.010 | |
dc.relation.uri | http://www.hexagonmi.com/enGB/products/laser-tracker-systems/leica-absolutetracker-at960 | |
dc.relation.uri | https://doi.org/10.1007/978-3-031-21343-4_28 | |
dc.relation.uri | https://doi.org/10.1117/12.2184607 | |
dc.relation.uri | https://doi.org/10.5194/isprsarchives-XLI-B5-507-2016 | |
dc.relation.uri | https://doi.org/10.1016/j.isprsjprs.2010.06.003 | |
dc.relation.uri | https://doi.org/10.1007/s11740-022-01170-7 | |
dc.relation.uri | https://doi.org/10.1007/s11457-014-9124-x | |
dc.relation.uri | http://nbuv.gov.ua/UJRN/MTP_2012_44_50 | |
dc.relation.uri | https://doi.org/10.1016/j.isprsjprs.2008.09.010 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | 3D-вимірювання | |
dc.subject | лазерний трекер | |
dc.subject | лазерне сканування | |
dc.subject | промислова фотограмметрія | |
dc.subject | ручне сканування | |
dc.subject | 3D measurements | |
dc.subject | laser tracker | |
dc.subject | laser scanning | |
dc.subject | industrial photogrammetry | |
dc.subject | handheld scanning | |
dc.subject.udc | 528.5 | |
dc.subject.udc | 629.5 | |
dc.subject.udc | 531.7 | |
dc.title | Comparison of modern 3D measurement methods for special tasks of shipbuilding industry | |
dc.title.alternative | Порівняння сучасних методів 3D-вимірювання для вирішення задач суднобудівної промисловості | |
dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1