Число акустичної кавітації та його вплив на інтенсивність окиснювальної деградації діазобарвника конго червоного

dc.citation.epage21
dc.citation.issue2
dc.citation.journalTitleChemistry, Technology and Application of Substances
dc.citation.spage16
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСухацький, Ю. В.
dc.contributor.authorДмитренко, Т. С.
dc.contributor.authorSukhatskyi, Yu. V.
dc.contributor.authorDmytrenko, T. S.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:12:29Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractЗапропоновано комбінацію двох стратегій активації перйодатів для високоефективної та високоінтенсивної окиснювальної деградації діазобарвника конго червоного. Встановлено, що за середньої потужності генератора УЗ 10,2 Вт, якій відповідало значення числа акустичної кавітації 720, ступінь деградації конго червоного з використанням інноваційного процесу окиснення ультразвук/KIO4/FeSO4 дорівнював 97,2 %, а константа швидкості – 9,1·10–3 с –1. Виявлено збільшення інтенсивності окиснювальної деградації конго червоного зі зменшенням числа акустичної кавітації. Руйнування хромофорних груп барвника та його ароматичної структури підтверджено методом UV/Vis-спектроскопії.
dc.description.abstractA combination of two periodate activation strategies was proposed for highly efficient and highly intensive oxidative degradation of Congo red diazo dye. It was found that at the average power of the ultrasound generator of 10.2 W, which corresponded to the value of the acoustic cavitation 720, the degradation degree of Congo red using the innovative ultrasound/KIO4/FeSO4 oxidation process was equal to 97.2 %, and the rate constant was 9.1·10-3 s-1. An increase in the intensity of the oxidative degradation of Congo red with a decrease in the acoustic cavitation number was revealed.
dc.format.extent16-21
dc.format.pages6
dc.identifier.citationСухацький Ю. В. Число акустичної кавітації та його вплив на інтенсивність окиснювальної деградації діазобарвника конго червоного / Ю. В. Сухацький, Т. С. Дмитренко // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Том 6. — № 2. — С. 16–21.
dc.identifier.citationenSukhatskyi Yu. V. Acoustic cavitation number and its effect on the intensity of oxidative degradation of congo red diazo dye / Yu. V. Sukhatskyi, T. S. Dmytrenko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 16–21.
dc.identifier.doidoi.org/10.23939/ctas2023.02.016
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63680
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (6), 2023
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (6), 2023
dc.relation.references1. Sistla, S., & Chintalapati, S. (2008). Sonochemical degradation of Congo Red. International Journal of Environment and Waste Management, 2(3), 309–319. DOI: 10.1504/IJEWM.2008.018251
dc.relation.references2. Swan, N. B., & Zaini, M. A. A. (2019). Adsorption of malachite green and congo red dyes from water: recent progress and future outlook. Ecological Chemistry and Engineering S, 26(1), 119–132. DOI: 10.1515/eces-2019-0009
dc.relation.references3. Yaneva, Z. L., & Georgieva, N. V. (2012). Insights into Congo red adsorption on agro-industrial materials spectral, equilibrium, kinetic, thermodynamic, dynamic and desorption studies. A review. International Review of Chemical Engineering, 4(2), 127–146.
dc.relation.references4. Litefti, K., Freire, M. S., Stitou, M., & González-Álvarez, J. (2019). Adsorption of an anionic dye(Congo red) from aqueous solutions by pine bark. Scientific Reports, 9, 16530. DOI: 10.1038/s41598-019-53046-z
dc.relation.references5. Hou, F., Wang, D., Ma, X., Fan, L., Ding, T., Ye, X., & Liu, D. (2021). Enhanced adsorption of Congo red using chitin suspension after sonoenzymolysis. Ultrasonics Sonochemistry, 70, 105327. DOI: 10.1016/j.ultsonch.2020.105327
dc.relation.references6. Zourou, A., Ntziouni, A., Adamopoulos, N., Roman, T., Zhang, F., Terrones, M., & Kordatos, K. (2022). Graphene oxide-CuFe2O4 nanohybrid material as an adsorbent of Congo red dye. Carbon Trends, 7, 100147. DOI: 10.1016/j.cartre.2022.100147
dc.relation.references7. Bhat, S. A., Zafar, F., Mirza, A. U., Mondal, A. H., Kareem, A., Haq, Q. M. R., & Nishat, N. (2020). NiO nanoparticle doped-PVA-MF polymer nanocomposites: Preparation, Congo red dye adsorption and antibacterial activity. Arabian Journal of Chemistry, 13(6), 5724–5739. DOI: 10.1016/j.arabjc.2020.04.011
dc.relation.references8. Yang, Y., Liu, K., Sun, F., Liu, Y., & Chen, J. (2022). Enhanced performance of photocatalytic treatment of Congo red wastewater by CNTs-Ag-modified TiO2 under visible light. Environmental Science and Pollution Research, 29, 15516–15525. DOI: 10.1007/s11356-021-16734-w
dc.relation.references9. Tapalad, T., Neramittagapong, A., Neramittagapong, S., & Boonmee, M. (2008). Degradation of Congo red dye by ozonation. Chiang Mai Journal of Science, 35(1), 63–68.
dc.relation.references10. Luo, C., Wu, D., Gan, L., Cheng, X., Ma, Q., Tan, F., ... Ma, J. (2020). Oxidation of Congo red by thermally activated persulfate process: Kinetics and transformation pathway. Separation and Purification Technology, 244, 116839. DOI: 10.1016/j.seppur.2020.116839
dc.relation.references11. Deshmukh, S. M., Raut, V. N., & Ingole, P. M. (2020). Degradation of Congo red dye using hydrodynamic cavitation. International Journal of Advanced Research, 8(9), 1294–1299. DOI: 10.21474/IJAR01/11788
dc.relation.references12. Nasron, A. N., Azman, N. S., Rashid, N. S. S. M., & Said, N. R. (2018). Degradation of Congo red dye in aqueous solution by using advanced oxidation processes. Journal of Academia, 6(2), 1–11.
dc.relation.references13. Ma, P., Han, C., He, Q., Miao, Z., Gao, M., Wan, K., & Xu, E. (2022). Oxidation of Congo red by Fenton coupled with micro and nanobubbles. Environmental Technology, 35098875. DOI: 10.1080/09593330.2022.2036245
dc.relation.references14. Meshram, S. P., Tayade, D. T., Ingle, P. D., Jolhe, P. D., Diwate, B. B., & Biswas, S. B. (2010). Ultrasonic cavitation induced degradation of Congo red in aqueous solutions. Chemical Engineering Research Bulletin, 14, 119–123. DOI: 10.3329/cerb.v14i2.5899
dc.relation.references15. Nawaz, S., Siddique, M., Khan, R., Riaz, N., Waheed, U., Shahzadi, I., & Ali, A. (2022). Ultrasoundassisted hydrogen peroxide and iron sulfate mediated Fenton process as an efficient advanced oxidation process for the removal of Congo red dye. Polish Journal of Environmental Studies, 31(3), 2749–2761. DOI: 10.15244/pjoes/144298
dc.relation.references16. Sukhatskiy, Y., Shepida, M., Sozanskyi, M., Znak, Z., & Gogate, P. R. (2023). Periodate-based advanced oxidation processes for wastewater treatment: A review. Separation and Purification Technology, 304, 122305. DOI: 10.1016/j.seppur.2022.122305
dc.relation.references17. Zong, Y., Shao, Y., Zeng, Y., Shao, B., Xu, L., Zhao, Z., …Wu, D. (2021). Enhanced oxidation of organic contaminants by iron(II)-activated periodate: the significance of high-valent iron–oxo species. Environmental Science & Technology, 55(11), 7634–7642. DOI: 10.1021/acs.est.1c00375
dc.relation.references18. Lee, Y.-C., Chen, M.-J., Huang, C.-P., Kuo, J., & Lo, S.-L. (2016). Efficient sonochemical degradation of perfluorooctanoic acid using periodate. Ultrasonics Sonochemistry, 31, 499–505. DOI: 10.1016/j.ultsonch.2016.01.030
dc.relation.references19. Gevari, M. T., Parlar, A., Torabfam, M., Koşar, A., Yüce, M., & Ghorbani, M. (2020). Influence of fluid properties on intensity of hydrodynamic cavitation and deactivation of Salmonella typhimurium. Processes, 8(3), 326. DOI: 10.3390/pr8030326
dc.relation.references20. Kozmus, G., Zevnik, J., Hočevar, M., Dular, M., & Petkovšek, M. (2022). Characterization of cavitation under ultrasonic horn tip – Proposition of an acoustic cavitation parameter. Ultrasonics Sonochemistry, 89, 106159. DOI: 10.1016/j.ultsonch.2022.106159
dc.relation.references21. Baena-Baldiris, D., Montes-Robledo, A., Baldiris-Avila, R. (2020). Franconibacter sp., 1MS: A new strain in decolorization and degradation of azo dyes Ponceau S Red and Methyl Orange. ACS Omega, 5(43), 28146–28157. DOI: 10.1021/acsomega.0c03786
dc.relation.referencesen1. Sistla, S., & Chintalapati, S. (2008). Sonochemical degradation of Congo Red. International Journal of Environment and Waste Management, 2(3), 309–319. DOI: 10.1504/IJEWM.2008.018251
dc.relation.referencesen2. Swan, N. B., & Zaini, M. A. A. (2019). Adsorption of malachite green and congo red dyes from water: recent progress and future outlook. Ecological Chemistry and Engineering S, 26(1), 119–132. DOI: 10.1515/eces-2019-0009
dc.relation.referencesen3. Yaneva, Z. L., & Georgieva, N. V. (2012). Insights into Congo red adsorption on agro-industrial materials spectral, equilibrium, kinetic, thermodynamic, dynamic and desorption studies. A review. International Review of Chemical Engineering, 4(2), 127–146.
dc.relation.referencesen4. Litefti, K., Freire, M. S., Stitou, M., & González-Álvarez, J. (2019). Adsorption of an anionic dye(Congo red) from aqueous solutions by pine bark. Scientific Reports, 9, 16530. DOI: 10.1038/s41598-019-53046-z
dc.relation.referencesen5. Hou, F., Wang, D., Ma, X., Fan, L., Ding, T., Ye, X., & Liu, D. (2021). Enhanced adsorption of Congo red using chitin suspension after sonoenzymolysis. Ultrasonics Sonochemistry, 70, 105327. DOI: 10.1016/j.ultsonch.2020.105327
dc.relation.referencesen6. Zourou, A., Ntziouni, A., Adamopoulos, N., Roman, T., Zhang, F., Terrones, M., & Kordatos, K. (2022). Graphene oxide-CuFe2O4 nanohybrid material as an adsorbent of Congo red dye. Carbon Trends, 7, 100147. DOI: 10.1016/j.cartre.2022.100147
dc.relation.referencesen7. Bhat, S. A., Zafar, F., Mirza, A. U., Mondal, A. H., Kareem, A., Haq, Q. M. R., & Nishat, N. (2020). NiO nanoparticle doped-PVA-MF polymer nanocomposites: Preparation, Congo red dye adsorption and antibacterial activity. Arabian Journal of Chemistry, 13(6), 5724–5739. DOI: 10.1016/j.arabjc.2020.04.011
dc.relation.referencesen8. Yang, Y., Liu, K., Sun, F., Liu, Y., & Chen, J. (2022). Enhanced performance of photocatalytic treatment of Congo red wastewater by CNTs-Ag-modified TiO2 under visible light. Environmental Science and Pollution Research, 29, 15516–15525. DOI: 10.1007/s11356-021-16734-w
dc.relation.referencesen9. Tapalad, T., Neramittagapong, A., Neramittagapong, S., & Boonmee, M. (2008). Degradation of Congo red dye by ozonation. Chiang Mai Journal of Science, 35(1), 63–68.
dc.relation.referencesen10. Luo, C., Wu, D., Gan, L., Cheng, X., Ma, Q., Tan, F., ... Ma, J. (2020). Oxidation of Congo red by thermally activated persulfate process: Kinetics and transformation pathway. Separation and Purification Technology, 244, 116839. DOI: 10.1016/j.seppur.2020.116839
dc.relation.referencesen11. Deshmukh, S. M., Raut, V. N., & Ingole, P. M. (2020). Degradation of Congo red dye using hydrodynamic cavitation. International Journal of Advanced Research, 8(9), 1294–1299. DOI: 10.21474/IJAR01/11788
dc.relation.referencesen12. Nasron, A. N., Azman, N. S., Rashid, N. S. S. M., & Said, N. R. (2018). Degradation of Congo red dye in aqueous solution by using advanced oxidation processes. Journal of Academia, 6(2), 1–11.
dc.relation.referencesen13. Ma, P., Han, C., He, Q., Miao, Z., Gao, M., Wan, K., & Xu, E. (2022). Oxidation of Congo red by Fenton coupled with micro and nanobubbles. Environmental Technology, 35098875. DOI: 10.1080/09593330.2022.2036245
dc.relation.referencesen14. Meshram, S. P., Tayade, D. T., Ingle, P. D., Jolhe, P. D., Diwate, B. B., & Biswas, S. B. (2010). Ultrasonic cavitation induced degradation of Congo red in aqueous solutions. Chemical Engineering Research Bulletin, 14, 119–123. DOI: 10.3329/cerb.v14i2.5899
dc.relation.referencesen15. Nawaz, S., Siddique, M., Khan, R., Riaz, N., Waheed, U., Shahzadi, I., & Ali, A. (2022). Ultrasoundassisted hydrogen peroxide and iron sulfate mediated Fenton process as an efficient advanced oxidation process for the removal of Congo red dye. Polish Journal of Environmental Studies, 31(3), 2749–2761. DOI: 10.15244/pjoes/144298
dc.relation.referencesen16. Sukhatskiy, Y., Shepida, M., Sozanskyi, M., Znak, Z., & Gogate, P. R. (2023). Periodate-based advanced oxidation processes for wastewater treatment: A review. Separation and Purification Technology, 304, 122305. DOI: 10.1016/j.seppur.2022.122305
dc.relation.referencesen17. Zong, Y., Shao, Y., Zeng, Y., Shao, B., Xu, L., Zhao, Z., …Wu, D. (2021). Enhanced oxidation of organic contaminants by iron(II)-activated periodate: the significance of high-valent iron–oxo species. Environmental Science & Technology, 55(11), 7634–7642. DOI: 10.1021/acs.est.1c00375
dc.relation.referencesen18. Lee, Y.-C., Chen, M.-J., Huang, C.-P., Kuo, J., & Lo, S.-L. (2016). Efficient sonochemical degradation of perfluorooctanoic acid using periodate. Ultrasonics Sonochemistry, 31, 499–505. DOI: 10.1016/j.ultsonch.2016.01.030
dc.relation.referencesen19. Gevari, M. T., Parlar, A., Torabfam, M., Koşar, A., Yüce, M., & Ghorbani, M. (2020). Influence of fluid properties on intensity of hydrodynamic cavitation and deactivation of Salmonella typhimurium. Processes, 8(3), 326. DOI: 10.3390/pr8030326
dc.relation.referencesen20. Kozmus, G., Zevnik, J., Hočevar, M., Dular, M., & Petkovšek, M. (2022). Characterization of cavitation under ultrasonic horn tip – Proposition of an acoustic cavitation parameter. Ultrasonics Sonochemistry, 89, 106159. DOI: 10.1016/j.ultsonch.2022.106159
dc.relation.referencesen21. Baena-Baldiris, D., Montes-Robledo, A., Baldiris-Avila, R. (2020). Franconibacter sp., 1MS: A new strain in decolorization and degradation of azo dyes Ponceau S Red and Methyl Orange. ACS Omega, 5(43), 28146–28157. DOI: 10.1021/acsomega.0c03786
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectконго червоний
dc.subjectдіазобарвник
dc.subjectокиснювальна деградація
dc.subjectактивація перйодату
dc.subjectчисло акустичної кавітації
dc.subjectультразвук
dc.subjectзалізний купорос
dc.subjectCongo red
dc.subjectdiazo dye
dc.subjectoxidative degradation
dc.subjectperiodate activation
dc.subjectacoustic cavitation number
dc.subjectultrasound
dc.subjectiron sulfate
dc.titleЧисло акустичної кавітації та його вплив на інтенсивність окиснювальної деградації діазобарвника конго червоного
dc.title.alternativeAcoustic cavitation number and its effect on the intensity of oxidative degradation of congo red diazo dye
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v6n2_Sukhatskyi_Yu_V-Acoustic_cavitation_16-21.pdf
Size:
733.51 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v6n2_Sukhatskyi_Yu_V-Acoustic_cavitation_16-21__COVER.png
Size:
450.7 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: