Число акустичної кавітації та його вплив на інтенсивність окиснювальної деградації діазобарвника конго червоного
dc.citation.epage | 21 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Chemistry, Technology and Application of Substances | |
dc.citation.spage | 16 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Сухацький, Ю. В. | |
dc.contributor.author | Дмитренко, Т. С. | |
dc.contributor.author | Sukhatskyi, Yu. V. | |
dc.contributor.author | Dmytrenko, T. S. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-05T08:12:29Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Запропоновано комбінацію двох стратегій активації перйодатів для високоефективної та високоінтенсивної окиснювальної деградації діазобарвника конго червоного. Встановлено, що за середньої потужності генератора УЗ 10,2 Вт, якій відповідало значення числа акустичної кавітації 720, ступінь деградації конго червоного з використанням інноваційного процесу окиснення ультразвук/KIO4/FeSO4 дорівнював 97,2 %, а константа швидкості – 9,1·10–3 с –1. Виявлено збільшення інтенсивності окиснювальної деградації конго червоного зі зменшенням числа акустичної кавітації. Руйнування хромофорних груп барвника та його ароматичної структури підтверджено методом UV/Vis-спектроскопії. | |
dc.description.abstract | A combination of two periodate activation strategies was proposed for highly efficient and highly intensive oxidative degradation of Congo red diazo dye. It was found that at the average power of the ultrasound generator of 10.2 W, which corresponded to the value of the acoustic cavitation 720, the degradation degree of Congo red using the innovative ultrasound/KIO4/FeSO4 oxidation process was equal to 97.2 %, and the rate constant was 9.1·10-3 s-1. An increase in the intensity of the oxidative degradation of Congo red with a decrease in the acoustic cavitation number was revealed. | |
dc.format.extent | 16-21 | |
dc.format.pages | 6 | |
dc.identifier.citation | Сухацький Ю. В. Число акустичної кавітації та його вплив на інтенсивність окиснювальної деградації діазобарвника конго червоного / Ю. В. Сухацький, Т. С. Дмитренко // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Том 6. — № 2. — С. 16–21. | |
dc.identifier.citationen | Sukhatskyi Yu. V. Acoustic cavitation number and its effect on the intensity of oxidative degradation of congo red diazo dye / Yu. V. Sukhatskyi, T. S. Dmytrenko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 16–21. | |
dc.identifier.doi | doi.org/10.23939/ctas2023.02.016 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63680 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (6), 2023 | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (6), 2023 | |
dc.relation.references | 1. Sistla, S., & Chintalapati, S. (2008). Sonochemical degradation of Congo Red. International Journal of Environment and Waste Management, 2(3), 309–319. DOI: 10.1504/IJEWM.2008.018251 | |
dc.relation.references | 2. Swan, N. B., & Zaini, M. A. A. (2019). Adsorption of malachite green and congo red dyes from water: recent progress and future outlook. Ecological Chemistry and Engineering S, 26(1), 119–132. DOI: 10.1515/eces-2019-0009 | |
dc.relation.references | 3. Yaneva, Z. L., & Georgieva, N. V. (2012). Insights into Congo red adsorption on agro-industrial materials spectral, equilibrium, kinetic, thermodynamic, dynamic and desorption studies. A review. International Review of Chemical Engineering, 4(2), 127–146. | |
dc.relation.references | 4. Litefti, K., Freire, M. S., Stitou, M., & González-Álvarez, J. (2019). Adsorption of an anionic dye(Congo red) from aqueous solutions by pine bark. Scientific Reports, 9, 16530. DOI: 10.1038/s41598-019-53046-z | |
dc.relation.references | 5. Hou, F., Wang, D., Ma, X., Fan, L., Ding, T., Ye, X., & Liu, D. (2021). Enhanced adsorption of Congo red using chitin suspension after sonoenzymolysis. Ultrasonics Sonochemistry, 70, 105327. DOI: 10.1016/j.ultsonch.2020.105327 | |
dc.relation.references | 6. Zourou, A., Ntziouni, A., Adamopoulos, N., Roman, T., Zhang, F., Terrones, M., & Kordatos, K. (2022). Graphene oxide-CuFe2O4 nanohybrid material as an adsorbent of Congo red dye. Carbon Trends, 7, 100147. DOI: 10.1016/j.cartre.2022.100147 | |
dc.relation.references | 7. Bhat, S. A., Zafar, F., Mirza, A. U., Mondal, A. H., Kareem, A., Haq, Q. M. R., & Nishat, N. (2020). NiO nanoparticle doped-PVA-MF polymer nanocomposites: Preparation, Congo red dye adsorption and antibacterial activity. Arabian Journal of Chemistry, 13(6), 5724–5739. DOI: 10.1016/j.arabjc.2020.04.011 | |
dc.relation.references | 8. Yang, Y., Liu, K., Sun, F., Liu, Y., & Chen, J. (2022). Enhanced performance of photocatalytic treatment of Congo red wastewater by CNTs-Ag-modified TiO2 under visible light. Environmental Science and Pollution Research, 29, 15516–15525. DOI: 10.1007/s11356-021-16734-w | |
dc.relation.references | 9. Tapalad, T., Neramittagapong, A., Neramittagapong, S., & Boonmee, M. (2008). Degradation of Congo red dye by ozonation. Chiang Mai Journal of Science, 35(1), 63–68. | |
dc.relation.references | 10. Luo, C., Wu, D., Gan, L., Cheng, X., Ma, Q., Tan, F., ... Ma, J. (2020). Oxidation of Congo red by thermally activated persulfate process: Kinetics and transformation pathway. Separation and Purification Technology, 244, 116839. DOI: 10.1016/j.seppur.2020.116839 | |
dc.relation.references | 11. Deshmukh, S. M., Raut, V. N., & Ingole, P. M. (2020). Degradation of Congo red dye using hydrodynamic cavitation. International Journal of Advanced Research, 8(9), 1294–1299. DOI: 10.21474/IJAR01/11788 | |
dc.relation.references | 12. Nasron, A. N., Azman, N. S., Rashid, N. S. S. M., & Said, N. R. (2018). Degradation of Congo red dye in aqueous solution by using advanced oxidation processes. Journal of Academia, 6(2), 1–11. | |
dc.relation.references | 13. Ma, P., Han, C., He, Q., Miao, Z., Gao, M., Wan, K., & Xu, E. (2022). Oxidation of Congo red by Fenton coupled with micro and nanobubbles. Environmental Technology, 35098875. DOI: 10.1080/09593330.2022.2036245 | |
dc.relation.references | 14. Meshram, S. P., Tayade, D. T., Ingle, P. D., Jolhe, P. D., Diwate, B. B., & Biswas, S. B. (2010). Ultrasonic cavitation induced degradation of Congo red in aqueous solutions. Chemical Engineering Research Bulletin, 14, 119–123. DOI: 10.3329/cerb.v14i2.5899 | |
dc.relation.references | 15. Nawaz, S., Siddique, M., Khan, R., Riaz, N., Waheed, U., Shahzadi, I., & Ali, A. (2022). Ultrasoundassisted hydrogen peroxide and iron sulfate mediated Fenton process as an efficient advanced oxidation process for the removal of Congo red dye. Polish Journal of Environmental Studies, 31(3), 2749–2761. DOI: 10.15244/pjoes/144298 | |
dc.relation.references | 16. Sukhatskiy, Y., Shepida, M., Sozanskyi, M., Znak, Z., & Gogate, P. R. (2023). Periodate-based advanced oxidation processes for wastewater treatment: A review. Separation and Purification Technology, 304, 122305. DOI: 10.1016/j.seppur.2022.122305 | |
dc.relation.references | 17. Zong, Y., Shao, Y., Zeng, Y., Shao, B., Xu, L., Zhao, Z., …Wu, D. (2021). Enhanced oxidation of organic contaminants by iron(II)-activated periodate: the significance of high-valent iron–oxo species. Environmental Science & Technology, 55(11), 7634–7642. DOI: 10.1021/acs.est.1c00375 | |
dc.relation.references | 18. Lee, Y.-C., Chen, M.-J., Huang, C.-P., Kuo, J., & Lo, S.-L. (2016). Efficient sonochemical degradation of perfluorooctanoic acid using periodate. Ultrasonics Sonochemistry, 31, 499–505. DOI: 10.1016/j.ultsonch.2016.01.030 | |
dc.relation.references | 19. Gevari, M. T., Parlar, A., Torabfam, M., Koşar, A., Yüce, M., & Ghorbani, M. (2020). Influence of fluid properties on intensity of hydrodynamic cavitation and deactivation of Salmonella typhimurium. Processes, 8(3), 326. DOI: 10.3390/pr8030326 | |
dc.relation.references | 20. Kozmus, G., Zevnik, J., Hočevar, M., Dular, M., & Petkovšek, M. (2022). Characterization of cavitation under ultrasonic horn tip – Proposition of an acoustic cavitation parameter. Ultrasonics Sonochemistry, 89, 106159. DOI: 10.1016/j.ultsonch.2022.106159 | |
dc.relation.references | 21. Baena-Baldiris, D., Montes-Robledo, A., Baldiris-Avila, R. (2020). Franconibacter sp., 1MS: A new strain in decolorization and degradation of azo dyes Ponceau S Red and Methyl Orange. ACS Omega, 5(43), 28146–28157. DOI: 10.1021/acsomega.0c03786 | |
dc.relation.referencesen | 1. Sistla, S., & Chintalapati, S. (2008). Sonochemical degradation of Congo Red. International Journal of Environment and Waste Management, 2(3), 309–319. DOI: 10.1504/IJEWM.2008.018251 | |
dc.relation.referencesen | 2. Swan, N. B., & Zaini, M. A. A. (2019). Adsorption of malachite green and congo red dyes from water: recent progress and future outlook. Ecological Chemistry and Engineering S, 26(1), 119–132. DOI: 10.1515/eces-2019-0009 | |
dc.relation.referencesen | 3. Yaneva, Z. L., & Georgieva, N. V. (2012). Insights into Congo red adsorption on agro-industrial materials spectral, equilibrium, kinetic, thermodynamic, dynamic and desorption studies. A review. International Review of Chemical Engineering, 4(2), 127–146. | |
dc.relation.referencesen | 4. Litefti, K., Freire, M. S., Stitou, M., & González-Álvarez, J. (2019). Adsorption of an anionic dye(Congo red) from aqueous solutions by pine bark. Scientific Reports, 9, 16530. DOI: 10.1038/s41598-019-53046-z | |
dc.relation.referencesen | 5. Hou, F., Wang, D., Ma, X., Fan, L., Ding, T., Ye, X., & Liu, D. (2021). Enhanced adsorption of Congo red using chitin suspension after sonoenzymolysis. Ultrasonics Sonochemistry, 70, 105327. DOI: 10.1016/j.ultsonch.2020.105327 | |
dc.relation.referencesen | 6. Zourou, A., Ntziouni, A., Adamopoulos, N., Roman, T., Zhang, F., Terrones, M., & Kordatos, K. (2022). Graphene oxide-CuFe2O4 nanohybrid material as an adsorbent of Congo red dye. Carbon Trends, 7, 100147. DOI: 10.1016/j.cartre.2022.100147 | |
dc.relation.referencesen | 7. Bhat, S. A., Zafar, F., Mirza, A. U., Mondal, A. H., Kareem, A., Haq, Q. M. R., & Nishat, N. (2020). NiO nanoparticle doped-PVA-MF polymer nanocomposites: Preparation, Congo red dye adsorption and antibacterial activity. Arabian Journal of Chemistry, 13(6), 5724–5739. DOI: 10.1016/j.arabjc.2020.04.011 | |
dc.relation.referencesen | 8. Yang, Y., Liu, K., Sun, F., Liu, Y., & Chen, J. (2022). Enhanced performance of photocatalytic treatment of Congo red wastewater by CNTs-Ag-modified TiO2 under visible light. Environmental Science and Pollution Research, 29, 15516–15525. DOI: 10.1007/s11356-021-16734-w | |
dc.relation.referencesen | 9. Tapalad, T., Neramittagapong, A., Neramittagapong, S., & Boonmee, M. (2008). Degradation of Congo red dye by ozonation. Chiang Mai Journal of Science, 35(1), 63–68. | |
dc.relation.referencesen | 10. Luo, C., Wu, D., Gan, L., Cheng, X., Ma, Q., Tan, F., ... Ma, J. (2020). Oxidation of Congo red by thermally activated persulfate process: Kinetics and transformation pathway. Separation and Purification Technology, 244, 116839. DOI: 10.1016/j.seppur.2020.116839 | |
dc.relation.referencesen | 11. Deshmukh, S. M., Raut, V. N., & Ingole, P. M. (2020). Degradation of Congo red dye using hydrodynamic cavitation. International Journal of Advanced Research, 8(9), 1294–1299. DOI: 10.21474/IJAR01/11788 | |
dc.relation.referencesen | 12. Nasron, A. N., Azman, N. S., Rashid, N. S. S. M., & Said, N. R. (2018). Degradation of Congo red dye in aqueous solution by using advanced oxidation processes. Journal of Academia, 6(2), 1–11. | |
dc.relation.referencesen | 13. Ma, P., Han, C., He, Q., Miao, Z., Gao, M., Wan, K., & Xu, E. (2022). Oxidation of Congo red by Fenton coupled with micro and nanobubbles. Environmental Technology, 35098875. DOI: 10.1080/09593330.2022.2036245 | |
dc.relation.referencesen | 14. Meshram, S. P., Tayade, D. T., Ingle, P. D., Jolhe, P. D., Diwate, B. B., & Biswas, S. B. (2010). Ultrasonic cavitation induced degradation of Congo red in aqueous solutions. Chemical Engineering Research Bulletin, 14, 119–123. DOI: 10.3329/cerb.v14i2.5899 | |
dc.relation.referencesen | 15. Nawaz, S., Siddique, M., Khan, R., Riaz, N., Waheed, U., Shahzadi, I., & Ali, A. (2022). Ultrasoundassisted hydrogen peroxide and iron sulfate mediated Fenton process as an efficient advanced oxidation process for the removal of Congo red dye. Polish Journal of Environmental Studies, 31(3), 2749–2761. DOI: 10.15244/pjoes/144298 | |
dc.relation.referencesen | 16. Sukhatskiy, Y., Shepida, M., Sozanskyi, M., Znak, Z., & Gogate, P. R. (2023). Periodate-based advanced oxidation processes for wastewater treatment: A review. Separation and Purification Technology, 304, 122305. DOI: 10.1016/j.seppur.2022.122305 | |
dc.relation.referencesen | 17. Zong, Y., Shao, Y., Zeng, Y., Shao, B., Xu, L., Zhao, Z., …Wu, D. (2021). Enhanced oxidation of organic contaminants by iron(II)-activated periodate: the significance of high-valent iron–oxo species. Environmental Science & Technology, 55(11), 7634–7642. DOI: 10.1021/acs.est.1c00375 | |
dc.relation.referencesen | 18. Lee, Y.-C., Chen, M.-J., Huang, C.-P., Kuo, J., & Lo, S.-L. (2016). Efficient sonochemical degradation of perfluorooctanoic acid using periodate. Ultrasonics Sonochemistry, 31, 499–505. DOI: 10.1016/j.ultsonch.2016.01.030 | |
dc.relation.referencesen | 19. Gevari, M. T., Parlar, A., Torabfam, M., Koşar, A., Yüce, M., & Ghorbani, M. (2020). Influence of fluid properties on intensity of hydrodynamic cavitation and deactivation of Salmonella typhimurium. Processes, 8(3), 326. DOI: 10.3390/pr8030326 | |
dc.relation.referencesen | 20. Kozmus, G., Zevnik, J., Hočevar, M., Dular, M., & Petkovšek, M. (2022). Characterization of cavitation under ultrasonic horn tip – Proposition of an acoustic cavitation parameter. Ultrasonics Sonochemistry, 89, 106159. DOI: 10.1016/j.ultsonch.2022.106159 | |
dc.relation.referencesen | 21. Baena-Baldiris, D., Montes-Robledo, A., Baldiris-Avila, R. (2020). Franconibacter sp., 1MS: A new strain in decolorization and degradation of azo dyes Ponceau S Red and Methyl Orange. ACS Omega, 5(43), 28146–28157. DOI: 10.1021/acsomega.0c03786 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | конго червоний | |
dc.subject | діазобарвник | |
dc.subject | окиснювальна деградація | |
dc.subject | активація перйодату | |
dc.subject | число акустичної кавітації | |
dc.subject | ультразвук | |
dc.subject | залізний купорос | |
dc.subject | Congo red | |
dc.subject | diazo dye | |
dc.subject | oxidative degradation | |
dc.subject | periodate activation | |
dc.subject | acoustic cavitation number | |
dc.subject | ultrasound | |
dc.subject | iron sulfate | |
dc.title | Число акустичної кавітації та його вплив на інтенсивність окиснювальної деградації діазобарвника конго червоного | |
dc.title.alternative | Acoustic cavitation number and its effect on the intensity of oxidative degradation of congo red diazo dye | |
dc.type | Article |
Files
License bundle
1 - 1 of 1