From newton's binomial and pascal’s triangle to сollatz's problem

dc.citation.epage127
dc.citation.issue1
dc.citation.journalTitleКомп’ютерні системи проектування. Теорія і практика.
dc.citation.spage121
dc.citation.volume5
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКособуцький, Петро
dc.contributor.authorЄдигарова, Анастасія
dc.contributor.authorСлободзян, Тарас
dc.contributor.authorKosobutskyy, Petro
dc.contributor.authorYedyharova, Anastasiia
dc.contributor.authorSlobodzyan, Taras
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-07-23T06:35:24Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractПоказано, що: 1. Послідовність {20, 21, 22, 23, 24, 25, 26, 27, 28,...}, яка утворює головний графік m=1 Коллатца, пов’язана зі степеневим перетворенням бінома Ньютона (1+1)ξ, ξ=0, 1, 2, 3,... 2. Головний Kmain і бічний m >1 графіки та відповідні їх послідовності {Kmain} та {Km} пов’язані співвідношенням {Km}=m⋅{Kmain}. 3. Бічні графи, породжені простими непарними числами 5, 7, 11, 13, 17, 19, 23, 25, 29, 31,…не діляться на три, утворюються без вузлів. Бічні графи, які генеруються композицією непарних чисел 3, 9, 15, 21, 27, 33, 39, 45,… діляться на три, утворюються з вузлами. 4. Траєкторії перетворень непарних чисел, через 3, 6, 8,…. ітерації від початку обчислень, зливаються з траєкторією обчислень першого меншого за значенням числа.
dc.description.abstractIt is shown that: 1. The sequence {20, 21, 22, 23, 24, 25, 26, 27, 28,...} that forms the main graph m=1 of Collatz is related to the power transformation of Newton's binomial (1+1)ξ, ξ=0, 1, 2, 3,... 2. The main Kmain and side m >1 graphs and their corresponding sequences {Kmain } and {Km } are related by the relation {Km }=m⋅{Kmain }. 3. Side graphs generated by prime odd numbers 5, 7, 11, 13, 17, 19, 23, 25, 29, 31,…are not divisible by three, are formed without nodes. Side graphs, which are generated by compozite of odd numbers 3, 9, 15, 21, 27, 33, 39, 45,… are divisible by three, are formed with nodes. 4. The trajectories of transformations of odd numbers, through 3, 6, 8,…. iterations from the beginning of calculations, merge with a trajectory of calculations of the first smaller number on value of the number.
dc.format.extent121-127
dc.format.pages7
dc.identifier.citationKosobutskyy P. From newton's binomial and pascal’s triangle to сollatz's problem / Petro Kosobutskyy, Anastasiia Yedyharova, Taras Slobodzyan // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 121–127.
dc.identifier.citationenKosobutskyy P. From newton's binomial and pascal’s triangle to сollatz's problem / Petro Kosobutskyy, Anastasiia Yedyharova, Taras Slobodzyan // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 121–127.
dc.identifier.doidoi.org/10.23939/cds2023.01.121
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111486
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofКомп’ютерні системи проектування. Теорія і практика., 1 (5), 2023
dc.relation.ispartofComputer Design Systems. Theory and Practice, 1 (5), 2023
dc.relation.references1. L.Collatz. On the motivation and origin of the (3n + 1) – Problem, J. Qufu Normal University, Natural Science Edition.1986, 12(3), 9–11.
dc.relation.references2. The On-line encyclopedia of integer sequences. The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. https://oeis.org/A002450
dc.relation.references3. J. Lagarias. The 3x+ 1 problem: An annotated bibliography (1963–1999), 2011. arXiv:math/0309224.
dc.relation.references4. J. Lagarias. The 3x + 1 problem: An annotated bibliography, II (2000–2009), 2012. arXiv:math/0608208.
dc.relation.references5. H. Ebert. A Graph Theoretical Approach to the Collatz Problem. arXiv:1905.07575v5 [math.GM] 29 Jul 2021
dc.relation.references6. P. Andaloro. The 3x+1 problem and directed graphs, Fibonacci Quarterly. 2002, 40 43 -54
dc.relation.references7. D. Kay. Collatz Sequences and Characteristic Zero-One Strings: Progress on the 3x + 1 Problem. American Journal of Computational Mathematics. 2021, 11(3), 2026-239, https://doi.org/10.4236/ajcm.2021.113015
dc.relation.references8. B. Bondarenko. Generalized Pascal Triangles and Pyramids. Their Fractals, Graphs, and Applications. Translated by Richard C. Bollinger. Published 1993 by the Fibonacci Association.
dc.relation.referencesen1. L.Collatz. On the motivation and origin of the (3n + 1) – Problem, J. Qufu Normal University, Natural Science Edition.1986, 12(3), 9–11.
dc.relation.referencesen2. The On-line encyclopedia of integer sequences. The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. https://oeis.org/A002450
dc.relation.referencesen3. J. Lagarias. The 3x+ 1 problem: An annotated bibliography (1963–1999), 2011. arXiv:math/0309224.
dc.relation.referencesen4. J. Lagarias. The 3x + 1 problem: An annotated bibliography, II (2000–2009), 2012. arXiv:math/0608208.
dc.relation.referencesen5. H. Ebert. A Graph Theoretical Approach to the Collatz Problem. arXiv:1905.07575v5 [math.GM] 29 Jul 2021
dc.relation.referencesen6. P. Andaloro. The 3x+1 problem and directed graphs, Fibonacci Quarterly. 2002, 40 43 -54
dc.relation.referencesen7. D. Kay. Collatz Sequences and Characteristic Zero-One Strings: Progress on the 3x + 1 Problem. American Journal of Computational Mathematics. 2021, 11(3), 2026-239, https://doi.org/10.4236/ajcm.2021.113015
dc.relation.referencesen8. B. Bondarenko. Generalized Pascal Triangles and Pyramids. Their Fractals, Graphs, and Applications. Translated by Richard C. Bollinger. Published 1993 by the Fibonacci Association.
dc.relation.urihttps://oeis.org/A002450
dc.relation.urihttps://doi.org/10.4236/ajcm.2021.113015
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Kosobutskyy P., Yedyharova A., Slobodzyan T., 2023
dc.subjectгіпотеза Коллатца
dc.subjectрекурентна послідовність
dc.subjectперетворення 3n + 1
dc.subjectнатуральні числа
dc.subjectCollatz conjecture
dc.subjectrecurrent sequence
dc.subjecttransformation 3n + 1
dc.subjectnatural numbers
dc.titleFrom newton's binomial and pascal’s triangle to сollatz's problem
dc.title.alternativeВід бінома Ньютона та трикутника паскаля до задачі Коллатца
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v5n1_Kosobutskyy_P-From_newton_s_binomial_121-127.pdf
Size:
5.18 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v5n1_Kosobutskyy_P-From_newton_s_binomial_121-127__COVER.png
Size:
329.71 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.89 KB
Format:
Plain Text
Description: