From newton's binomial and pascal’s triangle to сollatz's problem
dc.citation.epage | 127 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Комп’ютерні системи проектування. Теорія і практика. | |
dc.citation.spage | 121 | |
dc.citation.volume | 5 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Кособуцький, Петро | |
dc.contributor.author | Єдигарова, Анастасія | |
dc.contributor.author | Слободзян, Тарас | |
dc.contributor.author | Kosobutskyy, Petro | |
dc.contributor.author | Yedyharova, Anastasiia | |
dc.contributor.author | Slobodzyan, Taras | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-07-23T06:35:24Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Показано, що: 1. Послідовність {20, 21, 22, 23, 24, 25, 26, 27, 28,...}, яка утворює головний графік m=1 Коллатца, пов’язана зі степеневим перетворенням бінома Ньютона (1+1)ξ, ξ=0, 1, 2, 3,... 2. Головний Kmain і бічний m >1 графіки та відповідні їх послідовності {Kmain} та {Km} пов’язані співвідношенням {Km}=m⋅{Kmain}. 3. Бічні графи, породжені простими непарними числами 5, 7, 11, 13, 17, 19, 23, 25, 29, 31,…не діляться на три, утворюються без вузлів. Бічні графи, які генеруються композицією непарних чисел 3, 9, 15, 21, 27, 33, 39, 45,… діляться на три, утворюються з вузлами. 4. Траєкторії перетворень непарних чисел, через 3, 6, 8,…. ітерації від початку обчислень, зливаються з траєкторією обчислень першого меншого за значенням числа. | |
dc.description.abstract | It is shown that: 1. The sequence {20, 21, 22, 23, 24, 25, 26, 27, 28,...} that forms the main graph m=1 of Collatz is related to the power transformation of Newton's binomial (1+1)ξ, ξ=0, 1, 2, 3,... 2. The main Kmain and side m >1 graphs and their corresponding sequences {Kmain } and {Km } are related by the relation {Km }=m⋅{Kmain }. 3. Side graphs generated by prime odd numbers 5, 7, 11, 13, 17, 19, 23, 25, 29, 31,…are not divisible by three, are formed without nodes. Side graphs, which are generated by compozite of odd numbers 3, 9, 15, 21, 27, 33, 39, 45,… are divisible by three, are formed with nodes. 4. The trajectories of transformations of odd numbers, through 3, 6, 8,…. iterations from the beginning of calculations, merge with a trajectory of calculations of the first smaller number on value of the number. | |
dc.format.extent | 121-127 | |
dc.format.pages | 7 | |
dc.identifier.citation | Kosobutskyy P. From newton's binomial and pascal’s triangle to сollatz's problem / Petro Kosobutskyy, Anastasiia Yedyharova, Taras Slobodzyan // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 121–127. | |
dc.identifier.citationen | Kosobutskyy P. From newton's binomial and pascal’s triangle to сollatz's problem / Petro Kosobutskyy, Anastasiia Yedyharova, Taras Slobodzyan // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 121–127. | |
dc.identifier.doi | doi.org/10.23939/cds2023.01.121 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111486 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Комп’ютерні системи проектування. Теорія і практика., 1 (5), 2023 | |
dc.relation.ispartof | Computer Design Systems. Theory and Practice, 1 (5), 2023 | |
dc.relation.references | 1. L.Collatz. On the motivation and origin of the (3n + 1) – Problem, J. Qufu Normal University, Natural Science Edition.1986, 12(3), 9–11. | |
dc.relation.references | 2. The On-line encyclopedia of integer sequences. The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. https://oeis.org/A002450 | |
dc.relation.references | 3. J. Lagarias. The 3x+ 1 problem: An annotated bibliography (1963–1999), 2011. arXiv:math/0309224. | |
dc.relation.references | 4. J. Lagarias. The 3x + 1 problem: An annotated bibliography, II (2000–2009), 2012. arXiv:math/0608208. | |
dc.relation.references | 5. H. Ebert. A Graph Theoretical Approach to the Collatz Problem. arXiv:1905.07575v5 [math.GM] 29 Jul 2021 | |
dc.relation.references | 6. P. Andaloro. The 3x+1 problem and directed graphs, Fibonacci Quarterly. 2002, 40 43 -54 | |
dc.relation.references | 7. D. Kay. Collatz Sequences and Characteristic Zero-One Strings: Progress on the 3x + 1 Problem. American Journal of Computational Mathematics. 2021, 11(3), 2026-239, https://doi.org/10.4236/ajcm.2021.113015 | |
dc.relation.references | 8. B. Bondarenko. Generalized Pascal Triangles and Pyramids. Their Fractals, Graphs, and Applications. Translated by Richard C. Bollinger. Published 1993 by the Fibonacci Association. | |
dc.relation.referencesen | 1. L.Collatz. On the motivation and origin of the (3n + 1) – Problem, J. Qufu Normal University, Natural Science Edition.1986, 12(3), 9–11. | |
dc.relation.referencesen | 2. The On-line encyclopedia of integer sequences. The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. https://oeis.org/A002450 | |
dc.relation.referencesen | 3. J. Lagarias. The 3x+ 1 problem: An annotated bibliography (1963–1999), 2011. arXiv:math/0309224. | |
dc.relation.referencesen | 4. J. Lagarias. The 3x + 1 problem: An annotated bibliography, II (2000–2009), 2012. arXiv:math/0608208. | |
dc.relation.referencesen | 5. H. Ebert. A Graph Theoretical Approach to the Collatz Problem. arXiv:1905.07575v5 [math.GM] 29 Jul 2021 | |
dc.relation.referencesen | 6. P. Andaloro. The 3x+1 problem and directed graphs, Fibonacci Quarterly. 2002, 40 43 -54 | |
dc.relation.referencesen | 7. D. Kay. Collatz Sequences and Characteristic Zero-One Strings: Progress on the 3x + 1 Problem. American Journal of Computational Mathematics. 2021, 11(3), 2026-239, https://doi.org/10.4236/ajcm.2021.113015 | |
dc.relation.referencesen | 8. B. Bondarenko. Generalized Pascal Triangles and Pyramids. Their Fractals, Graphs, and Applications. Translated by Richard C. Bollinger. Published 1993 by the Fibonacci Association. | |
dc.relation.uri | https://oeis.org/A002450 | |
dc.relation.uri | https://doi.org/10.4236/ajcm.2021.113015 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Kosobutskyy P., Yedyharova A., Slobodzyan T., 2023 | |
dc.subject | гіпотеза Коллатца | |
dc.subject | рекурентна послідовність | |
dc.subject | перетворення 3n + 1 | |
dc.subject | натуральні числа | |
dc.subject | Collatz conjecture | |
dc.subject | recurrent sequence | |
dc.subject | transformation 3n + 1 | |
dc.subject | natural numbers | |
dc.title | From newton's binomial and pascal’s triangle to сollatz's problem | |
dc.title.alternative | Від бінома Ньютона та трикутника паскаля до задачі Коллатца | |
dc.type | Article |
Files
License bundle
1 - 1 of 1