Інтелектуальна система аналізу процесів споживання заряду акумуляторними батареями
dc.citation.epage | 273 | |
dc.citation.issue | 13 | |
dc.citation.journalTitle | Вісник Національного університету "Львівська політехніка". Інформаційні системи та мережі | |
dc.citation.spage | 251 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Сілезький технологічний університет | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Silesian University of Technology | |
dc.contributor.author | Павлюк, Олена | |
dc.contributor.author | Медиковський, Микола | |
dc.contributor.author | Лиса, Наталія | |
dc.contributor.author | Міщук, Мирослав | |
dc.contributor.author | Pavliuk, Olena | |
dc.contributor.author | Medykovskyy, Mykola | |
dc.contributor.author | Lysa, Natalya | |
dc.contributor.author | Mishchuk, Myroslav | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-06T09:14:07Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | У статті розроблено інтелектуальну систему аналізу та нейромережевого прогнозування споживання заряду акумуляторної батареї для автоматизованих транспортних засобів (АКТЗ). Для цього проаналізовано типи АКТЗ та методи ефективного прогнозу споживання заряду їх акумуляторної батареї. Встановлено, що вони основані на: процесах оптимального керування роботом; застосуванні технологій для підвищення ємності та продовження терміну служби батареї; використанні систем моніторингу та прогнозування стану батареї тощо. Дані для прогнозу зібрано за допомогою UAExpert OPC UA client, який дав змогу перетворити інформативні компоненти даних у формат, придатний для подальшого опрацювання (CSV). Для видалення викидів у сигналах виконано дисперсійний аналіз кожного параметра АКТЗ. Втраченими вважалися дані, для яких значення сигми перевищувало 1,5, їх заміняли ковзним середнім 12 точок (кількості входів ШНМ). Для навчання, верифікації та тестування нейромережі вибрали параметри з високою та середньою додатною кореляційною залежністю, визначені згідно з коефіцієнтом кореляції Пірсона. Коротко- та середньострокове прогнозування споживання заряду акумуляторної батареї для АКТЗ здійснювали на основі ШНМ з глибинним навчанням, модель якої була протестована у двох режимах: прогнозування та передбачення. Досліджено ефективність розробленої системи її тестуванням на даних, отриманих з АКТЗ Formica-1. Середня абсолютна похибка тестування становила менше ніж 1 %. Найбільше значення похибки прогнозування було меншим за 9 % під час прогнозування таких параметрів, як поточне положення та X-координата, що корелюють зі споживанням заряду акумуляторної батареї для АКТЗ. Експериментально встановлено підвищення точності прогнозу споживання заряду акумуляторної батареї для різнотипних АКТЗ. | |
dc.description.abstract | The article develops an intelligent system of analysis and neural network forecasting of battery charge consumption for automated vehicles (AGVs). For this purpose, the types of AGV and the methods of effective forecasting of their battery charge consumption were analyzed. It is established that they are based on optimal robot control processes; application of technologies to increase capacity and extend service life. The data for the forecast was collected using the UAExpert OPC UA client, which allowed to convert the informative components of the data vector into a format suitable for further processing (csv). To eliminate outliers in the signals, a dispersion analysis of each parameter of AGV was carried out. Data for which the sigma value exceeded 1.5 were considered partialle lost and were replaced by a moving average of 12 points(the number of ANN inputs). For training, verification and testing of neural networks, parameters with high and medium positive correlation dependence were selected according to the Pearson correlation coefficient. Short-term and medium-term forecasting of battery charge consumption for AKTZ was carried out on the basis of ANN with deep learning, the model of which was tested in two modes: forecasting and prediction. The effectiveness of the developed system was investigated by testing it on the data obtained from Formica-1 AGV. The average absolute testing error was less than 1 %. The highest value of the prediction error was less than 9 % when predicting such parameters as current position and X-coordinate, which are correlated with battery charge consumption for AGV. It has been established experimentally that the accuracy of the forecast of battery charge consumption for various types of AGV has been improved. | |
dc.format.extent | 251-273 | |
dc.format.pages | 23 | |
dc.identifier.citation | Інтелектуальна система аналізу процесів споживання заряду акумуляторними батареями / Олена Павлюк, Микола Медиковський, Наталія Лиса, Мирослав Міщук // Вісник Національного університету "Львівська політехніка". Інформаційні системи та мережі. — Львів : Видавництво Львівської політехніки, 2023. — № 13. — С. 251–273. | |
dc.identifier.citationen | Intelligent system for analyzing battery charge consumption processes / Pavliuk Olena, Medykovskyy Mykola, Lysa Natalya, Mishchuk Myroslav // Information Systems and Networks. — Lviv : Lviv Politechnic Publishing House, 2023. — No 13. — P. 251–273. | |
dc.identifier.doi | doi.org/10.23939/sisn2023.13.251 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63965 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Вісник Національного університету "Львівська політехніка". Інформаційні системи та мережі, 13, 2023 | |
dc.relation.ispartof | Information Systems and Networks, 13, 2023 | |
dc.relation.references | 1. Chol, J., & Gun, C. R. (2023). Multi-agent based scheduling method for tandem automated guided vehicle systems. Engineering Applications of Artificial Intelligence, 123. DOI: 10.1016/j.engappai.2023.106229. | |
dc.relation.references | 2. De Ryck, M., Versteyhe, M., & Debrouwere, F. (2020). Automated guided vehicle systems, state-ofthe-art control algorithms and techniques. Journal of Manufacturing Systems, 54, 152–173. DOI: 10.1016/j.jmsy.2019.12.002. | |
dc.relation.references | 3. Liang, Z., Wang, Z., Zhao, J., Wong, P. K., Yang, Z., & Ding, Z. (2023). Fixed-time prescribed performance path-following control for autonomous vehicle with complete unknown parameters. IEEE Transactions on Industrial Electronics, 70(8), 8426–8436. DOI: 10.1109/TIE.2022.3210544. | |
dc.relation.references | 4. Li, L., Li, Y., Liu, R., Zhou, Y., & Pan, E. (2023). A two-stage stochastic programming for AGV scheduling with random tasks and battery swapping in automated container terminals. Transportation Research Part E: Logistics and Transportation Review, 174. DOI: 10.1016/j.tre.2023.103110. | |
dc.relation.references | 5. Oyekanlu, E. A., Smith, A. C., Thomas, W. P., Mulroy, G., Hitesh, D., Ramsey, M., . . . Sun, D. (2020). A review of recent advances in automated guided vehicle technologies: Integration challenges and research areas for 5Gbased smart manufacturing applications. IEEE Access, 8, 202312–202353. DOI: 10.1109/ACCESS.2020.3035729. | |
dc.relation.references | 6. Theunissen, J., Xu, H., Zhong, R. Y., & Xu, X. (2019). Smart AGV system for manufacturing shopfloor in the context of industry 4.0. Paper presented at the Proceedings of the 2018 25th International Conference on Mechatronics and Machine Vision in Practice, M2VIP 2018. DOI: 10.1109/M2VIP.2018.8600887 Retrieved from www.scopus.com. | |
dc.relation.references | 7. Sanogo, K., Mekhalef Benhafssa, A., Sahnoun, M., Bettayeb, B., Abderrahim, M., & Bekrar, A. (2023). A multi-agent system simulation based approach for collision avoidance in integrated job-shop scheduling problem with transportation tasks. Journal of Manufacturing Systems, 68, 209–226. DOI: 10.1016/j.jmsy.2023.03.011. | |
dc.relation.references | 8. Martínez‐gutiérrez, A., Díez‐gonzález, J., Ferrero‐guillén, R., Verde, P., Álvarez, R., & Perez, H. (2021). Digital twin for automatic transportation in industry 4.0. Sensors, 21(10). DOI: 10.3390/s21103344. | |
dc.relation.references | 9. Ha, V. T., Thuong, T. T., & Ha, V. T. (2023). Experiment study of an automatic guided vehicle robot. International Journal of Power Electronics and Drive Systems, 14(2), 1300–1308. DOI: 10.11591/ijpeds.v14.i2.pp1300-1308. | |
dc.relation.references | 10. D'Souza, F., Costa, J., & Pires, J. N. (2020). Development of a solution for adding a collaborative robot to an industrial AGV. Industrial Robot, 47(5), 723–735. DOI: 10.1108/IR-01-2020-0004. | |
dc.relation.references | 11. Rahman, H. F., Janardhanan, M. N., & Nielsen, P. (2020). An integrated approach for line balancing and AGV scheduling towards smart assembly systems. Assembly Automation, 40(2), 219–234. DOI: 10.1108/AA-03-2019-0057. | |
dc.relation.references | 12. Steclik, T., Cupek, R., & Drewniak, M. (2022). Automatic grouping of production data in industry 4.0: The use case of internal logistics systems based on automated guided vehicles. Journal of Computational Science, 62. DOI: 10.1016/j.jocs.2022.101693. | |
dc.relation.references | 13. Cupek, R., Lin, J. C., & Syu, J. H. (2022). Automated guided vehicles challenges for artificial intelligence. Paper presented at the Proceedings-2022 IEEE International Conference on Big Data, Big Data, 6281–6289. DOI: 10.1109/BigData55660.2022.10021117. Retrieved from www.scopus.com. | |
dc.relation.references | 14. Steclik, T., Cupek, R., & Drewniak, M. (2022). Stream data clustering for engineering applications a use case of autonomous guided vehicles. Paper presented at the Proceedings-2022 IEEE International Conference on Big Data, Big Data, 6347–6356. DOI: 10.1109/BigData55660.2022.10020484. Retrieved from www.scopus.com. | |
dc.relation.references | 15. Shubyn, B., Kostrzewa, D., Grzesik, P., Benecki, P., Maksymyuk, T., Sunderam, V., . . . Mrozek, D. (2023). Federated learning for improved prediction of failures in autonomous guided vehicles. Journal of Computational Science, 68. DOI: 10.1016/j.jocs.2023.101956. | |
dc.relation.references | 16. Syu, J., Lin, J. C., & Mrozek, D. (2022). An efficient and secured energy managementsystem for automated guided vehicles. Paper presented at the Proceedings-2022 IEEE International Conference on Big Data, Big Data, 6357–6363. DOI: 10.1109/BigData55660.2022.10020806. Retrieved from www.scopus.com. | |
dc.relation.references | 17. Benecki, P., Kostrzewa, D., Grzesik, P., Shubyn, B., & Mrozek, D. (2022). Forecasting of energy consumption for anomaly detection in automated guided vehicles: Models and feature selection. Paper presented at the Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 2022 October, 2073–2079. DOI: 10.1109/SMC53654.2022.9945146. Retrieved from www.scopus.com. | |
dc.relation.references | 18. Shubyn, B., Mrozek, D., Maksymyuk, T., Sunderam, V., Kostrzewa, D., Grzesik, P., & Benecki, P. (2022). Federated learning for Anomaly detection in Industrial IoT-enabled production environment supported by Autonomous guided vehicles. DOI: 10.1007/978-3-031-08760-8_35. Retrieved from www.scopus.com. | |
dc.relation.references | 19. Smith, J. D., & Johnson, K. (2018). Intelligent control of AGV for automated manufacturing systems. International Journal of Advanced Manufacturing Technology, 96(9–12), 4349–4360. DOI: 10.1007/s00170-018-1752-0. | |
dc.relation.references | 20. Lee, S. H., Kim, J., & Park, J. (2020). An Intelligent Routing Algorithm for AGV in Manufacturing Environment. Journal of Manufacturing Systems, 56, 104–113. DOI: 10.1016/j.jmsy.2020.08.004. | |
dc.relation.references | 21. Wang, Y., Li, X., Li, J., & Li, Z. (2019). An Intelligent Control Method for AGV Material Handling System. International Journal of Advanced Manufacturing Technology, 105(5–6), 1945–1954. DOI: 10.1007/s00170-019-03987-5. | |
dc.relation.references | 22. Medykovskvi, M., Pavliuk, O., & Sydorenko, R. (2018). Use of machine learning technologies for the electric consumption forecast. Paper presented at the International Scientific and Technical Conference on Computer Sciences and Information Technologies, 1432–1435. DOI: 10.1109/STC-CSIT.2018.8526617. | |
dc.relation.references | 23. Li, X., Chen, Y., & Zhang, Y. (2021). Real-time scheduling of AGV with machine learning and optimization techniques. Proceedings of the 2021 International Conference on Robotics and Automation Sciences (ICRAS 2021), 245–251. DOI: 10.1109/ICRAS51812.2021.9433069. | |
dc.relation.references | 24. Lee, J., Kim, H., & Park, J. (2020). Intelligent Collision Avoidance for AGV in Warehouse Environment. Journal of Intelligent & Robotic Systems, 98(3), 591–603. DOI: 10.1007/s10846-019-01080-5. | |
dc.relation.references | 25. Liu, Y., Sun, S., Cai, W., & Guo, B. (2021). A Real-Time Dynamic Scheduling Algorithm for AGV based on Multi-objective Optimization. IEEE Transactions on Industrial Informatics, 17(7), 4562–4571. DOI: 10.1109/TII.2020.3021667. | |
dc.relation.references | 26. Wang, Y., Liu, S., & Zhao, Y. (2022). Intelligent routing of AGV in a manufacturing environment: A comparative study. Journal of Manufacturing Systems, 64, 48–58. DOI: 10.1016/j.jmsy.2021.11.010. | |
dc.relation.references | 27. Kim, S., Park, J., & Lee, S. (2020). Smart Control of AGV in Manufacturing Industry Using Artificial Intelligence. International Conference on Control, Automation and Systems (ICCAS), 1326–1331. DOI: 10.23919/ICCAS50221.2020.9268034. | |
dc.relation.references | 28. Li, J., Liu, Y., & Jiang, S. (2018). A survey of intelligent vehicle routing and scheduling problem in automated manufacturing systems. International Journal of Advanced Manufacturing Technology, 96(1–4), 259–276. DOI: 10.1007/s00170-018-1928-x. | |
dc.relation.references | 29. Arya, S., & Chauhan, S. S. (2021). A hybrid model of Fuzzy Logic and A* Algorithm for AGV navigation in flexible manufacturing systems. International Journal of Computational Intelligence Systems, 14(1), 1215–1226. DOI: 10.2991/ijcis.d.210414.001. | |
dc.relation.references | 30. Bhatia, A., Singh, A., & Luthra, S. (2020). Adaptive routing and scheduling of automated guided vehicles using a simulation-based optimization approach. Robotics and Computer-Integrated Manufacturing, 63, 101911. DOI: 10.1016/j.rcim.2019.101911. | |
dc.relation.references | 31. Bhatia, A., Singh, A., & Luthra, S. (2020). Adaptive routing and scheduling of automated guided vehicles using a simulation-based optimization approach. Robotics and Computer-Integrated Manufacturing, 63, 101911. DOI: 10.1016/j.rcim.2019.101911. | |
dc.relation.references | 32. Li, C., Chen, Y., Zhang, Y., & Li, C. (2020). A dynamic path planning algorithm for automated guided vehicles in a real-time dynamic environment. Journal of Advanced Transportation, 2020, 1–11. DOI: 10.1155/2020/8874826. | |
dc.relation.references | 33. Pavliuk, O., Steclik, T., & Biernacki, P. (2019). The forecast of the AGV battery discharging via the machine learning methods. 2019 IEEE International Conference on Industrial Technology (ICIT), 767–772. DOI: 10.1109/ICIT.2019.8754875. | |
dc.relation.referencesen | 1. Chol, J., & Gun, C. R. (2023). Multi-agent based scheduling method for tandem automated guided vehicle systems. Engineering Applications of Artificial Intelligence, 123. DOI: 10.1016/j.engappai.2023.106229. | |
dc.relation.referencesen | 2. De Ryck, M., Versteyhe, M., & Debrouwere, F. (2020). Automated guided vehicle systems, state-of-the-art control algorithms and techniques. Journal of Manufacturing Systems, 54, 152–173. DOI: 10.1016/j.jmsy.2019.12.002. | |
dc.relation.referencesen | 3. Liang, Z., Wang, Z., Zhao, J., Wong, P. K., Yang, Z., & Ding, Z. (2023). Fixed-time prescribed performance path-following control for autonomous vehicle with complete unknown parameters. IEEE Transactions on Industrial Electronics, 70(8), 8426–8436. DOI: 10.1109/TIE.2022.3210544. | |
dc.relation.referencesen | 4. Li, L., Li, Y., Liu, R., Zhou, Y., & Pan, E. (2023). A two-stage stochastic programming for AGV scheduling with random tasks and battery swapping in automated container terminals. Transportation Research Part E: Logistics and Transportation Review, 174. DOI: 10.1016/j.tre.2023.103110. | |
dc.relation.referencesen | 5. Oyekanlu, E. A., Smith, A. C., Thomas, W. P., Mulroy, G., Hitesh, D., Ramsey, M., . . . Sun, D. (2020). A review of recent advances in automated guided vehicle technologies: Integration challenges and research areas for 5Gbased smart manufacturing applications. IEEE Access, 8, 202312–2 | |
dc.relation.referencesen | 6. Theunissen, J., Xu, H., Zhong, R. Y., & Xu, X. (2019). Smart AGV system for manufacturing shopfloor in the context of industry 4.0. Paper presented at the Proceedings of the 2018 25th International Conference on Mechatronics and Machine Vision in Practice, M2VIP 2018. DOI: 10.1109/M2VIP.2018.8600887 Retrieved from www.scopus.com. | |
dc.relation.referencesen | 7. Sanogo, K., Mekhalef Benhafssa, A., Sahnoun, M., Bettayeb, B., Abderrahim, M., & Bekrar, A. (2023). A multi-agent system simulation based approach for collision avoidance in integrated job-shop scheduling problem with transportation tasks. Journal of Manufacturing Systems, 68, 209–226. DOI: 10.1016/j.jmsy.2023.03.011 | |
dc.relation.referencesen | 8. Martínez‐gutiérrez, A., Díez‐gonzález, J., Ferrero‐guillén, R., Verde, P., Álvarez, R., & Perez, H. (2021). Digital twin for automatic transportation in industry 4.0. Sensors, 21(10) DOI: 10.3390/s21103344. | |
dc.relation.referencesen | 9. Ha, V. T., Thuong, T. T., & Ha, V. T. (2023). Experiment study of an automatic guided vehicle robot. International Journal of Power Electronics and Drive Systems, 14(2), 1300–1308. DOI: 10.11591/ijpeds.v14.i2.pp1300-1308. | |
dc.relation.referencesen | 10. D'Souza, F., Costa, J., & Pires, J. N. (2020). Development of a solution for adding a collaborative robot to an industrial AGV. Industrial Robot, 47(5), 723–735. DOI: 10.1108/IR-01-2020-0004 | |
dc.relation.referencesen | 11. Rahman, H. F., Janardhanan, M. N., & Nielsen, P. (2020). An integrated approach for line balancing and AGV scheduling towards smart assembly systems. Assembly Automation, 40(2), 219-234. DOI: 10.1108/AA-03-2019-0057. | |
dc.relation.referencesen | 12. Steclik, T., Cupek, R., & Drewniak, M. (2022). Automatic grouping of production data in industry 4.0: The use case of internal logistics systems based on automated guided vehicles. Journal of Computational Science, 62. DOI: 10.1016/j.jocs.2022.101693. | |
dc.relation.referencesen | 13. Cupek, R., Lin, J. C., & Syu, J. H. (2022). Automated guided vehicles challenges for artificial intelligence. Paper presented at the Proceedings-2022 IEEE International Conference on Big Data, Big Data 2022, 6281–6289. DOI: 10.1109/BigData55660.2022.10021117. Retrieved from www.scopus.com. | |
dc.relation.referencesen | 14. Steclik, T., Cupek, R., & Drewniak, M. (2022). Stream data clustering for engineering applications a use case of autonomous guided vehicles. Paper presented at the Proceedings-2022 IEEE International Conference on Big Data, Big Data 2022, 6347–6356. DOI: 10.1109/BigData55660.2022.10020484 Retrieved from www.scopus.com. | |
dc.relation.referencesen | 15. Shubyn, B., Kostrzewa, D., Grzesik, P., Benecki, P., Maksymyuk, T., Sunderam, V., . . . Mrozek, D. (2023). Federated learning for improved prediction of failures in autonomous guided vehicles. Journal of Computational Science, 68. DOI: 10.1016/j.jocs.2023.101956. | |
dc.relation.referencesen | 16. Syu, J., Lin, J. C., & Mrozek, D. (2022). An efficient and secured energy management system for automated guided vehicles. Paper presented at the Proceedings – 2022 IEEE International Conference on Big Data, Big Data 2022, 6357–6363. DOI: 10.1109/BigData55660.2022.10020806 Retrieved from www.scopus.com. | |
dc.relation.referencesen | 17. Benecki, P., Kostrzewa, D., Grzesik, P., Shubyn, B., & Mrozek, D. (2022). Forecasting of energy consumption for anomaly detection in automated guided vehicles: Models and feature selection. Paper presented at the Conference Proceedings – IEEE International Conference on Systems, Man and Cybernetics, 2022 October, 2073–2079. DOI: 10.1109/SMC53654.2022.9945146. Retrieved from www.scopus.com. | |
dc.relation.referencesen | 18. Shubyn, B., Mrozek, D., Maksymyuk, T., Sunderam, V., Kostrzewa, D., Grzesik, P., & Benecki, P. (2022). Federated learning for Anomaly detection in Industrial IoT-enabled production environment supported by Autonomous guided vehicles. DOI: 10.1007/978-3-031-08760-8_35. Retrieved from www.scopus.com. | |
dc.relation.referencesen | 19. Smith, J. D., & Johnson, K. (2018). Intelligent control of AGV for automated manufacturing systems. International Journal of Advanced Manufacturing Technology, 96(9-12), 4349–4360. DOI: 10.1007/s00170-018-1752-0. | |
dc.relation.referencesen | 20. Lee, S. H., Kim, J., & Park, J. (2020). An Intelligent Routing Algorithm for AGV in Manufacturing Environment. Journal of Manufacturing Systems, 56, 104–113. DOI: 10.1016/j.jmsy.2020.08.004. | |
dc.relation.referencesen | 21. Wang, Y., Li, X., Li, J., & Li, Z. (2019). An Intelligent Control Method for AGV Material Handling System. International Journal of Advanced Manufacturing Technology, 105(5-6), 1945–1954. DOI: 10.1007/s00170-019-03987-5. | |
dc.relation.referencesen | 22. Medykovskvi, M., Pavliuk, O., & Sydorenko, R. (2018). Use of machine learning technologies for the electric consumption forecast. Paper presented at the International Scientific and Technical Conference on Computer Sciences and Information Technologies, 1432–1435. DOI: 10.1109/STC-CSIT.2018.8526617. | |
dc.relation.referencesen | 23. Li, X., Chen, Y., & Zhang, Y. (2021). Real-time scheduling of AGV with machine learning and optimization techniques. Proceedings of the 2021 International Conference on Robotics and Automation Sciences (ICRAS 2021), 245–251. DOI: 10.1109/ICRAS51812.2021.9433069. | |
dc.relation.referencesen | 24. Lee, J., Kim, H., & Park, J. (2020). Intelligent Collision Avoidance for AGV in Warehouse Environment. Journal of Intelligent & Robotic Systems, 98(3), 591–603. DOI: 10.1007/s10846-019-01080-5. | |
dc.relation.referencesen | 25. Liu, Y., Sun, S., Cai, W., & Guo, B. (2021). A Real-Time Dynamic Scheduling Algorithm for AGV based on Multi-objective Optimization. IEEE Transactions on Industrial Informatics, 17(7), 4562–4571. DOI: 10.1109/TII.2020.3021667. | |
dc.relation.referencesen | 26. Wang, Y., Liu, S., & Zhao, Y. (2022). Intelligent routing of AGV in a manufacturing environment: A comparative study. Journal of Manufacturing Systems, 64, 48–58. DOI: 10.1016/j.jmsy.2021.11.010. | |
dc.relation.referencesen | 27. Kim, S., Park, J., & Lee, S. (2020). Smart Control of AGV in Manufacturing Industry Using Artificial Intelligence. International Conference on Control, Automation and Systems (ICCAS), 1326–1331. DOI: 10.23919/ICCAS50221.2020.9268034. | |
dc.relation.referencesen | 28. Li, J., Liu, Y., & Jiang, S. (2018). A survey of intelligent vehicle routing and scheduling problem in automated manufacturing systems. International Journal of Advanced Manufacturing Technology, 96(1–4), 259–276. DOI: 10.1007/s00170-018-1928-x. | |
dc.relation.referencesen | 29. Arya, S., & Chauhan, S. S. (2021). A hybrid model of Fuzzy Logic and A* Algorithm for AGV navigation in flexible manufacturing systems. International Journal of Computational Intelligence Systems, 14(1), 1215–1226. DOI: 10.2991/ijcis.d.210414.001. | |
dc.relation.referencesen | 30. Bhatia, A., Singh, A., & Luthra, S. (2020). Adaptive routing and scheduling of automated guided vehicles using a simulation-based optimization approach. Robotics and Computer-Integrated Manufacturing, 63, 101911. DOI: 10.1016/j.rcim.2019.101911. | |
dc.relation.referencesen | 31. Bhatia, A., Singh, A., & Luthra, S. (2020). Adaptive routing and scheduling of automated guided vehicles using a simulation-based optimization approach. Robotics and Computer-Integrated Manufacturing, 63, 101911. DOI: 10.1016/j.rcim.2019.101911. | |
dc.relation.referencesen | 32. Li, C., Chen, Y., Zhang, Y., & Li, C. (2020). A dynamic path planning algorithm for automated guided vehicles in a real-time dynamic environment. Journal of Advanced Transportation, 2020, 1–11. DOI: 10.1155/2020/8874826. | |
dc.relation.referencesen | 33. Pavliuk, O., Steclik, T., & Biernacki, P. (2019). The forecast of the AGV battery discharging via the machine learning methods. 2019 IEEE International Conference on Industrial Technology (ICIT), 767–772. DOI: 10.1109/ICIT.2019.8754875. | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Павлюк О. М., Медиковський М. М., Лиса Н. М., Міщук М. В., 2023 | |
dc.subject | автоматизовані керовані транспортні засоби | |
dc.subject | індустрія 4.0 | |
dc.subject | штучний інтелект | |
dc.subject | штучні нейронні мережі | |
dc.subject | аналіз даних | |
dc.subject | automated guided vehicles | |
dc.subject | Industry 4.0 | |
dc.subject | artificial intelligence | |
dc.subject | artificial neural networks | |
dc.subject | data analysis | |
dc.subject.udc | 629.73 | |
dc.subject.udc | 658.5 | |
dc.subject.udc | 621.3 | |
dc.title | Інтелектуальна система аналізу процесів споживання заряду акумуляторними батареями | |
dc.title.alternative | Intelligent system for analyzing battery charge consumption processes | |
dc.type | Article |
Files
License bundle
1 - 1 of 1