Determination of bridge beams serviceability using non-destructive testing methods and field tests
| dc.citation.epage | 38 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Теорія та будівельна практика | |
| dc.citation.spage | 28 | |
| dc.citation.volume | 6 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Коваль, М. П. | |
| dc.contributor.author | Kova, Maksym | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-11-04T09:42:47Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | Розглянуто випадок визначення експлуатаційної придатності балок мосту з виробничими дефектами. На основі результатів візуального огляду та неруйнівного контролю було встановлено, що дефекти мають незначний вплив на експлуатаційні характеристики балок, а характеристики будівельних матеріалів високі. Результати розрахунків показали, що балки мали майже вдвічі більший запас міцності порівняно з проектними вимогами. Результати польових випробувань балок показали надійне закріплення робочої арматури, належну деформативність та тріщиностійкість балок. Використання методу акустичної емісії під час польових випробувань дозволило встановити, що балки не мають внутрішніх дефектів, які могли б розвинутися під навантаженням та знизити експлуатаційні характеристики. На основі результатів дослідження було зроблено висновок, що балки, виготовлені з дефектами, придатні для використання після їх усунення. | |
| dc.description.abstract | The case of determining the serviceability of bridge beams with manufacturing defects is considered. Based on the results of visual inspection and non-destructive testing, it was found that the defects have a minor impact on the performance of the beams, and the characteristics of the building materials are high. The results of the calculations showed that the beams had almost twice the safety margin compared to the design requirements. The results of field tests of beams showed reliable anchoring of the working reinforcement, proper deformability and crack resistance of the beams. Usage of the acoustic emission method during field tests allowed to establish that the beams had no internal defects that could develop under load and reduce performance. Based on the results of the research, it was concluded that the beams manufactured with defects are suitable for use after the defects have been repaired. | |
| dc.format.extent | 28-38 | |
| dc.format.pages | 11 | |
| dc.identifier.citation | Kova M. Determination of bridge beams serviceability using non-destructive testing methods and field tests / Maksym Kova // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 28–38. | |
| dc.identifier.citationen | Kova M. Determination of bridge beams serviceability using non-destructive testing methods and field tests / Maksym Kova // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 28–38. | |
| dc.identifier.doi | doi.org/10.23939/jtbp2024.02.028 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/117198 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Теорія та будівельна практика, 2 (6), 2024 | |
| dc.relation.ispartof | Theory and Building Practice, 2 (6), 2024 | |
| dc.relation.references | Aggelis, D. G., Kordatos, E. Z., & Matikas, T. E. (2011). Acoustic emission for fatigue damage characterization in metal plates. Mechanics Research Communications, 38(2), 106-110. https://doi.org/10.1016/j.mechrescom.2011.01.011 | |
| dc.relation.references | Elbatanouny, E., Henderson, A., Ai, L., & Ziehl, P. (2024, September). Condition assessment of prestressed concrete channel bridge girders using acoustic emission and data-driven methods. In Structures (Vol. 67, p. 107008). Elsevier. https://doi.org/10.1016/j.istruc.2024.107008 | |
| dc.relation.references | Elrakib, T. M., & Arafa, A. I. (2012). Experimental evaluation of the common defects in the execution of reinforced concrete beams under flexural loading. HBRC Journal, 8(1), 47-57. https://doi.org/10.1016/j.hbrcj.2012.08.006 | |
| dc.relation.references | Filonenko, S. F. (1999). Acoustic emission. Measurement, control, diagnostics. Kyiv: KMUGA (in Russian) https://irbis-nbuv.gov.ua/publ/REF-0000001186 | |
| dc.relation.references | Gebauer, D., Gutiérrez, R. E. B., Marx, S., Butler, M., Grahl, K., Thiel, T., ... & Krüger, M. (2023). Interrelated dataset of rebound numbers, ultrasonic pulse velocities and compressive strengths of drilled concrete cores from an existing structure and new fabricated concrete cubes. Data in brief, 48, 109201. https://doi.org/10.1016/j.dib.2023.109201 | |
| dc.relation.references | Gehlot, T., Sankhla, S. S., Gehlot, S. S., & Gupta, A. (2016). Study of concrete quality assessment of structural elements using ultrasonic pulse velocity test. IOSR Journal of Mechanical and Civil Engineering, 13 (05), 15 - 22. https://www.academia.edu/29277858/Study_of_Concrete_Quality_Assessment_o...Using_Ultrasonic_Pulse_Velocity_Test | |
| dc.relation.references | Gehlot, T., Sankhla, S. S., & Gupta, A. (2016). Study of concrete quality assessment of structural elements using rebound hammer test. American Journal of Engineering Research (AJER), 5, 192 - 198. https://www.academia.edu/29277858/Study_of_Concrete_Quality_Assessment_of_Structural_Elements_Using_Ultrasonic_Pulse_Velocity_Test | |
| dc.relation.references | Hrymak O. Ya. (2019). Strength, deformability and crack resistance of concrete beam structures of bridges with basalt plastic reinforcement (Dissertation of the candidate of technical sciences). Lviv, NU "Lvivska politekhnika" " [in Ukrainian]. https://old.lpnu.ua/sites/default/files/dissertation/2019/11821/dis_hrymak_o._ya.pdf | |
| dc.relation.references | Koval, P. M., & Stoyanovich, S. V. (2010). Researches of concrete fracture strength of the beams by type "3 BET-90" and "3 BET-120". Science and Transport Progress, 33, 118-121. https://doi.org/10.15802/stp2010/13185 | |
| dc.relation.references | Kovalchyk Ya. I. (2015). Strength, crack resistance and deformability of pre-stressed beam reinforced concrete span structures of bridges (Dissertation of the candidate of technical sciences). Kyiv: NTU (in Ukrainian). https://dspace.nau.edu.ua/bitstream/NAU/15883/1/dis.pdf | |
| dc.relation.references | Li, S. L., Zhao, Y. Q., Kang, Z. Z., & Wang, C. (2024). Acoustic emission technology-based waveguide localization method for internal tendons damage of in-service post-tensioned prestressed hollow-core slab bridges. Measurement, 114919. https://doi.org/10.1016/j.measurement.2024.114919 | |
| dc.relation.references | Luchko Y. Y. (2020). Research and testing methods of building materials and structures. Lviv, Vydavnytstvo "Levada" [in Ukrainian]. https://repository.lnau.edu.ua/xmlui/handle/123456789/579 | |
| dc.relation.references | Pullin, R., Holford, K. M., Lark, R. J., & Eaton, M. J. (2008). Acoustic emission monitoring of bridge structures in the field and laboratory. Journal of Acoustic Emission, 26, 172–181. https://www.academia.edu/18145004/Acoustic_Emission_Monitoring_Of_Bridge_Structures_In_The_Field_And_Laboratory | |
| dc.relation.references | Radhika, V., & Kishen, J. C. (2024). A comparative study of crack growth mechanisms in concrete through acoustic emission analysis: Monotonic versus fatigue loading. Construction and Building Materials, 432, 136568. https://doi.org/10.1016/j.conbuildmat.2024.136568 | |
| dc.relation.references | Rucka, M., Knak, M., & Nitka, M. (2023). A study on microcrack monitoring in concrete: discrete element method simulations of acoustic emission for non-destructive diagnostics. Engineering Fracture Mechanics, 293, 109718. https://doi.org/10.1016/j.engfracmech.2023.109718 | |
| dc.relation.references | Skalskyi V. R., & Koval P. M. (2005). Acoustic emission during the destruction of materials, products and structures. Methodological aspects of information selection and processing. Lviv, Spolom (in Ukrainian). https://nvd-nanu.org.ua/ff674970-6889-5131-9599-a684b2a7cd2c/ | |
| dc.relation.references | Stakhova A. P. (2015) System of non-destructive control by acoustic emission method for static and dynamic types of tests. Bulletin of Engineering Academy of Ukraine, 4, 127 - 129 (in Ukrainian). https://dspace.nau.edu.ua/bitstream/NAU/25550/1/visnyk2015.pdf | |
| dc.relation.references | Stashuk P. M. (2003) Improving the determination of crack resistance of reinforced concrete structures by the method of acoustic emission (Dissertation of the candidate of technical sciences). Lviv, NU "Lvivska politekhnika" (in Ukrainian). http://195.20.96.242:5028/lvportal/DocDescription?docid=LvNULP.BibRecord.120775 | |
| dc.relation.referencesen | Aggelis, D. G., Kordatos, E. Z., & Matikas, T. E. (2011). Acoustic emission for fatigue damage characterization in metal plates. Mechanics Research Communications, 38(2), 106-110. https://doi.org/10.1016/j.mechrescom.2011.01.011 | |
| dc.relation.referencesen | Elbatanouny, E., Henderson, A., Ai, L., & Ziehl, P. (2024, September). Condition assessment of prestressed concrete channel bridge girders using acoustic emission and data-driven methods. In Structures (Vol. 67, p. 107008). Elsevier. https://doi.org/10.1016/j.istruc.2024.107008 | |
| dc.relation.referencesen | Elrakib, T. M., & Arafa, A. I. (2012). Experimental evaluation of the common defects in the execution of reinforced concrete beams under flexural loading. HBRC Journal, 8(1), 47-57. https://doi.org/10.1016/j.hbrcj.2012.08.006 | |
| dc.relation.referencesen | Filonenko, S. F. (1999). Acoustic emission. Measurement, control, diagnostics. Kyiv: KMUGA (in Russian) https://irbis-nbuv.gov.ua/publ/REF-0000001186 | |
| dc.relation.referencesen | Gebauer, D., Gutiérrez, R. E. B., Marx, S., Butler, M., Grahl, K., Thiel, T., ... & Krüger, M. (2023). Interrelated dataset of rebound numbers, ultrasonic pulse velocities and compressive strengths of drilled concrete cores from an existing structure and new fabricated concrete cubes. Data in brief, 48, 109201. https://doi.org/10.1016/j.dib.2023.109201 | |
| dc.relation.referencesen | Gehlot, T., Sankhla, S. S., Gehlot, S. S., & Gupta, A. (2016). Study of concrete quality assessment of structural elements using ultrasonic pulse velocity test. IOSR Journal of Mechanical and Civil Engineering, 13 (05), 15 - 22. https://www.academia.edu/29277858/Study_of_Concrete_Quality_Assessment_o...Using_Ultrasonic_Pulse_Velocity_Test | |
| dc.relation.referencesen | Gehlot, T., Sankhla, S. S., & Gupta, A. (2016). Study of concrete quality assessment of structural elements using rebound hammer test. American Journal of Engineering Research (AJER), 5, 192 - 198. https://www.academia.edu/29277858/Study_of_Concrete_Quality_Assessment_of_Structural_Elements_Using_Ultrasonic_Pulse_Velocity_Test | |
| dc.relation.referencesen | Hrymak O. Ya. (2019). Strength, deformability and crack resistance of concrete beam structures of bridges with basalt plastic reinforcement (Dissertation of the candidate of technical sciences). Lviv, NU "Lvivska politekhnika" " [in Ukrainian]. https://old.lpnu.ua/sites/default/files/dissertation/2019/11821/dis_hrymak_o._ya.pdf | |
| dc.relation.referencesen | Koval, P. M., & Stoyanovich, S. V. (2010). Researches of concrete fracture strength of the beams by type "3 BET-90" and "3 BET-120". Science and Transport Progress, 33, 118-121. https://doi.org/10.15802/stp2010/13185 | |
| dc.relation.referencesen | Kovalchyk Ya. I. (2015). Strength, crack resistance and deformability of pre-stressed beam reinforced concrete span structures of bridges (Dissertation of the candidate of technical sciences). Kyiv: NTU (in Ukrainian). https://dspace.nau.edu.ua/bitstream/NAU/15883/1/dis.pdf | |
| dc.relation.referencesen | Li, S. L., Zhao, Y. Q., Kang, Z. Z., & Wang, C. (2024). Acoustic emission technology-based waveguide localization method for internal tendons damage of in-service post-tensioned prestressed hollow-core slab bridges. Measurement, 114919. https://doi.org/10.1016/j.measurement.2024.114919 | |
| dc.relation.referencesen | Luchko Y. Y. (2020). Research and testing methods of building materials and structures. Lviv, Vydavnytstvo "Levada" [in Ukrainian]. https://repository.lnau.edu.ua/xmlui/handle/123456789/579 | |
| dc.relation.referencesen | Pullin, R., Holford, K. M., Lark, R. J., & Eaton, M. J. (2008). Acoustic emission monitoring of bridge structures in the field and laboratory. Journal of Acoustic Emission, 26, 172–181. https://www.academia.edu/18145004/Acoustic_Emission_Monitoring_Of_Bridge_Structures_In_The_Field_And_Laboratory | |
| dc.relation.referencesen | Radhika, V., & Kishen, J. C. (2024). A comparative study of crack growth mechanisms in concrete through acoustic emission analysis: Monotonic versus fatigue loading. Construction and Building Materials, 432, 136568. https://doi.org/10.1016/j.conbuildmat.2024.136568 | |
| dc.relation.referencesen | Rucka, M., Knak, M., & Nitka, M. (2023). A study on microcrack monitoring in concrete: discrete element method simulations of acoustic emission for non-destructive diagnostics. Engineering Fracture Mechanics, 293, 109718. https://doi.org/10.1016/j.engfracmech.2023.109718 | |
| dc.relation.referencesen | Skalskyi V. R., & Koval P. M. (2005). Acoustic emission during the destruction of materials, products and structures. Methodological aspects of information selection and processing. Lviv, Spolom (in Ukrainian). https://nvd-nanu.org.ua/ff674970-6889-5131-9599-a684b2a7cd2c/ | |
| dc.relation.referencesen | Stakhova A. P. (2015) System of non-destructive control by acoustic emission method for static and dynamic types of tests. Bulletin of Engineering Academy of Ukraine, 4, 127 - 129 (in Ukrainian). https://dspace.nau.edu.ua/bitstream/NAU/25550/1/visnyk2015.pdf | |
| dc.relation.referencesen | Stashuk P. M. (2003) Improving the determination of crack resistance of reinforced concrete structures by the method of acoustic emission (Dissertation of the candidate of technical sciences). Lviv, NU "Lvivska politekhnika" (in Ukrainian). http://195.20.96.242:5028/lvportal/DocDescription?docid=LvNULP.BibRecord.120775 | |
| dc.relation.uri | https://doi.org/10.1016/j.mechrescom.2011.01.011 | |
| dc.relation.uri | https://doi.org/10.1016/j.istruc.2024.107008 | |
| dc.relation.uri | https://doi.org/10.1016/j.hbrcj.2012.08.006 | |
| dc.relation.uri | https://irbis-nbuv.gov.ua/publ/REF-0000001186 | |
| dc.relation.uri | https://doi.org/10.1016/j.dib.2023.109201 | |
| dc.relation.uri | https://www.academia.edu/29277858/Study_of_Concrete_Quality_Assessment_o...Using_Ultrasonic_Pulse_Velocity_Test | |
| dc.relation.uri | https://www.academia.edu/29277858/Study_of_Concrete_Quality_Assessment_of_Structural_Elements_Using_Ultrasonic_Pulse_Velocity_Test | |
| dc.relation.uri | https://old.lpnu.ua/sites/default/files/dissertation/2019/11821/dis_hrymak_o._ya.pdf | |
| dc.relation.uri | https://doi.org/10.15802/stp2010/13185 | |
| dc.relation.uri | https://dspace.nau.edu.ua/bitstream/NAU/15883/1/dis.pdf | |
| dc.relation.uri | https://doi.org/10.1016/j.measurement.2024.114919 | |
| dc.relation.uri | https://repository.lnau.edu.ua/xmlui/handle/123456789/579 | |
| dc.relation.uri | https://www.academia.edu/18145004/Acoustic_Emission_Monitoring_Of_Bridge_Structures_In_The_Field_And_Laboratory | |
| dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2024.136568 | |
| dc.relation.uri | https://doi.org/10.1016/j.engfracmech.2023.109718 | |
| dc.relation.uri | https://nvd-nanu.org.ua/ff674970-6889-5131-9599-a684b2a7cd2c/ | |
| dc.relation.uri | https://dspace.nau.edu.ua/bitstream/NAU/25550/1/visnyk2015.pdf | |
| dc.relation.uri | http://195.20.96.242:5028/lvportal/DocDescription?docid=LvNULP.BibRecord.120775 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.rights.holder | © Koval M., 2024 | |
| dc.subject | акустична емісія | |
| dc.subject | польові випробування | |
| dc.subject | залізобетонна балка | |
| dc.subject | експлуатаційна придатність | |
| dc.subject | неруйнівний контроль | |
| dc.subject | статичне навантаження | |
| dc.subject | acoustic emission | |
| dc.subject | bridge beam | |
| dc.subject | field tests | |
| dc.subject | non-destructive testing | |
| dc.subject | serviceability | |
| dc.subject | static load | |
| dc.title | Determination of bridge beams serviceability using non-destructive testing methods and field tests | |
| dc.title.alternative | Визначення експлуатаційної придатності мостових балок за допомогою методів не руйнівного контролю та польових випробувань | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1