Determination of bridge beams serviceability using non-destructive testing methods and field tests

dc.citation.epage38
dc.citation.issue2
dc.citation.journalTitleТеорія та будівельна практика
dc.citation.spage28
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКоваль, М. П.
dc.contributor.authorKova, Maksym
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-04T09:42:47Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractРозглянуто випадок визначення експлуатаційної придатності балок мосту з виробничими дефектами. На основі результатів візуального огляду та неруйнівного контролю було встановлено, що дефекти мають незначний вплив на експлуатаційні характеристики балок, а характеристики будівельних матеріалів високі. Результати розрахунків показали, що балки мали майже вдвічі більший запас міцності порівняно з проектними вимогами. Результати польових випробувань балок показали надійне закріплення робочої арматури, належну деформативність та тріщиностійкість балок. Використання методу акустичної емісії під час польових випробувань дозволило встановити, що балки не мають внутрішніх дефектів, які могли б розвинутися під навантаженням та знизити експлуатаційні характеристики. На основі результатів дослідження було зроблено висновок, що балки, виготовлені з дефектами, придатні для використання після їх усунення.
dc.description.abstractThe case of determining the serviceability of bridge beams with manufacturing defects is considered. Based on the results of visual inspection and non-destructive testing, it was found that the defects have a minor impact on the performance of the beams, and the characteristics of the building materials are high. The results of the calculations showed that the beams had almost twice the safety margin compared to the design requirements. The results of field tests of beams showed reliable anchoring of the working reinforcement, proper deformability and crack resistance of the beams. Usage of the acoustic emission method during field tests allowed to establish that the beams had no internal defects that could develop under load and reduce performance. Based on the results of the research, it was concluded that the beams manufactured with defects are suitable for use after the defects have been repaired.
dc.format.extent28-38
dc.format.pages11
dc.identifier.citationKova M. Determination of bridge beams serviceability using non-destructive testing methods and field tests / Maksym Kova // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 28–38.
dc.identifier.citationenKova M. Determination of bridge beams serviceability using non-destructive testing methods and field tests / Maksym Kova // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 28–38.
dc.identifier.doidoi.org/10.23939/jtbp2024.02.028
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/117198
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofТеорія та будівельна практика, 2 (6), 2024
dc.relation.ispartofTheory and Building Practice, 2 (6), 2024
dc.relation.referencesAggelis, D. G., Kordatos, E. Z., & Matikas, T. E. (2011). Acoustic emission for fatigue damage characterization in metal plates. Mechanics Research Communications, 38(2), 106-110. https://doi.org/10.1016/j.mechrescom.2011.01.011
dc.relation.referencesElbatanouny, E., Henderson, A., Ai, L., & Ziehl, P. (2024, September). Condition assessment of prestressed concrete channel bridge girders using acoustic emission and data-driven methods. In Structures (Vol. 67, p. 107008). Elsevier. https://doi.org/10.1016/j.istruc.2024.107008
dc.relation.referencesElrakib, T. M., & Arafa, A. I. (2012). Experimental evaluation of the common defects in the execution of reinforced concrete beams under flexural loading. HBRC Journal, 8(1), 47-57. https://doi.org/10.1016/j.hbrcj.2012.08.006
dc.relation.referencesFilonenko, S. F. (1999). Acoustic emission. Measurement, control, diagnostics. Kyiv: KMUGA (in Russian) https://irbis-nbuv.gov.ua/publ/REF-0000001186
dc.relation.referencesGebauer, D., Gutiérrez, R. E. B., Marx, S., Butler, M., Grahl, K., Thiel, T., ... & Krüger, M. (2023). Interrelated dataset of rebound numbers, ultrasonic pulse velocities and compressive strengths of drilled concrete cores from an existing structure and new fabricated concrete cubes. Data in brief, 48, 109201. https://doi.org/10.1016/j.dib.2023.109201
dc.relation.referencesGehlot, T., Sankhla, S. S., Gehlot, S. S., & Gupta, A. (2016). Study of concrete quality assessment of structural elements using ultrasonic pulse velocity test. IOSR Journal of Mechanical and Civil Engineering, 13 (05), 15 - 22. https://www.academia.edu/29277858/Study_of_Concrete_Quality_Assessment_o...Using_Ultrasonic_Pulse_Velocity_Test
dc.relation.referencesGehlot, T., Sankhla, S. S., & Gupta, A. (2016). Study of concrete quality assessment of structural elements using rebound hammer test. American Journal of Engineering Research (AJER), 5, 192 - 198. https://www.academia.edu/29277858/Study_of_Concrete_Quality_Assessment_of_Structural_Elements_Using_Ultrasonic_Pulse_Velocity_Test
dc.relation.referencesHrymak O. Ya. (2019). Strength, deformability and crack resistance of concrete beam structures of bridges with basalt plastic reinforcement (Dissertation of the candidate of technical sciences). Lviv, NU "Lvivska politekhnika" " [in Ukrainian]. https://old.lpnu.ua/sites/default/files/dissertation/2019/11821/dis_hrymak_o._ya.pdf
dc.relation.referencesKoval, P. M., & Stoyanovich, S. V. (2010). Researches of concrete fracture strength of the beams by type "3 BET-90" and "3 BET-120". Science and Transport Progress, 33, 118-121. https://doi.org/10.15802/stp2010/13185
dc.relation.referencesKovalchyk Ya. I. (2015). Strength, crack resistance and deformability of pre-stressed beam reinforced concrete span structures of bridges (Dissertation of the candidate of technical sciences). Kyiv: NTU (in Ukrainian). https://dspace.nau.edu.ua/bitstream/NAU/15883/1/dis.pdf
dc.relation.referencesLi, S. L., Zhao, Y. Q., Kang, Z. Z., & Wang, C. (2024). Acoustic emission technology-based waveguide localization method for internal tendons damage of in-service post-tensioned prestressed hollow-core slab bridges. Measurement, 114919. https://doi.org/10.1016/j.measurement.2024.114919
dc.relation.referencesLuchko Y. Y. (2020). Research and testing methods of building materials and structures. Lviv, Vydavnytstvo "Levada" [in Ukrainian]. https://repository.lnau.edu.ua/xmlui/handle/123456789/579
dc.relation.referencesPullin, R., Holford, K. M., Lark, R. J., & Eaton, M. J. (2008). Acoustic emission monitoring of bridge structures in the field and laboratory. Journal of Acoustic Emission, 26, 172–181. https://www.academia.edu/18145004/Acoustic_Emission_Monitoring_Of_Bridge_Structures_In_The_Field_And_Laboratory
dc.relation.referencesRadhika, V., & Kishen, J. C. (2024). A comparative study of crack growth mechanisms in concrete through acoustic emission analysis: Monotonic versus fatigue loading. Construction and Building Materials, 432, 136568. https://doi.org/10.1016/j.conbuildmat.2024.136568
dc.relation.referencesRucka, M., Knak, M., & Nitka, M. (2023). A study on microcrack monitoring in concrete: discrete element method simulations of acoustic emission for non-destructive diagnostics. Engineering Fracture Mechanics, 293, 109718. https://doi.org/10.1016/j.engfracmech.2023.109718
dc.relation.referencesSkalskyi V. R., & Koval P. M. (2005). Acoustic emission during the destruction of materials, products and structures. Methodological aspects of information selection and processing. Lviv, Spolom (in Ukrainian). https://nvd-nanu.org.ua/ff674970-6889-5131-9599-a684b2a7cd2c/
dc.relation.referencesStakhova A. P. (2015) System of non-destructive control by acoustic emission method for static and dynamic types of tests. Bulletin of Engineering Academy of Ukraine, 4, 127 - 129 (in Ukrainian). https://dspace.nau.edu.ua/bitstream/NAU/25550/1/visnyk2015.pdf
dc.relation.referencesStashuk P. M. (2003) Improving the determination of crack resistance of reinforced concrete structures by the method of acoustic emission (Dissertation of the candidate of technical sciences). Lviv, NU "Lvivska politekhnika" (in Ukrainian). http://195.20.96.242:5028/lvportal/DocDescription?docid=LvNULP.BibRecord.120775
dc.relation.referencesenAggelis, D. G., Kordatos, E. Z., & Matikas, T. E. (2011). Acoustic emission for fatigue damage characterization in metal plates. Mechanics Research Communications, 38(2), 106-110. https://doi.org/10.1016/j.mechrescom.2011.01.011
dc.relation.referencesenElbatanouny, E., Henderson, A., Ai, L., & Ziehl, P. (2024, September). Condition assessment of prestressed concrete channel bridge girders using acoustic emission and data-driven methods. In Structures (Vol. 67, p. 107008). Elsevier. https://doi.org/10.1016/j.istruc.2024.107008
dc.relation.referencesenElrakib, T. M., & Arafa, A. I. (2012). Experimental evaluation of the common defects in the execution of reinforced concrete beams under flexural loading. HBRC Journal, 8(1), 47-57. https://doi.org/10.1016/j.hbrcj.2012.08.006
dc.relation.referencesenFilonenko, S. F. (1999). Acoustic emission. Measurement, control, diagnostics. Kyiv: KMUGA (in Russian) https://irbis-nbuv.gov.ua/publ/REF-0000001186
dc.relation.referencesenGebauer, D., Gutiérrez, R. E. B., Marx, S., Butler, M., Grahl, K., Thiel, T., ... & Krüger, M. (2023). Interrelated dataset of rebound numbers, ultrasonic pulse velocities and compressive strengths of drilled concrete cores from an existing structure and new fabricated concrete cubes. Data in brief, 48, 109201. https://doi.org/10.1016/j.dib.2023.109201
dc.relation.referencesenGehlot, T., Sankhla, S. S., Gehlot, S. S., & Gupta, A. (2016). Study of concrete quality assessment of structural elements using ultrasonic pulse velocity test. IOSR Journal of Mechanical and Civil Engineering, 13 (05), 15 - 22. https://www.academia.edu/29277858/Study_of_Concrete_Quality_Assessment_o...Using_Ultrasonic_Pulse_Velocity_Test
dc.relation.referencesenGehlot, T., Sankhla, S. S., & Gupta, A. (2016). Study of concrete quality assessment of structural elements using rebound hammer test. American Journal of Engineering Research (AJER), 5, 192 - 198. https://www.academia.edu/29277858/Study_of_Concrete_Quality_Assessment_of_Structural_Elements_Using_Ultrasonic_Pulse_Velocity_Test
dc.relation.referencesenHrymak O. Ya. (2019). Strength, deformability and crack resistance of concrete beam structures of bridges with basalt plastic reinforcement (Dissertation of the candidate of technical sciences). Lviv, NU "Lvivska politekhnika" " [in Ukrainian]. https://old.lpnu.ua/sites/default/files/dissertation/2019/11821/dis_hrymak_o._ya.pdf
dc.relation.referencesenKoval, P. M., & Stoyanovich, S. V. (2010). Researches of concrete fracture strength of the beams by type "3 BET-90" and "3 BET-120". Science and Transport Progress, 33, 118-121. https://doi.org/10.15802/stp2010/13185
dc.relation.referencesenKovalchyk Ya. I. (2015). Strength, crack resistance and deformability of pre-stressed beam reinforced concrete span structures of bridges (Dissertation of the candidate of technical sciences). Kyiv: NTU (in Ukrainian). https://dspace.nau.edu.ua/bitstream/NAU/15883/1/dis.pdf
dc.relation.referencesenLi, S. L., Zhao, Y. Q., Kang, Z. Z., & Wang, C. (2024). Acoustic emission technology-based waveguide localization method for internal tendons damage of in-service post-tensioned prestressed hollow-core slab bridges. Measurement, 114919. https://doi.org/10.1016/j.measurement.2024.114919
dc.relation.referencesenLuchko Y. Y. (2020). Research and testing methods of building materials and structures. Lviv, Vydavnytstvo "Levada" [in Ukrainian]. https://repository.lnau.edu.ua/xmlui/handle/123456789/579
dc.relation.referencesenPullin, R., Holford, K. M., Lark, R. J., & Eaton, M. J. (2008). Acoustic emission monitoring of bridge structures in the field and laboratory. Journal of Acoustic Emission, 26, 172–181. https://www.academia.edu/18145004/Acoustic_Emission_Monitoring_Of_Bridge_Structures_In_The_Field_And_Laboratory
dc.relation.referencesenRadhika, V., & Kishen, J. C. (2024). A comparative study of crack growth mechanisms in concrete through acoustic emission analysis: Monotonic versus fatigue loading. Construction and Building Materials, 432, 136568. https://doi.org/10.1016/j.conbuildmat.2024.136568
dc.relation.referencesenRucka, M., Knak, M., & Nitka, M. (2023). A study on microcrack monitoring in concrete: discrete element method simulations of acoustic emission for non-destructive diagnostics. Engineering Fracture Mechanics, 293, 109718. https://doi.org/10.1016/j.engfracmech.2023.109718
dc.relation.referencesenSkalskyi V. R., & Koval P. M. (2005). Acoustic emission during the destruction of materials, products and structures. Methodological aspects of information selection and processing. Lviv, Spolom (in Ukrainian). https://nvd-nanu.org.ua/ff674970-6889-5131-9599-a684b2a7cd2c/
dc.relation.referencesenStakhova A. P. (2015) System of non-destructive control by acoustic emission method for static and dynamic types of tests. Bulletin of Engineering Academy of Ukraine, 4, 127 - 129 (in Ukrainian). https://dspace.nau.edu.ua/bitstream/NAU/25550/1/visnyk2015.pdf
dc.relation.referencesenStashuk P. M. (2003) Improving the determination of crack resistance of reinforced concrete structures by the method of acoustic emission (Dissertation of the candidate of technical sciences). Lviv, NU "Lvivska politekhnika" (in Ukrainian). http://195.20.96.242:5028/lvportal/DocDescription?docid=LvNULP.BibRecord.120775
dc.relation.urihttps://doi.org/10.1016/j.mechrescom.2011.01.011
dc.relation.urihttps://doi.org/10.1016/j.istruc.2024.107008
dc.relation.urihttps://doi.org/10.1016/j.hbrcj.2012.08.006
dc.relation.urihttps://irbis-nbuv.gov.ua/publ/REF-0000001186
dc.relation.urihttps://doi.org/10.1016/j.dib.2023.109201
dc.relation.urihttps://www.academia.edu/29277858/Study_of_Concrete_Quality_Assessment_o...Using_Ultrasonic_Pulse_Velocity_Test
dc.relation.urihttps://www.academia.edu/29277858/Study_of_Concrete_Quality_Assessment_of_Structural_Elements_Using_Ultrasonic_Pulse_Velocity_Test
dc.relation.urihttps://old.lpnu.ua/sites/default/files/dissertation/2019/11821/dis_hrymak_o._ya.pdf
dc.relation.urihttps://doi.org/10.15802/stp2010/13185
dc.relation.urihttps://dspace.nau.edu.ua/bitstream/NAU/15883/1/dis.pdf
dc.relation.urihttps://doi.org/10.1016/j.measurement.2024.114919
dc.relation.urihttps://repository.lnau.edu.ua/xmlui/handle/123456789/579
dc.relation.urihttps://www.academia.edu/18145004/Acoustic_Emission_Monitoring_Of_Bridge_Structures_In_The_Field_And_Laboratory
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2024.136568
dc.relation.urihttps://doi.org/10.1016/j.engfracmech.2023.109718
dc.relation.urihttps://nvd-nanu.org.ua/ff674970-6889-5131-9599-a684b2a7cd2c/
dc.relation.urihttps://dspace.nau.edu.ua/bitstream/NAU/25550/1/visnyk2015.pdf
dc.relation.urihttp://195.20.96.242:5028/lvportal/DocDescription?docid=LvNULP.BibRecord.120775
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Koval M., 2024
dc.subjectакустична емісія
dc.subjectпольові випробування
dc.subjectзалізобетонна балка
dc.subjectексплуатаційна придатність
dc.subjectнеруйнівний контроль
dc.subjectстатичне навантаження
dc.subjectacoustic emission
dc.subjectbridge beam
dc.subjectfield tests
dc.subjectnon-destructive testing
dc.subjectserviceability
dc.subjectstatic load
dc.titleDetermination of bridge beams serviceability using non-destructive testing methods and field tests
dc.title.alternativeВизначення експлуатаційної придатності мостових балок за допомогою методів не руйнівного контролю та польових випробувань
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v6n2_Kova_M-Determination_of_bridge_beams_28-38.pdf
Size:
4.83 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v6n2_Kova_M-Determination_of_bridge_beams_28-38__COVER.png
Size:
341.68 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: