Optimisation of composition and strength properties of slag-alkali binders based on fuel slags

dc.citation.epage134
dc.citation.issue1
dc.citation.journalTitleАрхітектурні дослідження
dc.citation.spage125
dc.citation.volume10
dc.contributor.affiliationКиргизький державний технічний університет ім. І. Раззакова
dc.contributor.affiliationМіжнародний університет інноваційних технологій
dc.contributor.affiliationKyrgyz State Technical University named after I. Razzakov
dc.contributor.affiliationInternational University of Innovative Technologies
dc.contributor.authorАбдикаликов, Акимбек
dc.contributor.authorБолотов, Таалаібек
dc.contributor.authorКурбанбаєв, Алайбек
dc.contributor.authorМатиєва, Акбермет
dc.contributor.authorЖумабаєв, Рискулбек
dc.contributor.authorAbdykalykov, Akymbek
dc.contributor.authorBolotov, Taalaibek
dc.contributor.authorKurbanbaev, Alaybek
dc.contributor.authorMatyeva, Akbermet
dc.contributor.authorZhumabaev, Ryskulbek
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-05-14T07:15:31Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractУ рамках цього дослідження вивчаються способи вдосконалення складу та міцності шлаколужних в’яжучих, отриманих із продуктів згоряння палива. Для цього було застосовано рентгеноструктурний аналіз, спектроскопію, мікроскопію, випробування на міцність під час стискування, та аналіз отриманих даних для активації зол блоків теплоелектроцентралі, оцінки активності композицій, тепловологісної обробки та визначення оптимальних складів. Зололужні в’яжучі матеріали мають переваги порівняно з портландцементом: вони мають високу міцність, водонепроникність, морозостійкість і корозійну стійкість. Ці матеріали застосовуються в будівництві об’єктів спеціального призначення, таких як автомобільні дороги, аеродроми, мости, транспортні тунелі та гідротехнічні споруди. У рамках експериментального дослідження було розроблено оптимальні зололужні в’яжучі на основі паливних шлаків, що володіють необхідними властивостями. Аналіз хімічного складу паливних шлаків виявив високий вміст оксидів кремнію, алюмінію, заліза, кальцію і магнію, що робить їх придатними для використання як в’яжучих матеріалів. Експериментальні дані показали, що введення добавок, таких як гіпс, значно покращує механічні властивості та довговічність матеріалів. Розроблені технологічні процеси змішування, формування та затвердіння забезпечили стабільну якість продукції. Випробування зразків продемонстрували високі характеристики міцності на стиск, розтягнення і вигин, що підтверджує їхню придатність для будівельних застосувань. Екологічна оцінка показала, що використання паливних шлаків знижує вуглецевий слід і зменшує негативний вплив на навколишнє середовище. У результаті розроблено масштабований процес виробництва, який може бути впроваджений у промисловість для створення екологічно стійких і високоефективних будівельних матеріалів. Це дослідження представляє нові дані про розробку екологічно стійких будівельних матеріалів на основі паливних шлаків, що може знизити екологічне навантаження і поліпшити стійкість інфраструктури.
dc.description.abstractThe study addresses ways to improve the composition and strength of slag-alkali binders derived from fuel combustion products. For this purpose, X-ray diffraction analysis, spectroscopy, microscopy, compression strength tests, and data analysis were used to activate the ash from the power plant units, evaluate the activity of the compositions, heat and moisture treatment, and determine the optimal compositions. Alumina binders have advantages over Portland cement: they are highly durable, waterproof, frost-resistant and corrosion-resistant. These materials are used in the construction of special-purpose facilities, such as motorways, airfields, bridges, transport tunnels and hydraulic structures. As part of an experimental study, optimal ash binders based on fuel slag with the required properties were developed. Analysis of the chemical composition of fuel slags revealed a high content of silicon, aluminium, iron, calcium and magnesium oxides, which makes them suitable for use as binders. Experimental data has shown that the introduction of additives such as gypsum significantly improves the mechanical properties and durability of materials. The developed technological processes of mixing, moulding and curing ensure stable product quality. Tests of the samples demonstrated high compressive, tensile and flexural strengths, confirming their suitability for construction applications. The environmental assessment showed that the use of fuel slag reduces the carbon footprint and reduces the negative impact on the environment. As a result, a scalable production process has been developed that can be implemented in industry to create environmentally sustainable and highly efficient building materials. This study presents new data on the development of environmentally sustainable building materials based on fuel slag, which can reduce environmental impact and improve the sustainability of infrastructure.
dc.format.extent125-134
dc.format.pages10
dc.identifier.citationOptimisation of composition and strength properties of slag-alkali binders based on fuel slags / Akymbek Abdykalykov, Taalaibek Bolotov, Alaybek Kurbanbaev, Akbermet Matyeva, Ryskulbek Zhumabaev // Architectural Studies. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 125–134.
dc.identifier.citationenOptimisation of composition and strength properties of slag-alkali binders based on fuel slags / Akymbek Abdykalykov, Taalaibek Bolotov, Alaybek Kurbanbaev, Akbermet Matyeva, Ryskulbek Zhumabaev // Architectural Studies. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 125–134.
dc.identifier.doidoi.org/10.56318/as/1.2024.125
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64555
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofАрхітектурні дослідження, 1 (10), 2024
dc.relation.ispartofArchitectural Studies, 1 (10), 2024
dc.relation.references[1] Abdul, F., Adachi, K., Ho, H.-J., Iizuka, A., & Shibata, E. (2024). Magnesium recovery from ferronickel slag by reaction with sodium hydroxide. Journal of Environmental Chemical Engineering, 12(3), article number 112516. doi: 10.1016/j.jece.2024.112516.
dc.relation.references[2] Amer, I., Kohail, M., El-Feky, M.S., Rashad, A., & Khalaf, M.A. (2021). A review on alkali-activated slag concrete. Ain Shams Engineering Journal, 12(2), 1475-1499. doi: 10.1016/j.asej.2020.12.003.
dc.relation.references[3] Athira, V., Charitha, V., Athira, G., & Bahurudeen, A. (2021). Agro-waste ash based alkali-activated binder: Cleaner production of zero cement concrete for construction. Journal of Cleaner Production, 286, article number 125429. doi: 10.1016/j.jclepro.2020.125429.
dc.relation.references[4] Bereziuk, O., Lemeshev, M., & Stadniichuk, M. (2023). Prevalence of ash processing in the manufacture of building materials. Modern Technology, Materials and Design in Construction, 35(2), 56-61. doi: 10.31649/2311-1429-2023-2-56-61.
dc.relation.references[5] Chen, J., Xing, Y., Wang, Y., Zhang, W., Guo, Z., & Su, W. (2022). Application of iron and steel slags in mitigating greenhouse gas emissions: A review. Science of the Total Environment, 844, article number 157041. doi: 10.1016/j.scitotenv.2022.157041.
dc.relation.references[6] Cheng, Y., Awan, U., Ahmad, Sh., & Tan, Zh. (2021). How do technological innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth. Technological Forecasting and Social Change, 162, article number 120398. doi: 10.1016/j.techfore.2020.120398.
dc.relation.references[7] Cristelo, N., Castro, F., Miranda, T., Abdollahnejad, Z., & Fernández-Jiménez, A. (2021). Iron and aluminium production wastes as exclusive components of alkali activated binders – towards a sustainable alternative. Sustainability, 13(17), article number 9938. doi: 10.3390/su13179938.
dc.relation.references[8] Dai, X., Ren, L., Gu, X., Yilmaz, E., Fang, K., & Jiang, H. (2022). Strength analysis and optimization of alkali activated slag backfills through response surface methodology. Frontiers in Materials, 9, article number 844608. doi: 10.3389/fmats.2022.844608.
dc.relation.references[9] Deepak, M., Reddy, Y.R., & Nagendra, R. (2023). Investigating the mechanical strength, durability and micro-structural properties of slag-based concrete. Innovative Infrastructure Solutions, 8, article number 272. doi: 10.1007/s41062-023-01234-2.
dc.relation.references[10] Gao, B., Yang, Ch., Zou, Yi., Wang, F., Zhou, X., Barbieri, D.M., & Wu, Sh. (2021). Compaction procedures and associated environmental impacts analysis for application of steel slag in road base layer. Sustainability, 13(8), article number 4396. doi: 10.3390/su13084396.
dc.relation.references[11] Gao, Yi., Zhao, W., Zhou, A.-N., Han, R., Li, Zh., Zhang, N.-N., Wang, J.-Z., & Ma, Ch. (2022). Study on the composition and structure characteristics and dry decarbonization separation of coal water slurry gasification fine slag. Journal of Fuel Chemistry and Technology, 50(8), 954-965. doi: 10.1016/S1872-5813(22)60007-0.
dc.relation.references[12] Guo, W., Wang, Sh., Xu, Z., Zhang, Zh., Zhang, Ch., Bai, Ya., & Zhao, Q. (2021). Mechanical performance and microstructure improvement of soda residue-carbide slag-ground granulated blast furnace slag binder by optimizing its preparation process and curing method. Construction and Building Materials, 302, article number 124403. doi: 10.1016/j.conbuildmat.2021.124403.
dc.relation.references[13] Holappa, L., Kekkonen, M., Jokilaakso, A., & Koskinen, J. (2021). A review of circular economy prospects for stainless steelmaking slags. Journal of Sustainable Metallurgy, 7, 806-817. doi: 10.1007/s40831-021-00392-w.
dc.relation.references[14] Huang, J., Zou, Ch., Sun, D., Yang, B., & Yan, J. (2021). Effect of recycled fine aggregates on alkali-activated slag concrete properties. Structures, 30, 89-99. doi: 10.1016/j.istruc.2020.12.064.
dc.relation.references[15] Hui-Teng, N., Cheng-Yong, H., Yun-Ming, L., Al Bakri Abdullah, M.M., Hun, K.E., Razi, H.M., & Yong-Sing, N. (2021). Formulation, mechanical properties and phase analysis of fly ash geopolymer with ladle furnace slag replacement. Journal of Materials Research and Technology, 12, 1212-1226. doi: 10.1016/j.jmrt.2021.03.065.
dc.relation.references[16] Isakulov, B., Abdullaev, H., Mukasheva, A., Akishev, U., & Ordabayeva, G. (2023). Investigation of the formation of microstructure and strength characteristics of slag-alkaline arbolite. EUREKA: Physics and Engineering, 2, 209-221. doi: 10.21303/2461-4262.2023.002814.
dc.relation.references[17] Khobotova, E., & Kaliuzhna, I. (2023). Waste blast-furnace slag as a resource for the production of slag-alkaline binders. Journal of Chemistry and Technologies, 31(3), 563-571. doi: 10.15421/jchemtech.v31i3.279211.
dc.relation.references[18] Kombayev, K., Muzdybayev, M., Muzdybayeva, A., Myrzabekova, D., Wieleba, W., & Leśniewski, T. (2022). Functional surface layer strengthening and wear resistance increasing of a low carbon steel by electrolytic-plasma processing. Strojniški Vestnik – Journal of Mechanical Engineering, 68(9), 542-551. doi: 10.5545/sv-jme.2022.147.
dc.relation.references[19] Krivenko, P., Helevera, O., Rudenko, I., & Rohozina, N. (2023). Structure formation and optimization of compositions of decorative alkali-activated slag cements. AIP Conference Proceedings, 2684(1), article number 040012. doi: 10.1063/5.0120046.
dc.relation.references[20] Lu, H., Bai, J., Kong, L., Li, H., Bai, Z., & Li, W. (2023). The crystallization kinetics analysis and the new prediction index of melilite-bearing slag under solid fuel gasification condition. Chemical Engineering Journal, 477, article number 147089. doi: 10.1016/j.cej.2023.147089.
dc.relation.references[21] Manjunatha, M., Preethi, S., Malingaraya, Mounika, H.G., Niveditha, K.N., & Ravi. (2021). Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials. Materials Today: Proceedings, 47(13), 3637-3644. doi: 10.1016/j.matpr.2021.01.248.
dc.relation.references[22] Onaizi, A.M., Tang, W., & Liu, Ya. (2024). Co-grinding treatment for developing integrated-properties SCMs from basic oxygen furnace slag and furnace bottom ash: A step toward synthesis advanced SCMs. Case Studies in Construction Materials, 20, article number e03163. doi: 10.1016/j.cscm.2024.e03163.
dc.relation.references[23] Schupsky, J.P., Netter, T., Wu, G., Spliethoff, H., & Müller, M. (2021). Crystal morphology data for viscosity modelling of fuel slags – supplementation of spinel phase and validation by crystallisation in entrained flow gasifiers. Fuel, 303, article number 121114. doi: 10.1016/j.fuel.2021.121114.
dc.relation.references[24] Singh, G.V.P.B., & Prasad, V.D. (2024). Environmental impact of concrete containing high volume fly ash and ground granulated blast furnace slag. Journal of Cleaner Production, 448, article number 141729. doi: 10.1016/j.jclepro.2024.141729.
dc.relation.references[25] Thomas, S., Huang, L., & Barati, M. (2021). A review of slag refining of crude silicon. JOM, 73, 260-281. doi: 10.1007/s11837-020-04470-4.
dc.relation.references[26] Turan, C., Javadi, A.A., Vinai, R., & Russo, G. (2022). Effects of fly ash inclusion and alkali activation on physical, mechanical, and chemical properties of clay. Materials, 15(13), article number 4628. doi: 10.3390/ma15134628.
dc.relation.references[27] Turkoglu, M., Bayraktar, O.Y., Benli, A., & Kaplan, G. (2023). Effect of cement clinker type, curing regime and activator dosage on the performance of one-part alkali-activated hybrid slag/clinker composites. Journal of Building Engineering, 68, article number 106164. doi: 10.1016/j.jobe.2023.106164.
dc.relation.references[28] Vázquez-Rodríguez, F., Elizondo, N., Montes-González, M., Gómez-Rodríguez, C., González-Carranza, Ya., Guzmán, A.M., & Rodríguez, E.A. (2023). Microstructural and mechanical characteristics of alkali-activated binders composed of milled fly ash and granulated blast furnace slag with µ-limestone addition. Materials, 16(10), article number 3818. doi: 10.3390/ma16103818.
dc.relation.references[29] Wang, Ya., Cao, Yu., Ma, Yu., Xiao, Sh., Hu, J., & Wang, H. (2021). Fresh and hardened properties of alkali-activated fly ash/slag binders: Effect of fly ash source, surface area, and additives. Journal of Sustainable Cement-Based Materials, 11(4), 239-262. doi: 10.1080/21650373.2021.1932637.
dc.relation.references[30] Yakovkin, I.N., Katrich, G.A., Loburets, A.T., Vedula, Yu.S., & Naumovets, A.G. (1998). Alkaline-earth overlayers on furrowed transition metal surfaces: An example of tailoring the surface properties. Progress in Surface Science, 59(1-4), 355-365. doi: 10.1016/S0079-6816(98)00061-6.
dc.relation.references[31] Zhumadilova, A., Zhigitova, S., & Turalina, M. (2023). The impact of greenhouse gases on climate change. Scientific Horizons, 26(6), 97-109. doi: 10.48077/scihor6.2023.97.
dc.relation.referencesen[1] Abdul, F., Adachi, K., Ho, H.-J., Iizuka, A., & Shibata, E. (2024). Magnesium recovery from ferronickel slag by reaction with sodium hydroxide. Journal of Environmental Chemical Engineering, 12(3), article number 112516. doi: 10.1016/j.jece.2024.112516.
dc.relation.referencesen[2] Amer, I., Kohail, M., El-Feky, M.S., Rashad, A., & Khalaf, M.A. (2021). A review on alkali-activated slag concrete. Ain Shams Engineering Journal, 12(2), 1475-1499. doi: 10.1016/j.asej.2020.12.003.
dc.relation.referencesen[3] Athira, V., Charitha, V., Athira, G., & Bahurudeen, A. (2021). Agro-waste ash based alkali-activated binder: Cleaner production of zero cement concrete for construction. Journal of Cleaner Production, 286, article number 125429. doi: 10.1016/j.jclepro.2020.125429.
dc.relation.referencesen[4] Bereziuk, O., Lemeshev, M., & Stadniichuk, M. (2023). Prevalence of ash processing in the manufacture of building materials. Modern Technology, Materials and Design in Construction, 35(2), 56-61. doi: 10.31649/2311-1429-2023-2-56-61.
dc.relation.referencesen[5] Chen, J., Xing, Y., Wang, Y., Zhang, W., Guo, Z., & Su, W. (2022). Application of iron and steel slags in mitigating greenhouse gas emissions: A review. Science of the Total Environment, 844, article number 157041. doi: 10.1016/j.scitotenv.2022.157041.
dc.relation.referencesen[6] Cheng, Y., Awan, U., Ahmad, Sh., & Tan, Zh. (2021). How do technological innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth. Technological Forecasting and Social Change, 162, article number 120398. doi: 10.1016/j.techfore.2020.120398.
dc.relation.referencesen[7] Cristelo, N., Castro, F., Miranda, T., Abdollahnejad, Z., & Fernández-Jiménez, A. (2021). Iron and aluminium production wastes as exclusive components of alkali activated binders – towards a sustainable alternative. Sustainability, 13(17), article number 9938. doi: 10.3390/su13179938.
dc.relation.referencesen[8] Dai, X., Ren, L., Gu, X., Yilmaz, E., Fang, K., & Jiang, H. (2022). Strength analysis and optimization of alkali activated slag backfills through response surface methodology. Frontiers in Materials, 9, article number 844608. doi: 10.3389/fmats.2022.844608.
dc.relation.referencesen[9] Deepak, M., Reddy, Y.R., & Nagendra, R. (2023). Investigating the mechanical strength, durability and micro-structural properties of slag-based concrete. Innovative Infrastructure Solutions, 8, article number 272. doi: 10.1007/s41062-023-01234-2.
dc.relation.referencesen[10] Gao, B., Yang, Ch., Zou, Yi., Wang, F., Zhou, X., Barbieri, D.M., & Wu, Sh. (2021). Compaction procedures and associated environmental impacts analysis for application of steel slag in road base layer. Sustainability, 13(8), article number 4396. doi: 10.3390/su13084396.
dc.relation.referencesen[11] Gao, Yi., Zhao, W., Zhou, A.-N., Han, R., Li, Zh., Zhang, N.-N., Wang, J.-Z., & Ma, Ch. (2022). Study on the composition and structure characteristics and dry decarbonization separation of coal water slurry gasification fine slag. Journal of Fuel Chemistry and Technology, 50(8), 954-965. doi: 10.1016/S1872-5813(22)60007-0.
dc.relation.referencesen[12] Guo, W., Wang, Sh., Xu, Z., Zhang, Zh., Zhang, Ch., Bai, Ya., & Zhao, Q. (2021). Mechanical performance and microstructure improvement of soda residue-carbide slag-ground granulated blast furnace slag binder by optimizing its preparation process and curing method. Construction and Building Materials, 302, article number 124403. doi: 10.1016/j.conbuildmat.2021.124403.
dc.relation.referencesen[13] Holappa, L., Kekkonen, M., Jokilaakso, A., & Koskinen, J. (2021). A review of circular economy prospects for stainless steelmaking slags. Journal of Sustainable Metallurgy, 7, 806-817. doi: 10.1007/s40831-021-00392-w.
dc.relation.referencesen[14] Huang, J., Zou, Ch., Sun, D., Yang, B., & Yan, J. (2021). Effect of recycled fine aggregates on alkali-activated slag concrete properties. Structures, 30, 89-99. doi: 10.1016/j.istruc.2020.12.064.
dc.relation.referencesen[15] Hui-Teng, N., Cheng-Yong, H., Yun-Ming, L., Al Bakri Abdullah, M.M., Hun, K.E., Razi, H.M., & Yong-Sing, N. (2021). Formulation, mechanical properties and phase analysis of fly ash geopolymer with ladle furnace slag replacement. Journal of Materials Research and Technology, 12, 1212-1226. doi: 10.1016/j.jmrt.2021.03.065.
dc.relation.referencesen[16] Isakulov, B., Abdullaev, H., Mukasheva, A., Akishev, U., & Ordabayeva, G. (2023). Investigation of the formation of microstructure and strength characteristics of slag-alkaline arbolite. EUREKA: Physics and Engineering, 2, 209-221. doi: 10.21303/2461-4262.2023.002814.
dc.relation.referencesen[17] Khobotova, E., & Kaliuzhna, I. (2023). Waste blast-furnace slag as a resource for the production of slag-alkaline binders. Journal of Chemistry and Technologies, 31(3), 563-571. doi: 10.15421/jchemtech.v31i3.279211.
dc.relation.referencesen[18] Kombayev, K., Muzdybayev, M., Muzdybayeva, A., Myrzabekova, D., Wieleba, W., & Leśniewski, T. (2022). Functional surface layer strengthening and wear resistance increasing of a low carbon steel by electrolytic-plasma processing. Strojniški Vestnik – Journal of Mechanical Engineering, 68(9), 542-551. doi: 10.5545/sv-jme.2022.147.
dc.relation.referencesen[19] Krivenko, P., Helevera, O., Rudenko, I., & Rohozina, N. (2023). Structure formation and optimization of compositions of decorative alkali-activated slag cements. AIP Conference Proceedings, 2684(1), article number 040012. doi: 10.1063/5.0120046.
dc.relation.referencesen[20] Lu, H., Bai, J., Kong, L., Li, H., Bai, Z., & Li, W. (2023). The crystallization kinetics analysis and the new prediction index of melilite-bearing slag under solid fuel gasification condition. Chemical Engineering Journal, 477, article number 147089. doi: 10.1016/j.cej.2023.147089.
dc.relation.referencesen[21] Manjunatha, M., Preethi, S., Malingaraya, Mounika, H.G., Niveditha, K.N., & Ravi. (2021). Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials. Materials Today: Proceedings, 47(13), 3637-3644. doi: 10.1016/j.matpr.2021.01.248.
dc.relation.referencesen[22] Onaizi, A.M., Tang, W., & Liu, Ya. (2024). Co-grinding treatment for developing integrated-properties SCMs from basic oxygen furnace slag and furnace bottom ash: A step toward synthesis advanced SCMs. Case Studies in Construction Materials, 20, article number e03163. doi: 10.1016/j.cscm.2024.e03163.
dc.relation.referencesen[23] Schupsky, J.P., Netter, T., Wu, G., Spliethoff, H., & Müller, M. (2021). Crystal morphology data for viscosity modelling of fuel slags – supplementation of spinel phase and validation by crystallisation in entrained flow gasifiers. Fuel, 303, article number 121114. doi: 10.1016/j.fuel.2021.121114.
dc.relation.referencesen[24] Singh, G.V.P.B., & Prasad, V.D. (2024). Environmental impact of concrete containing high volume fly ash and ground granulated blast furnace slag. Journal of Cleaner Production, 448, article number 141729. doi: 10.1016/j.jclepro.2024.141729.
dc.relation.referencesen[25] Thomas, S., Huang, L., & Barati, M. (2021). A review of slag refining of crude silicon. JOM, 73, 260-281. doi: 10.1007/s11837-020-04470-4.
dc.relation.referencesen[26] Turan, C., Javadi, A.A., Vinai, R., & Russo, G. (2022). Effects of fly ash inclusion and alkali activation on physical, mechanical, and chemical properties of clay. Materials, 15(13), article number 4628. doi: 10.3390/ma15134628.
dc.relation.referencesen[27] Turkoglu, M., Bayraktar, O.Y., Benli, A., & Kaplan, G. (2023). Effect of cement clinker type, curing regime and activator dosage on the performance of one-part alkali-activated hybrid slag/clinker composites. Journal of Building Engineering, 68, article number 106164. doi: 10.1016/j.jobe.2023.106164.
dc.relation.referencesen[28] Vázquez-Rodríguez, F., Elizondo, N., Montes-González, M., Gómez-Rodríguez, C., González-Carranza, Ya., Guzmán, A.M., & Rodríguez, E.A. (2023). Microstructural and mechanical characteristics of alkali-activated binders composed of milled fly ash and granulated blast furnace slag with µ-limestone addition. Materials, 16(10), article number 3818. doi: 10.3390/ma16103818.
dc.relation.referencesen[29] Wang, Ya., Cao, Yu., Ma, Yu., Xiao, Sh., Hu, J., & Wang, H. (2021). Fresh and hardened properties of alkali-activated fly ash/slag binders: Effect of fly ash source, surface area, and additives. Journal of Sustainable Cement-Based Materials, 11(4), 239-262. doi: 10.1080/21650373.2021.1932637.
dc.relation.referencesen[30] Yakovkin, I.N., Katrich, G.A., Loburets, A.T., Vedula, Yu.S., & Naumovets, A.G. (1998). Alkaline-earth overlayers on furrowed transition metal surfaces: An example of tailoring the surface properties. Progress in Surface Science, 59(1-4), 355-365. doi: 10.1016/S0079-6816(98)00061-6.
dc.relation.referencesen[31] Zhumadilova, A., Zhigitova, S., & Turalina, M. (2023). The impact of greenhouse gases on climate change. Scientific Horizons, 26(6), 97-109. doi: 10.48077/scihor6.2023.97.
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectтехногенна сировина
dc.subjectзола гідровіддалення
dc.subjectдобавка
dc.subjectкомпозиційні будівельні матеріали
dc.subjectхімічний склад
dc.subjectman-made raw materials
dc.subjectfly ash
dc.subjectadditive
dc.subjectcomposite building materials
dc.subjectchemical composition
dc.subject.udc622.7
dc.subject.udc666.94.02
dc.titleOptimisation of composition and strength properties of slag-alkali binders based on fuel slags
dc.title.alternativeОптимізація складу та міцнісних властивостей шлаколужних в’яжучих на основі паливних шлаків
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v10n1_Abdykalykov_A-Optimisation_of_composition_125-134.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v10n1_Abdykalykov_A-Optimisation_of_composition_125-134__COVER.png
Size:
956.42 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2 KB
Format:
Plain Text
Description: