Digital entities communication within a blockchain-enabled intelligent transport system

dc.citation.epage19
dc.citation.issue2
dc.citation.journalTitleІнфокомунікаційні технології та електронна інженерія
dc.citation.spage12
dc.citation.volume3
dc.contributor.affiliationДержавний університет інтелектуальних технологій і зв’язку
dc.contributor.affiliationState University of Intellectual Technologies and Telecommunications
dc.contributor.authorБабіч, Ю.
dc.contributor.authorБагачук, Д.
dc.contributor.authorБуката, Л.
dc.contributor.authorГлазунова, Л.
dc.contributor.authorШнайде, С.
dc.contributor.authorBabich, Y.
dc.contributor.authorBagachuk, D.
dc.contributor.authorBukata, L.
dc.contributor.authorHlazunova, L.
dc.contributor.authorShnaider, S.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-07-22T11:15:29Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractСьогодні блокчейн вважається невід’ємною частиною інтелектуальних транспортних систем. Інтелектуальність транспортних систем дає змогу підвищити безпеку дорожнього руху, раціонально використовувати ресурси систем і надавати додаткові послуги учасникам. Однак реалізації блокчейну для інтелектуальних транспортних систем необхідно адаптувати до особливостей таких систем. У роботі проаналізовано відомі блокчейн-рішення, їх особливості, переваги та недоліки, а також наведено реалізацію блокчейну консорціумного типу для інтелектуальної транспортної системи. Ця реалізація передбачає дворівневу архітектуру взаємодії цифрових об’єктів, розгляд розподілу цифрових об’єктів за рівнями, вибір механізму консенсусу та його реалізацію, міркування стосовно моделі довіри та структуру блоків для запропонованої реалізації блокчейну. У статті також подано рішення для вразливості типу “єдина точка відмови” запропонованої системи блокчейн. Отже, стаття охоплює ключові аспекти синтезу блокчейну для інтелектуальної транспортної системи.
dc.description.abstractNowadays the blockchain is considered to be an integral part of intelligent transport systems. Intelligence of a transport systems allows to increase road safety, wisely utilize systems’ resources and provide additional services to participants. However, blockchain implementations for intelligent transport systems must be adopted to the peculiarities of such systems. This work analyzes existing blockchain solutions, their features, advantages, drawbacks, and presents a consortium type blockchain implementation for an intelligent transport system. This implementation includes a two-layered architecture of digital entities interaction, consideration for digital entities distribution over the layers, consensus mechanism selection and its implementation, trust model considerations, and a block structure for the proposed blockchain implementation. The article also brings the solution to the single point of failure vulnerability of the proposed blockchain system. Thus, the paper covers key aspects of a blockchain design for an intelligent transport system.
dc.format.extent12-19
dc.format.pages8
dc.identifier.citationDigital entities communication within a blockchain-enabled intelligent transport system / Y. Babich, D. Bagachuk, L. Bukata, L. Hlazunova, S. Shnaider // Infocommunication Technologies and Electronic Engineering. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 3. — No 2. — P. 12–19.
dc.identifier.citationenDigital entities communication within a blockchain-enabled intelligent transport system / Y. Babich, D. Bagachuk, L. Bukata, L. Hlazunova, S. Shnaider // Infocommunication Technologies and Electronic Engineering. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 3. — No 2. — P. 12–19.
dc.identifier.doidoi.org/10.23939/ictee2023.02.012
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111453
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofІнфокомунікаційні технології та електронна інженерія, 2 (3), 2023
dc.relation.ispartofInfocommunication Technologies and Electronic Engineering, 2 (3), 2023
dc.relation.references[1] Meneguette, R., De Grande, R., Loureiro, A. (2018). Intelligent Transport System in Smart Cities. Aspects and Challenges of Vehicular Networks and Cloud, p. 182. DOI: 10.1007/978-3-319-93332-0.
dc.relation.references[2] Waseem, M., Ahmed, K., Azeem, M. (2021). Blockchain Based Intelligent Transport System. Modern Innovations, Systems and Technologies, 1(3), pp. 70–88. DOI: 10.47813/2782-2818-2021-1-3-70-88.
dc.relation.references[3] Blockchain In Retail Market Sales, Demand Outlook by Component, Type, Application & Region – Fore-cast 2023 – 2030. Contrive Datum Insights. Available at https://www.contrivedatuminsights.com/product-report/blockchain-in-retail-market-248372/?Mode=PM
dc.relation.references[4] Building Value with Blockchain Technology:How to Evaluate Blockchain’s Benefits. World Economic Forum White Paper. Available at http://www3.weforum.org/docs/WEF_Building_Value_with_Blockchain.pdf
dc.relation.references[5] Nam, K., Dutt, C., Chathoth, P., Khan, M. (2021). Blockchain technology for smart city and smart tourism: latest trends and challenges. Asia Pacific Journal of Tourism Research, Vol. 26, No. 4, pp. 454–468. DOI: 10.1080/10941665.2019.1585376
dc.relation.references[6] Shrestha, R., Bajracharya, R., Shrestha, A., Nam, S. (2020). A new type of blockchain for secure message exchange in VANET. Digital Communications and Networks, Vol. 6, Iss. 2, pp. 177–186. DOI: 10.1016/j.dcan.2019.04.003.
dc.relation.references[7] Jabbar, R., Dhib, E., Ben Said, A., Krichen, M., Zaidan, E., Barkaoui, K. (2022). Blockchain Technology for Intelligent Transportation Systems: A Systematic Literature Review. IEEE Access, Vol. 10, pp. 20995–21031. DOI: 10.1109/ACCESS.2022.3149958.
dc.relation.references[8] Hou, J., Ding, W., Liang, X., Zhu, F., Yuan, Y., Wang, F. (2021). A Study on Decentralized Autonomous Organizations Based Intelligent Transportation System enabled by Blockchain and Smart Contract, 2021 China Automation Congress (CAC), Beijing, China, pp. 967–971. DOI: 10.1109/CAC53003.2021.9727429.
dc.relation.references[9] Zhang, X., Chen, X. (2019) Data security sharing and storage based on a consortium blockchain in a vehicular ad-hoc network. IEEE Access, Vol. 7, pp. 58241–58254. DOI: 0.1109/ACCESS.2018.2890736.
dc.relation.references[10] Lu, Z., Liu, W., Wang, Q., Qu, G., Liu, Z. (2018) A privacy-preserving trust model based on blockchain for VANETs. IEEE Access, Vol. 6, pp. 45655–45664. DOI: 10.1109/ACCESS.2018.2864189.
dc.relation.references[11] Zheng, D., Jing, C., Guo, R., Gao, S., Wang L. (2019) A traceable blockchain-based access authentication system with privacy preservation in VANETs. IEEE Access, Vol. 7, pp. 117716–117726. DOI: 10.1109/ACCESS.2019.2936575.
dc.relation.references[12] Marmol, F., Martinez, G. (2011). TRIP, a trust and reputation infrastructure-based proposal for vehicular ad hoc networks. Journal of Network and Computer, Vol. 35 (3), pp. 934–941. DOI: 10.1016/j.jnca.2011.03.028.
dc.relation.references[13] Gurung, S., Lin, D., Squicciarini, A., Bertino, E. (2013). Information-Oriented Trustworthiness Evaluation in Vehicular Ad-hoc Networks. Network and System Security, Vol. 7873, pp. 94–108. DOI: 10.1007/978-3-642-38631-2_8.
dc.relation.references[14] Jakobsson, M., Juels, A. (1999). “Proofs of Work and Bread Pudding Protocols”. Secure Information Networks: Communications and Multimedia Security. Kluwer Academic Publishers, pp. 258–272. DOI: 10.1007/978-0-387-35568-9_18.
dc.relation.references[15] Bentov, I., Gabizon, A., Mizrahi, A. (2016). Cryptocurrencies Without Proof of Work. Financial Cryptography and Data Security, Vol. 9604, pp. 142–157. DOI: 10.1007/978-3-662-53357-4_10
dc.relation.references[16] De Angelis, S., Aniello, L., Lombardi, F., Margheri, A., Sassone, V. (2017). PBFT vs proof-of-authority: applying the CAP theorem to permissioned blockchain. Available https://www.researchgate.net/publication/320619309_PBFT_vs_proof-of-authority_applying_the_CAP_theorem_to_permissioned_blockchain
dc.relation.references[17] P4Titan (2014) Slimcoin A Peer-to-Peer Crypto-Currency with Proof-of-Burn Available at https://github.com/slimcoin-project/slimcoin-project.github.io/raw/master/whitepaperSLM.pdf
dc.relation.references[18] Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K. (2013). Proofs of Space. Available at https://eprint.iacr.org/2013/796.pdf
dc.relation.references[19] Curran, B. (2018) What is Proof of Elapsed Time Consensus? (PoET) Complete Beginner’s Guide. Avail-able at https://blockonomi.com/proof-of-elapsed-time-consensus/
dc.relation.references[20] Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M. (2014). Proof of Activity: Extending Bitcoin’s Proof of Work via Proof of Stake. ACM SIGMETRICS Performance Evaluation Review, Vol. 42, Iss. 3, pp. 34–37. DOI: 10.1145/2695533.2695545
dc.relation.references[21] Chen, J., Micali, S. (2019). Algorand: A secure and efficient distributed ledger Available at https://www3.cs.stonybrook.edu/~jingchen/papers/Algorand_A%20secure%20and%20efficient%20distributed%20ledger_TCS.pdf. DOI: 10.1016/j.tcs.2019.02.001
dc.relation.references[22] NEM Technical Reference. Version 1.2.1 (2018) Available at https://nemproject.github.io/nem-docs/pages/Whitepapers/NEM_techRef.pdf
dc.relation.references[23] Castro, M., Liskov, B. Practical Byzantine Fault tolerance (2002) Proc. Third Symposium on Operating Systems Design and Implementation, p. 114.
dc.relation.references[24] Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash. Bitcoin: a peer-to-peer Electronic Cash System. Available at: https://bitcoin.org/bitcoin.pdf
dc.relation.references[25] Merkle, R. (1987). A digital signature based on a conventional encryption function. Proceedings of CRYPTO 1987, pp. 369–378. DOI: 10.1007/3-540-48184-2_32.
dc.relation.referencesen[1] Meneguette, R., De Grande, R., Loureiro, A. (2018). Intelligent Transport System in Smart Cities. Aspects and Challenges of Vehicular Networks and Cloud, p. 182. DOI: 10.1007/978-3-319-93332-0.
dc.relation.referencesen[2] Waseem, M., Ahmed, K., Azeem, M. (2021). Blockchain Based Intelligent Transport System. Modern Innovations, Systems and Technologies, 1(3), pp. 70–88. DOI: 10.47813/2782-2818-2021-1-3-70-88.
dc.relation.referencesen[3] Blockchain In Retail Market Sales, Demand Outlook by Component, Type, Application & Region – Fore-cast 2023 – 2030. Contrive Datum Insights. Available at https://www.contrivedatuminsights.com/product-report/blockchain-in-retail-market-248372/?Mode=PM
dc.relation.referencesen[4] Building Value with Blockchain Technology:How to Evaluate Blockchain’s Benefits. World Economic Forum White Paper. Available at http://www3.weforum.org/docs/WEF_Building_Value_with_Blockchain.pdf
dc.relation.referencesen[5] Nam, K., Dutt, C., Chathoth, P., Khan, M. (2021). Blockchain technology for smart city and smart tourism: latest trends and challenges. Asia Pacific Journal of Tourism Research, Vol. 26, No. 4, pp. 454–468. DOI: 10.1080/10941665.2019.1585376
dc.relation.referencesen[6] Shrestha, R., Bajracharya, R., Shrestha, A., Nam, S. (2020). A new type of blockchain for secure message exchange in VANET. Digital Communications and Networks, Vol. 6, Iss. 2, pp. 177–186. DOI: 10.1016/j.dcan.2019.04.003.
dc.relation.referencesen[7] Jabbar, R., Dhib, E., Ben Said, A., Krichen, M., Zaidan, E., Barkaoui, K. (2022). Blockchain Technology for Intelligent Transportation Systems: A Systematic Literature Review. IEEE Access, Vol. 10, pp. 20995–21031. DOI: 10.1109/ACCESS.2022.3149958.
dc.relation.referencesen[8] Hou, J., Ding, W., Liang, X., Zhu, F., Yuan, Y., Wang, F. (2021). A Study on Decentralized Autonomous Organizations Based Intelligent Transportation System enabled by Blockchain and Smart Contract, 2021 China Automation Congress (CAC), Beijing, China, pp. 967–971. DOI: 10.1109/CAC53003.2021.9727429.
dc.relation.referencesen[9] Zhang, X., Chen, X. (2019) Data security sharing and storage based on a consortium blockchain in a vehicular ad-hoc network. IEEE Access, Vol. 7, pp. 58241–58254. DOI: 0.1109/ACCESS.2018.2890736.
dc.relation.referencesen[10] Lu, Z., Liu, W., Wang, Q., Qu, G., Liu, Z. (2018) A privacy-preserving trust model based on blockchain for VANETs. IEEE Access, Vol. 6, pp. 45655–45664. DOI: 10.1109/ACCESS.2018.2864189.
dc.relation.referencesen[11] Zheng, D., Jing, C., Guo, R., Gao, S., Wang L. (2019) A traceable blockchain-based access authentication system with privacy preservation in VANETs. IEEE Access, Vol. 7, pp. 117716–117726. DOI: 10.1109/ACCESS.2019.2936575.
dc.relation.referencesen[12] Marmol, F., Martinez, G. (2011). TRIP, a trust and reputation infrastructure-based proposal for vehicular ad hoc networks. Journal of Network and Computer, Vol. 35 (3), pp. 934–941. DOI: 10.1016/j.jnca.2011.03.028.
dc.relation.referencesen[13] Gurung, S., Lin, D., Squicciarini, A., Bertino, E. (2013). Information-Oriented Trustworthiness Evaluation in Vehicular Ad-hoc Networks. Network and System Security, Vol. 7873, pp. 94–108. DOI: 10.1007/978-3-642-38631-2_8.
dc.relation.referencesen[14] Jakobsson, M., Juels, A. (1999). "Proofs of Work and Bread Pudding Protocols". Secure Information Networks: Communications and Multimedia Security. Kluwer Academic Publishers, pp. 258–272. DOI: 10.1007/978-0-387-35568-9_18.
dc.relation.referencesen[15] Bentov, I., Gabizon, A., Mizrahi, A. (2016). Cryptocurrencies Without Proof of Work. Financial Cryptography and Data Security, Vol. 9604, pp. 142–157. DOI: 10.1007/978-3-662-53357-4_10
dc.relation.referencesen[16] De Angelis, S., Aniello, L., Lombardi, F., Margheri, A., Sassone, V. (2017). PBFT vs proof-of-authority: applying the CAP theorem to permissioned blockchain. Available https://www.researchgate.net/publication/320619309_PBFT_vs_proof-of-authority_applying_the_CAP_theorem_to_permissioned_blockchain
dc.relation.referencesen[17] P4Titan (2014) Slimcoin A Peer-to-Peer Crypto-Currency with Proof-of-Burn Available at https://github.com/slimcoin-project/slimcoin-project.github.io/raw/master/whitepaperSLM.pdf
dc.relation.referencesen[18] Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K. (2013). Proofs of Space. Available at https://eprint.iacr.org/2013/796.pdf
dc.relation.referencesen[19] Curran, B. (2018) What is Proof of Elapsed Time Consensus? (PoET) Complete Beginner’s Guide. Avail-able at https://blockonomi.com/proof-of-elapsed-time-consensus/
dc.relation.referencesen[20] Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M. (2014). Proof of Activity: Extending Bitcoin’s Proof of Work via Proof of Stake. ACM SIGMETRICS Performance Evaluation Review, Vol. 42, Iss. 3, pp. 34–37. DOI: 10.1145/2695533.2695545
dc.relation.referencesen[21] Chen, J., Micali, S. (2019). Algorand: A secure and efficient distributed ledger Available at https://www3.cs.stonybrook.edu/~jingchen/papers/Algorand_A%20secure%20and%20efficient%20distributed%20ledger_TCS.pdf. DOI: 10.1016/j.tcs.2019.02.001
dc.relation.referencesen[22] NEM Technical Reference. Version 1.2.1 (2018) Available at https://nemproject.github.io/nem-docs/pages/Whitepapers/NEM_techRef.pdf
dc.relation.referencesen[23] Castro, M., Liskov, B. Practical Byzantine Fault tolerance (2002) Proc. Third Symposium on Operating Systems Design and Implementation, p. 114.
dc.relation.referencesen[24] Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash. Bitcoin: a peer-to-peer Electronic Cash System. Available at: https://bitcoin.org/bitcoin.pdf
dc.relation.referencesen[25] Merkle, R. (1987). A digital signature based on a conventional encryption function. Proceedings of CRYPTO 1987, pp. 369–378. DOI: 10.1007/3-540-48184-2_32.
dc.relation.urihttps://www.contrivedatuminsights.com/product-report/blockchain-in-retail-market-248372/?Mode=PM
dc.relation.urihttp://www3.weforum.org/docs/WEF_Building_Value_with_Blockchain.pdf
dc.relation.urihttps://www.researchgate.net/publication/320619309_PBFT_vs_proof-of-authority_applying_the_CAP_theorem_to_permissioned_blockchain
dc.relation.urihttps://github.com/slimcoin-project/slimcoin-project.github.io/raw/master/whitepaperSLM.pdf
dc.relation.urihttps://eprint.iacr.org/2013/796.pdf
dc.relation.urihttps://blockonomi.com/proof-of-elapsed-time-consensus/
dc.relation.urihttps://www3.cs.stonybrook.edu/~jingchen/papers/Algorand_A%20secure%20and%20efficient%20distributed%20ledger_TCS.pdf
dc.relation.urihttps://nemproject.github.io/nem-docs/pages/Whitepapers/NEM_techRef.pdf
dc.relation.urihttps://bitcoin.org/bitcoin.pdf
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectінтелектуальна транспортна система
dc.subjectконсорціумний блокчейн
dc.subjectцифрова сутність
dc.subjectintelligent transport system
dc.subjectconsortium blockchain
dc.subjectdigital entity
dc.subject.udc004.75
dc.subject.udc004.72
dc.titleDigital entities communication within a blockchain-enabled intelligent transport system
dc.title.alternativeКомунікація цифрових об’єктів у інтелектуальній транспортній системі з підтримкою блокчейну
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v3n2_Babich_Y-Digital_entities_communication_12-19.pdf
Size:
432.16 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v3n2_Babich_Y-Digital_entities_communication_12-19__COVER.png
Size:
1.13 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: