Удосконалення навігаційної системи пристрою дефектоскопії підземних труб

dc.citation.epage126
dc.citation.issue1
dc.citation.journalTitleКомп’ютерні системи проектування. Теорія і практика
dc.citation.spage117
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМельник, Михайло
dc.contributor.authorВинарович, Роман
dc.contributor.authorГасюк, Юрій
dc.contributor.authorШварц, Михайло
dc.contributor.authorMelnyk, Mykhaylo
dc.contributor.authorVynarovych, Roman
dc.contributor.authorHasiuk, Yurii
dc.contributor.authorShvarts, Mykhailo
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-11T09:52:32Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractУ цій статті розглядається проблема шуму та дрейфу мікроелектромеханічних гіроскопів та їх вплив на точність вимірювань в інженерних застосуваннях. Запропоновано використання комплементарного фільтру для поєднання інформації з акселерометра та гіроскопа з метою зменшення неточностей. Дослідження показують, що акселерометр має кращу повторюваність результатів, що важливо для отримання стабільних вимірювань. У той же час, гіроскоп може бути більш ефективним у вимірюванні поступальних рухів. Важливим аспектом є добір чутливості давачів, а також правильна настройка параметрів. Розроблена система, яка здатна ефективно фільтрувати та вимірювати кут об'єкта, а використання комплементарного фільтру дає змогу покращити точність вимірювань. Запропонований підхід може бути успішно використаний для точного виявлення кута положення вимірювальної установки при дефектоскопії підземних трубопроводів.
dc.description.abstractThis article addresses the issue of noise and drift in microelectromechanical gyroscopes and their impact on measurement accuracy in engineering applications. The use of a complementary filter is proposed to combine information from the accelerometer and gyroscope to reduce inaccuracies. Research shows that the accelerometer has better result repeatability, which is important for obtaining stable measurements. At the same time, the gyroscope may be more effective in measuring translational movements. The selection of sensor sensitivities and proper parameter tuning are crucial aspects. A developed system is capable of effectively filtering and measuring the angle of an object, and the use of a complementary filter improves measurement accuracy. The proposed approach can be successfully utilized for accurately detecting the angle of position of a measurement setup in defect inspection of underground pipelines.
dc.format.extent117-126
dc.format.pages10
dc.identifier.citationУдосконалення навігаційної системи пристрою дефектоскопії підземних труб / Михайло Мельник, Роман Винарович, Юрій Гасюк, Михайло Шварц // Комп’ютерні системи проектування. Теорія і практика. — Львів : Видавництво Львівської політехніки, 2024. — Том 6. — № 1. — С. 117–126.
dc.identifier.citationenImproving the navigation system of underground pipe defect detection device / Mykhaylo Melnyk, Roman Vynarovych, Yurii Hasiuk, Mykhailo Shvarts // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 117–126.
dc.identifier.doidoi.org/10.23939/cds2024.01.117
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64103
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofКомп’ютерні системи проектування. Теорія і практика, 1 (6), 2024
dc.relation.ispartofComputer Systems of Design. Theory and Practice, 1 (6), 2024
dc.relation.references[1] Zhang, Z.Y.; Fan, D.P.; Li, K.; Zhang, W.B. Study on the filtering method of micro-electromechanical gyro zero drift data. J. Chin. Inert. Technol. 2006, 4, 67–69.
dc.relation.references[2] Park, S.; Gil, M.S.; Im, H.; Moon, Y.S. Measurement Noise Recommendation for Efficient Kalman Filtering over a Large Amount of Sensor Data. Sensors 2019, 19, 1168. https://doi.org/10.3390/s19051168
dc.relation.references[3] Li, L.M.; Zhao, L.Y.; Tang, X.H.; He, W.; Li, F.R. Gyro Error Compensation Algorithm Based on Improved Kalman Filter. J. Transduct. Technol. 2018, 31, 538–544, 550.
dc.relation.references[4] Zhou, X.Y. Research on Target Positioning Error Analysis and Correction of Photoelectric Detection System. Ph.D. Thesis, National University of Defense Technology, Changsha, China, 2011.
dc.relation.references[5] Li, Q.G.; Zhang, H.L.; Hao, J.R. Research on Gyroscope Drift Compensation Algorithm Based on Six Accelerometers. Sens. Microsyst. 2009, 28, 42–44.
dc.relation.references[6] Yu Liu, Song Liu, Changwen Wang and Le Wang, “A New Northseeking Method Based on MEMS Gyroscope,” International Frequency Sensor Association J. Sensors & Transducers, vol. 178, September 2014, pp. 14-19.
dc.relation.references[7] A. S. Samosir and N. S. Widodo, “Gyroscope and Accelerometer Sensor on the Lanange Jagad Dance Robot Balance System Sensor Gyroscope dan Accelerometer pada Sistem Keseimbangan Robot Seni Tari Lanange Jagad,” Bul. Ilm. Sarj. Tek. Elektro,vol. 2, no. 2, pp. 51–58, 2020, https://doi.org/10.12928/biste.v2i2.922
dc.relation.references[8] H. Chao, C. Coopmans, D. Long, and Y.Q. Chen, “A Comparative Evaluation of Low-Cost IMUs for Unmanned Autonomous Systems,” IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, September 2010 , pp. 211-216. https://doi.org/10.1109/MFI.2010.5604460
dc.relation.references[9] L. Lasmadi, “Attitude Estimation for Quadrotor Based on IMU with Kalman-Filter,” Conf. Senat. STT Adisutjipto Yogyakarta, vol. 4, no. 0, pp. 351–358, Nov. 2018, https://doi.org/10.28989/senatik.v4i0.267
dc.relation.references[10] M. Riyadi et al., “Pendeteksi Posisi Menggunakan Sensor Accelerometer MMA7260Q,” Semarang, Tek. Elektro Univ. Diponegoro, vol. 12, no. 2, pp. 76–81, 2010, https://doi.org/10.1093/geront/gns022
dc.relation.references[11] S. A. Quadri and O. Sidek, “Error and Noise Analysis in an IMU using Kalman Filter,” Int. J. Hybrid Inf. Technol., vol. 7, no. 3, pp. 39–48, 2014, https://doi.org/10.14257/ijhit.2014.7.3.06
dc.relation.references[12] J.W. Chia, M.S.C. Tissera, K.S. Low, S.T. Goh and Y.T. Xing, “A low Complexity Kalman filter for Improving MEMS based Gyroscope Performance,” March 2016 https://doi.org/10.1109/AERO.2016.7500795
dc.relation.references[13] G. Yanning, H. Fei, D. Shaohe, M. Guangfu and Z. Liangkuan “Performance Analysis of MEMS Gyro and Improvement using Kalman Filter,” IEEE 34th Chinese Control Conference, July 2015, pp. 1934- 1768. https://doi.org/10.1109/ChiCC.2015.7260380
dc.relation.references[14] M.T. Leccadito, “An Attitude Heading Reference System using a Low Cost Inertial Measurement Unit,” M.S. thesis, Dept. Elect. and Computer Eng., Virginia Commonwealth University, Richmond, Virginia, August 2013.
dc.relation.references[15] B. McCarron, “Low-Cost IMU Implementation via Sensor Fusion Algorithms in the Arduino Environment,” Bachelor of Science, Department of the Aerospace Engineering, Polytechnic State University, San Luis Obispo, California, June 2013.
dc.relation.references[16] https://www.analog.com/media/en/technical-documentation/data-sheets/adxl...
dc.relation.references[17] https://www.sparkfun.com/datasheets/Sensors/IMU/lpy503al.pdf
dc.relation.references[18] https://www.ni.com/en/shop/labview.html
dc.relation.referencesen[1] Zhang, Z.Y.; Fan, D.P.; Li, K.; Zhang, W.B. Study on the filtering method of micro-electromechanical gyro zero drift data. J. Chin. Inert. Technol. 2006, 4, 67–69.
dc.relation.referencesen[2] Park, S.; Gil, M.S.; Im, H.; Moon, Y.S. Measurement Noise Recommendation for Efficient Kalman Filtering over a Large Amount of Sensor Data. Sensors 2019, 19, 1168. https://doi.org/10.3390/s19051168
dc.relation.referencesen[3] Li, L.M.; Zhao, L.Y.; Tang, X.H.; He, W.; Li, F.R. Gyro Error Compensation Algorithm Based on Improved Kalman Filter. J. Transduct. Technol. 2018, 31, 538–544, 550.
dc.relation.referencesen[4] Zhou, X.Y. Research on Target Positioning Error Analysis and Correction of Photoelectric Detection System. Ph.D. Thesis, National University of Defense Technology, Changsha, China, 2011.
dc.relation.referencesen[5] Li, Q.G.; Zhang, H.L.; Hao, J.R. Research on Gyroscope Drift Compensation Algorithm Based on Six Accelerometers. Sens. Microsyst. 2009, 28, 42–44.
dc.relation.referencesen[6] Yu Liu, Song Liu, Changwen Wang and Le Wang, "A New Northseeking Method Based on MEMS Gyroscope," International Frequency Sensor Association J. Sensors & Transducers, vol. 178, September 2014, pp. 14-19.
dc.relation.referencesen[7] A. S. Samosir and N. S. Widodo, "Gyroscope and Accelerometer Sensor on the Lanange Jagad Dance Robot Balance System Sensor Gyroscope dan Accelerometer pada Sistem Keseimbangan Robot Seni Tari Lanange Jagad," Bul. Ilm. Sarj. Tek. Elektro,vol. 2, no. 2, pp. 51–58, 2020, https://doi.org/10.12928/biste.v2i2.922
dc.relation.referencesen[8] H. Chao, C. Coopmans, D. Long, and Y.Q. Chen, "A Comparative Evaluation of Low-Cost IMUs for Unmanned Autonomous Systems," IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, September 2010 , pp. 211-216. https://doi.org/10.1109/MFI.2010.5604460
dc.relation.referencesen[9] L. Lasmadi, "Attitude Estimation for Quadrotor Based on IMU with Kalman-Filter," Conf. Senat. STT Adisutjipto Yogyakarta, vol. 4, no. 0, pp. 351–358, Nov. 2018, https://doi.org/10.28989/senatik.v4i0.267
dc.relation.referencesen[10] M. Riyadi et al., "Pendeteksi Posisi Menggunakan Sensor Accelerometer MMA7260Q," Semarang, Tek. Elektro Univ. Diponegoro, vol. 12, no. 2, pp. 76–81, 2010, https://doi.org/10.1093/geront/gns022
dc.relation.referencesen[11] S. A. Quadri and O. Sidek, "Error and Noise Analysis in an IMU using Kalman Filter," Int. J. Hybrid Inf. Technol., vol. 7, no. 3, pp. 39–48, 2014, https://doi.org/10.14257/ijhit.2014.7.3.06
dc.relation.referencesen[12] J.W. Chia, M.S.C. Tissera, K.S. Low, S.T. Goh and Y.T. Xing, "A low Complexity Kalman filter for Improving MEMS based Gyroscope Performance," March 2016 https://doi.org/10.1109/AERO.2016.7500795
dc.relation.referencesen[13] G. Yanning, H. Fei, D. Shaohe, M. Guangfu and Z. Liangkuan "Performance Analysis of MEMS Gyro and Improvement using Kalman Filter," IEEE 34th Chinese Control Conference, July 2015, pp. 1934- 1768. https://doi.org/10.1109/ChiCC.2015.7260380
dc.relation.referencesen[14] M.T. Leccadito, "An Attitude Heading Reference System using a Low Cost Inertial Measurement Unit," M.S. thesis, Dept. Elect. and Computer Eng., Virginia Commonwealth University, Richmond, Virginia, August 2013.
dc.relation.referencesen[15] B. McCarron, "Low-Cost IMU Implementation via Sensor Fusion Algorithms in the Arduino Environment," Bachelor of Science, Department of the Aerospace Engineering, Polytechnic State University, San Luis Obispo, California, June 2013.
dc.relation.referencesen[16] https://www.analog.com/media/en/technical-documentation/data-sheets/adxl...
dc.relation.referencesen[17] https://www.sparkfun.com/datasheets/Sensors/IMU/lpy503al.pdf
dc.relation.referencesen[18] https://www.ni.com/en/shop/labview.html
dc.relation.urihttps://doi.org/10.3390/s19051168
dc.relation.urihttps://doi.org/10.12928/biste.v2i2.922
dc.relation.urihttps://doi.org/10.1109/MFI.2010.5604460
dc.relation.urihttps://doi.org/10.28989/senatik.v4i0.267
dc.relation.urihttps://doi.org/10.1093/geront/gns022
dc.relation.urihttps://doi.org/10.14257/ijhit.2014.7.3.06
dc.relation.urihttps://doi.org/10.1109/AERO.2016.7500795
dc.relation.urihttps://doi.org/10.1109/ChiCC.2015.7260380
dc.relation.urihttps://www.analog.com/media/en/technical-documentation/data-sheets/adxl..
dc.relation.urihttps://www.sparkfun.com/datasheets/Sensors/IMU/lpy503al.pdf
dc.relation.urihttps://www.ni.com/en/shop/labview.html
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Мельник М., Винарович Р., Гасюк Ю., Шварц М., 2024
dc.subjectMEMS
dc.subjectакселерометр
dc.subjectгіроскоп
dc.subjectкут
dc.subjectкомплементарний фільтр
dc.subjectкалібрування
dc.subjectLabView
dc.subjectMEMS
dc.subjectaccelerometer
dc.subjectgyroscope
dc.subjectangle
dc.subjectcomplementary filter
dc.subjectcalibration
dc.subjectLabView
dc.titleУдосконалення навігаційної системи пристрою дефектоскопії підземних труб
dc.title.alternativeImproving the navigation system of underground pipe defect detection device
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v6n1_Melnyk_M-Improving_the_navigation_117-126.pdf
Size:
1.27 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v6n1_Melnyk_M-Improving_the_navigation_117-126__COVER.png
Size:
485.22 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.9 KB
Format:
Plain Text
Description: