Порівняльний аналіз алгоритмів ідентифікації лінії лазера для пристроїв 3D-сканування
dc.citation.epage | 139 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Комп’ютерні системи проектування. Теорія і практика | |
dc.citation.spage | 127 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Огерук, Богдан | |
dc.contributor.author | Андрущак, Назарій | |
dc.contributor.author | Oheruk, Bohdan | |
dc.contributor.author | Andrushchak, Nazariy | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-11T09:52:32Z | |
dc.date.created | 2024-02-27 | |
dc.date.issued | 2024-02-27 | |
dc.description.abstract | Проведено порівняльний аналіз алгоритмів визначення та розпізнавання центру лазерної лінії, описано проблематику у цьому напрямі, принцип дії, негативні та позитивні сторони кожного методу. Показано можливості їх застосування за допомогою програмного коду. Тестування алгоритмів проведено із використанням засобів мови Python і бібліотеки OpenCV. Продемонстровано, що якість фінального результату у методі екстремумів значною мірою залежить від якості підібраних параметрів для фільтру Баттерворта. Натомість метод сірої гравітації істотно залежний від правильності визначення кута падіння лазера. Проаналізовано швидкодію та точність для кожного алгоритму. | |
dc.description.abstract | A comparative analysis of algorithms for laser line center determination and recognition has been conducted. The issues in this area are described, outlining the principles, pros, and cons of each method. Additionally, the possibilities of their application using programming code are demonstrated. Algorithm testing was performed using Python language tools and the OpenCV library. It is shown that the quality of the result in the extremum method significantly depends on the quality of the selected parameters for the Butterworth filter. In contrast, the gray gravity method substantially relies on the accuracy of determining the laser incidence angle. The computational efficiency and accuracy for each algorithm are also analyzed. | |
dc.format.extent | 127-139 | |
dc.format.pages | 13 | |
dc.identifier.citation | Огерук Б. Порівняльний аналіз алгоритмів ідентифікації лінії лазера для пристроїв 3D-сканування / Богдан Огерук, Назарій Андрущак // Комп’ютерні системи проектування. Теорія і практика. — Львів : Видавництво Львівської політехніки, 2024. — Том 6. — № 1. — С. 127–139. | |
dc.identifier.citationen | Oheruk B. Comparative analysis of algorithms for laser line identification for 3D scanning devices / Bohdan Oheruk, Nazariy Andrushchak // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 127–139. | |
dc.identifier.doi | doi.org/10.23939/cds2024.01.127 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64104 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Комп’ютерні системи проектування. Теорія і практика, 1 (6), 2024 | |
dc.relation.ispartof | Computer Systems of Design. Theory and Practice, 1 (6), 2024 | |
dc.relation.references | [1] X. Shi, Y. Sun, H. Liu, L. Bai, and C. Lin, "Research on laser stripe characteristics and centerex traction algorithm for desktop laser scanner," SN Applied Sciences, vol. 3, pp. 1-12, 2021. https://doi.org/10.1007/s42452-021-04309-w | |
dc.relation.references | [2] H. F. Wang, Y. F. Wang, J. J. Zhang, and J. Cao, "Laser stripe center detection under the condition of uneven scattering metal surface for geometric measurement," IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 5, pp. 2182-2192, 2019. https://doi.org/10.1109/TIM.2019.2921440 | |
dc.relation.references | [3] J. Salvi, X. Armangue ́, and J. Batlle, "A comparative review of camera calibrating methods with accuracy evaluation," Pattern Recognition, vol. 35, pp. 1617-1635, 2002. https://doi.org/10.1016/S0031-3203(01)00126-1 | |
dc.relation.references | [4] D. Lanmanand G. Taubin, "Build your own 3D scanner: optical triangulation for beginners," in ACM SIGGRAPH ASIA Courses, 2009, pp. 1-94. https://doi.org/10.1145/1665817.1665819 | |
dc.relation.references | [5] R. B. Fisherand D. K. Naidu, "A comparison of algorithms for subpixel peak detection," in Image Technology, Advancesin Image Processing, Multimedia and Machine Vision, 1996, pp. 385–404. https://doi.org/10.1007/978-3-642-58288-2_15 | |
dc.relation.references | [6] R. B. Fisher, "Subpixel estimation," in Computer Vision: A Reference Guide, pp. 1217-1220, Springer International Publishing, 2021. https://doi.org/10.1007/978-3-030-63416-2_189 | |
dc.relation.references | [7] J. Forest, J. Salvi, E. Cabruja, and C. Pous, "Laser stripe peak detector for 3D scanners. A FIR filter approach," in Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., vol. 3, pp. 646-649, IEEE. https://doi.org/10.1109/ICPR.2004.1334612 | |
dc.relation.references | [8] B. Dierickx, "Cmos image sensors: concepts and limits. A short course given at Photonics West," 2000. | |
dc.relation.references | [9] H. G. Adelmann, "Butter worth equations for homomorphic filtering of images," Computersin Biology and Medicine, vol. 28, no. 2, pp. 169-181, 1998. https://doi.org/10.1016/S0010-4825(98)00004-3 | |
dc.relation.references | [10] S. S. Al-Amriand N. V. Kalyankar, "Image segmentation by using threshold techniques," arXivpreprint arXiv:1005.4020, 2010. | |
dc.relation.references | [11] D. Sundararajan, "The discrete Fourier transform: theory, algorithms and applications," World Scientific, 2001. https://doi.org/10.1142/9789812810298 | |
dc.relation.references | [12] S. A. Broughtonand K. Bryan, "Discrete Fourier analysis and wavelets: applications to signal and image processing," JohnWiley&Sons, 2018. https://doi.org/10.1002/9781119473329 | |
dc.relation.references | [13] A. Patra, S. Bandyopadhyay, D. Chakraborty, and A. Saha, "A Novel Approach to Compression of Satellite Images Using Butter worth Filtering," in Information, Photonics and Communication: Proceedings of Second National Conference, IPC 2019, pp. 179-183, Springer, 2020. https://doi.org/10.1007/978-981-32-9453-0_18 | |
dc.relation.references | [14] Y. Li, J. Zhou, F. Huang, and L. Liu, "Sub-pixel extraction of laser stripe center using an improved gray-gravity method," Sensors, vol. 17, no. 4, p. 814, 2017. https://doi.org/10.3390/s17040814 | |
dc.relation.references | [15] X. Chen, G. Zhang, and J. Sun, "An efficient and accurate method for real-time processing of light stripe images," Advances in Mechanical Engineering, vol. 5, p. 456927, 2013. https://doi.org/10.1155/2013/456927 | |
dc.relation.references | [16] Bestech Australia. Using Precision Laser Scanners For Quality Control In Manufacturing. (Mar. 29, 2023) Accessed: Mar. 11, 2024. [Online]. Available: https://www.bestech.com.au/wp-content/uploads/2023/03/Using-Precision-Laser-Scanners-for-Quality-Control-in-Manufacturing.jpg | |
dc.relation.referencesen | [1] X. Shi, Y. Sun, H. Liu, L. Bai, and C. Lin, "Research on laser stripe characteristics and centerex traction algorithm for desktop laser scanner," SN Applied Sciences, vol. 3, pp. 1-12, 2021. https://doi.org/10.1007/s42452-021-04309-w | |
dc.relation.referencesen | [2] H. F. Wang, Y. F. Wang, J. J. Zhang, and J. Cao, "Laser stripe center detection under the condition of uneven scattering metal surface for geometric measurement," IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 5, pp. 2182-2192, 2019. https://doi.org/10.1109/TIM.2019.2921440 | |
dc.relation.referencesen | [3] J. Salvi, X. Armangue ́, and J. Batlle, "A comparative review of camera calibrating methods with accuracy evaluation," Pattern Recognition, vol. 35, pp. 1617-1635, 2002. https://doi.org/10.1016/S0031-3203(01)00126-1 | |
dc.relation.referencesen | [4] D. Lanmanand G. Taubin, "Build your own 3D scanner: optical triangulation for beginners," in ACM SIGGRAPH ASIA Courses, 2009, pp. 1-94. https://doi.org/10.1145/1665817.1665819 | |
dc.relation.referencesen | [5] R. B. Fisherand D. K. Naidu, "A comparison of algorithms for subpixel peak detection," in Image Technology, Advancesin Image Processing, Multimedia and Machine Vision, 1996, pp. 385–404. https://doi.org/10.1007/978-3-642-58288-2_15 | |
dc.relation.referencesen | [6] R. B. Fisher, "Subpixel estimation," in Computer Vision: A Reference Guide, pp. 1217-1220, Springer International Publishing, 2021. https://doi.org/10.1007/978-3-030-63416-2_189 | |
dc.relation.referencesen | [7] J. Forest, J. Salvi, E. Cabruja, and C. Pous, "Laser stripe peak detector for 3D scanners. A FIR filter approach," in Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., vol. 3, pp. 646-649, IEEE. https://doi.org/10.1109/ICPR.2004.1334612 | |
dc.relation.referencesen | [8] B. Dierickx, "Cmos image sensors: concepts and limits. A short course given at Photonics West," 2000. | |
dc.relation.referencesen | [9] H. G. Adelmann, "Butter worth equations for homomorphic filtering of images," Computersin Biology and Medicine, vol. 28, no. 2, pp. 169-181, 1998. https://doi.org/10.1016/S0010-4825(98)00004-3 | |
dc.relation.referencesen | [10] S. S. Al-Amriand N. V. Kalyankar, "Image segmentation by using threshold techniques," arXivpreprint arXiv:1005.4020, 2010. | |
dc.relation.referencesen | [11] D. Sundararajan, "The discrete Fourier transform: theory, algorithms and applications," World Scientific, 2001. https://doi.org/10.1142/9789812810298 | |
dc.relation.referencesen | [12] S. A. Broughtonand K. Bryan, "Discrete Fourier analysis and wavelets: applications to signal and image processing," JohnWiley&Sons, 2018. https://doi.org/10.1002/9781119473329 | |
dc.relation.referencesen | [13] A. Patra, S. Bandyopadhyay, D. Chakraborty, and A. Saha, "A Novel Approach to Compression of Satellite Images Using Butter worth Filtering," in Information, Photonics and Communication: Proceedings of Second National Conference, IPC 2019, pp. 179-183, Springer, 2020. https://doi.org/10.1007/978-981-32-9453-0_18 | |
dc.relation.referencesen | [14] Y. Li, J. Zhou, F. Huang, and L. Liu, "Sub-pixel extraction of laser stripe center using an improved gray-gravity method," Sensors, vol. 17, no. 4, p. 814, 2017. https://doi.org/10.3390/s17040814 | |
dc.relation.referencesen | [15] X. Chen, G. Zhang, and J. Sun, "An efficient and accurate method for real-time processing of light stripe images," Advances in Mechanical Engineering, vol. 5, p. 456927, 2013. https://doi.org/10.1155/2013/456927 | |
dc.relation.referencesen | [16] Bestech Australia. Using Precision Laser Scanners For Quality Control In Manufacturing. (Mar. 29, 2023) Accessed: Mar. 11, 2024. [Online]. Available: https://www.bestech.com.au/wp-content/uploads/2023/03/Using-Precision-Laser-Scanners-for-Quality-Control-in-Manufacturing.jpg | |
dc.relation.uri | https://doi.org/10.1007/s42452-021-04309-w | |
dc.relation.uri | https://doi.org/10.1109/TIM.2019.2921440 | |
dc.relation.uri | https://doi.org/10.1016/S0031-3203(01)00126-1 | |
dc.relation.uri | https://doi.org/10.1145/1665817.1665819 | |
dc.relation.uri | https://doi.org/10.1007/978-3-642-58288-2_15 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-63416-2_189 | |
dc.relation.uri | https://doi.org/10.1109/ICPR.2004.1334612 | |
dc.relation.uri | https://doi.org/10.1016/S0010-4825(98)00004-3 | |
dc.relation.uri | https://doi.org/10.1142/9789812810298 | |
dc.relation.uri | https://doi.org/10.1002/9781119473329 | |
dc.relation.uri | https://doi.org/10.1007/978-981-32-9453-0_18 | |
dc.relation.uri | https://doi.org/10.3390/s17040814 | |
dc.relation.uri | https://doi.org/10.1155/2013/456927 | |
dc.relation.uri | https://www.bestech.com.au/wp-content/uploads/2023/03/Using-Precision-Laser-Scanners-for-Quality-Control-in-Manufacturing.jpg | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.rights.holder | © Огерук Б., Андрущак Н., 2024 | |
dc.subject | метод екстремумів | |
dc.subject | метод сірої гравітації | |
dc.subject | апроксимація | |
dc.subject | 3D-сканер | |
dc.subject | extremum method | |
dc.subject | gray gravity method | |
dc.subject | approximation | |
dc.subject | 3D scanner | |
dc.title | Порівняльний аналіз алгоритмів ідентифікації лінії лазера для пристроїв 3D-сканування | |
dc.title.alternative | Comparative analysis of algorithms for laser line identification for 3D scanning devices | |
dc.type | Article |
Files
License bundle
1 - 1 of 1