Study of the process of adsorption of petroleum products methods of multivariate cluster analysis

dc.citation.epage191
dc.citation.issue3
dc.citation.spage185
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationJan Dlugosz University in Czestochowa
dc.contributor.authorSabadash, Vira
dc.contributor.authorKonovalov, Oleh
dc.contributor.authorNowik-Zajaç, Anna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T09:43:24Z
dc.date.available2024-02-09T09:43:24Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractThe article is devoted to studying the process of adsorption of oil products using multivariate cluster analysis methods. The study solves the problem of environmental pollution with petroleum substances and the search for effective cleaning methods. The work aims to study the prospects of using synthetic zeolites to effectively purify industrial wastewater from oil products. The scientific novelty of the study is the study of the potential of synthetic zeolites as adsorbents to ensure an efficient and environmentally friendly process of cleaning industrial wastewater from petroleum products. The adsorption research methodology included selecting and preparing eight types of adsorbents, determining temperature and concentration range, measuring adsorption capacity, data processing and analysis of results. In the experimental study, the photometric method was used, one of the most accurate and widely used methods for measuring the adsorption of petroleum products. The study results indicate some materials potential for the effective adsorption of petroleum products. The study provides grounds for recommendations regarding the optimal conditions for the adsorption process and the selection of materials for further research and development. The application of multivariate cluster analysis in the study of the adsorption process of oil products opens up new opportunities for solving environmental pollution problems and developing effective technologies for cleaning the environment. The outcomes of this study are anticipated to significantly benefit industries dealing with petroleum product separation and pollution control. By offering a more comprehensive understanding of the adsorption process, this research opens avenues for developing tailored adsorption strategies for specific applications.
dc.format.extent185-191
dc.format.pages7
dc.identifier.citationSabadash V. Study of the process of adsorption of petroleum products methods of multivariate cluster analysis / Vira Sabadash, Oleh Konovalov, Anna Nowik-Zajaç // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 3. — P. 185–191.
dc.identifier.citationenSabadash V. Study of the process of adsorption of petroleum products methods of multivariate cluster analysis / Vira Sabadash, Oleh Konovalov, Anna Nowik-Zajaç // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 3. — P. 185–191.
dc.identifier.doidoi.org/10.23939/ep2023.03.185
dc.identifier.issn2414-5955
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61202
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 3 (8), 2023
dc.relation.referencesBai, S., Chu, M., Zhou, L., Chang, Z., Zhang, C., & Liu, B. (2022). Removal of heavy metals from aqueous solutions by X-type zeolite prepared from a combination of oil shale ash and coal fly ash. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(2), 5113-5123. doi: https://doi.org/10.1080/15567036.2019.1661549
dc.relation.referencesFawaz, E.G., Salam, D.A., S. Rigolet, S., & Daou, T.J. (2021). Hierarchical zeolites as catalysts for biodiesel production from waste frying oils to overcome mass transfer limitations. Molecules, 26(16), 4879. doi: https://doi.org/10.3390/molecules26164879
dc.relation.referencesHayawin, Z.N., Syirat, Z.B., Ibrahim, M.F., Faizah, J.N., Astimar, A.A., Noorshamsiana, A.W., & Abd-Aziz, S. (2023). Pollutants removal from palm oil mill effluent (POME) final discharge using oil palm kernel shell activated carbon in the up-flow continuous adsorption system. International Journal of Environmental Science and Technology, 20(5), 5325-5338. doi: https://doi.org/10.1007/s13762-022-05268-8
dc.relation.referencesHyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019). Statics and kinetics of albumin adsorption by natural zeolite. Chemistry & Chemical Technology, 1(13), 995-100. doi: https://doi.org/10.23939/chcht13.01.095
dc.relation.referencesMelaibari, A.A., Elamoudi, A.S., Mostafa, M.E., & Abu-Hamdeh, N.H. (2023). Waste-to-Energy in Saudi Arabia: Treatment of petroleum wastewaters utilizing zeolite structures in the removal of phenol pollutants by using the power of molecular dynamics method. Engineering Analysis with Boundary Elements, 148, 317-323. doi: https://doi.org/10.1016/j.enganabound.2023.01.003
dc.relation.referencesMohammadi, M., Sedighi, M., & Hemati, M. (2020). Removal of petroleum asphaltenes by the improved activity of NiO nanoparticles supported on green AlPO-5 zeolite: Process optimization and adsorption isotherm. Petroleum, 6(2), 182-188. doi: https://doi.org/10.1016/j.petlm.2019.06.004
dc.relation.referencesMouandhoime, Z.O., & Brouillette, F. (2021). Evaluation of a combination of phosphorylated fibres and zeolite as a potential substitute for synthetic wetting agents in peat moss products. Canadian Journal of Soil Science, 101 (2), 317-323. doi: https://doi.org/10.1139/cjss-2020-0122
dc.relation.referencesRoulia, M., Koukouza, K., Stamatakis, M., & Vasilatos, C. (2022). Fly-ash derived Na-P1, natural zeolite tuffs and diatomite in motor oil retention. Cleaner Materials, 4, 100063. doi: https://doi.org/10.1016/j.clema.2022.100063
dc.relation.referencesSabadash, V., Gumnitsky, Y., & Liuta, O. (2020). Investigation of the process of ammonium ion adsorption by natural and synthetic sorbents by methods of multidimensional cluster analysis. Environmental Problems, 5(2), 113-118. doi: https://doi.org/10.23939/ep2020.02.113
dc.relation.referencesSamanta, N.S., Das, P.P., Mondal, P., Changmai, M., & Purkait, M.K. (2022). Critical review on the synthesis and advancement of industrial and biomass waste-based zeolites and their applications in gas adsorption and biomedical studies. Journal of the Indian Chemical Society, 99(11), 100761. doi: https://doi.org/10.1016/j.jics.2022.100761
dc.relation.referencesWang, S.H., Yun, Z.U., Qin, Y.C., Zhang, X.T., & Song, L.J. (2020). Fabrication of effective desulfurization species active sites in the CeY zeolites and the adsorption desulfurization mechanisms. Journal of Fuel Chemistry and Technology, 48(1), 52-62. doi: https://doi.org/10.1016/S1872-5813(20)30003-7
dc.relation.referencesWang, X., You, Y., Han, X., & Jiang, X. (2021). Product distribution and coke formation during catalytic pyrolysis of oil shale with zeolites. Journal of Thermal Analysis and Calorimetry, 147, 8535–8549. doi: https://doi.org/10.1007/s10973-021-11138-x
dc.relation.referencesWang, Z., & Chen, X.F. (2021). A periodic density functional theory study on methanol adsorption in HSAPO-34 zeolites. Chemical Physics Letters, 771, 138532. doi: https://doi.org/10.1016/j.cplett.2021.138532
dc.relation.referencesWiśniewska, M. (2023). Water-Soluble Polymers as Substances Modifying the Stability of Colloidal Systems, the Nanostructure of Adsorption Layers. In Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications: Selected Proceedings of the IX International Conference Nanotechnology and Nanomaterials (NANO2021), 25–28 August 2021, Lviv, Ukraine, 551-568. Cham: Springer International Publishing. doi: https://doi.org/10.1007/978-3-031-18096-5_33
dc.relation.referencesenBai, S., Chu, M., Zhou, L., Chang, Z., Zhang, C., & Liu, B. (2022). Removal of heavy metals from aqueous solutions by X-type zeolite prepared from a combination of oil shale ash and coal fly ash. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(2), 5113-5123. doi: https://doi.org/10.1080/15567036.2019.1661549
dc.relation.referencesenFawaz, E.G., Salam, D.A., S. Rigolet, S., & Daou, T.J. (2021). Hierarchical zeolites as catalysts for biodiesel production from waste frying oils to overcome mass transfer limitations. Molecules, 26(16), 4879. doi: https://doi.org/10.3390/molecules26164879
dc.relation.referencesenHayawin, Z.N., Syirat, Z.B., Ibrahim, M.F., Faizah, J.N., Astimar, A.A., Noorshamsiana, A.W., & Abd-Aziz, S. (2023). Pollutants removal from palm oil mill effluent (POME) final discharge using oil palm kernel shell activated carbon in the up-flow continuous adsorption system. International Journal of Environmental Science and Technology, 20(5), 5325-5338. doi: https://doi.org/10.1007/s13762-022-05268-8
dc.relation.referencesenHyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019). Statics and kinetics of albumin adsorption by natural zeolite. Chemistry & Chemical Technology, 1(13), 995-100. doi: https://doi.org/10.23939/chcht13.01.095
dc.relation.referencesenMelaibari, A.A., Elamoudi, A.S., Mostafa, M.E., & Abu-Hamdeh, N.H. (2023). Waste-to-Energy in Saudi Arabia: Treatment of petroleum wastewaters utilizing zeolite structures in the removal of phenol pollutants by using the power of molecular dynamics method. Engineering Analysis with Boundary Elements, 148, 317-323. doi: https://doi.org/10.1016/j.enganabound.2023.01.003
dc.relation.referencesenMohammadi, M., Sedighi, M., & Hemati, M. (2020). Removal of petroleum asphaltenes by the improved activity of NiO nanoparticles supported on green AlPO-5 zeolite: Process optimization and adsorption isotherm. Petroleum, 6(2), 182-188. doi: https://doi.org/10.1016/j.petlm.2019.06.004
dc.relation.referencesenMouandhoime, Z.O., & Brouillette, F. (2021). Evaluation of a combination of phosphorylated fibres and zeolite as a potential substitute for synthetic wetting agents in peat moss products. Canadian Journal of Soil Science, 101 (2), 317-323. doi: https://doi.org/10.1139/cjss-2020-0122
dc.relation.referencesenRoulia, M., Koukouza, K., Stamatakis, M., & Vasilatos, C. (2022). Fly-ash derived Na-P1, natural zeolite tuffs and diatomite in motor oil retention. Cleaner Materials, 4, 100063. doi: https://doi.org/10.1016/j.clema.2022.100063
dc.relation.referencesenSabadash, V., Gumnitsky, Y., & Liuta, O. (2020). Investigation of the process of ammonium ion adsorption by natural and synthetic sorbents by methods of multidimensional cluster analysis. Environmental Problems, 5(2), 113-118. doi: https://doi.org/10.23939/ep2020.02.113
dc.relation.referencesenSamanta, N.S., Das, P.P., Mondal, P., Changmai, M., & Purkait, M.K. (2022). Critical review on the synthesis and advancement of industrial and biomass waste-based zeolites and their applications in gas adsorption and biomedical studies. Journal of the Indian Chemical Society, 99(11), 100761. doi: https://doi.org/10.1016/j.jics.2022.100761
dc.relation.referencesenWang, S.H., Yun, Z.U., Qin, Y.C., Zhang, X.T., & Song, L.J. (2020). Fabrication of effective desulfurization species active sites in the CeY zeolites and the adsorption desulfurization mechanisms. Journal of Fuel Chemistry and Technology, 48(1), 52-62. doi: https://doi.org/10.1016/S1872-5813(20)30003-7
dc.relation.referencesenWang, X., You, Y., Han, X., & Jiang, X. (2021). Product distribution and coke formation during catalytic pyrolysis of oil shale with zeolites. Journal of Thermal Analysis and Calorimetry, 147, 8535–8549. doi: https://doi.org/10.1007/s10973-021-11138-x
dc.relation.referencesenWang, Z., & Chen, X.F. (2021). A periodic density functional theory study on methanol adsorption in HSAPO-34 zeolites. Chemical Physics Letters, 771, 138532. doi: https://doi.org/10.1016/j.cplett.2021.138532
dc.relation.referencesenWiśniewska, M. (2023). Water-Soluble Polymers as Substances Modifying the Stability of Colloidal Systems, the Nanostructure of Adsorption Layers. In Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications: Selected Proceedings of the IX International Conference Nanotechnology and Nanomaterials (NANO2021), 25–28 August 2021, Lviv, Ukraine, 551-568. Cham: Springer International Publishing. doi: https://doi.org/10.1007/978-3-031-18096-5_33
dc.relation.urihttps://doi.org/10.1080/15567036.2019.1661549
dc.relation.urihttps://doi.org/10.3390/molecules26164879
dc.relation.urihttps://doi.org/10.1007/s13762-022-05268-8
dc.relation.urihttps://doi.org/10.23939/chcht13.01.095
dc.relation.urihttps://doi.org/10.1016/j.enganabound.2023.01.003
dc.relation.urihttps://doi.org/10.1016/j.petlm.2019.06.004
dc.relation.urihttps://doi.org/10.1139/cjss-2020-0122
dc.relation.urihttps://doi.org/10.1016/j.clema.2022.100063
dc.relation.urihttps://doi.org/10.23939/ep2020.02.113
dc.relation.urihttps://doi.org/10.1016/j.jics.2022.100761
dc.relation.urihttps://doi.org/10.1016/S1872-5813(20)30003-7
dc.relation.urihttps://doi.org/10.1007/s10973-021-11138-x
dc.relation.urihttps://doi.org/10.1016/j.cplett.2021.138532
dc.relation.urihttps://doi.org/10.1007/978-3-031-18096-5_33
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Sabadash V., Konovalov O., Nowik-Zając A., 2023
dc.subjectadsorption
dc.subjectgreenhouse oil products
dc.subjectadsorbent
dc.subjectsynthetic zeolites
dc.titleStudy of the process of adsorption of petroleum products methods of multivariate cluster analysis
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v8n3_Sabadash_V-Study_of_the_process_of_185-191.pdf
Size:
316.73 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v8n3_Sabadash_V-Study_of_the_process_of_185-191__COVER.png
Size:
1.04 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: