Methods for outlier detection in metrological studies

dc.citation.epage29
dc.citation.issue3
dc.citation.journalTitleВимірювальна техніка та метрологія
dc.citation.spage25
dc.citation.volume85
dc.contributor.affiliationNational University of Radio Electronics
dc.contributor.authorAschepkov, Valeriy
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-05-14T06:40:30Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractThe article addresses the issue of outliers in metrological measurements, which can significantly distort research results and affect measurement accuracy. Outliers that substantially differ from other data points in a sample seriously threaten the reliability of metrological processes. In previous studies, the Isolation Forest model was applied to detect such outliers, demonstrating its effectiveness under certain conditions. For a deeper understanding and validation of the results, it is necessary to compare this approach with traditional robust methods, such as the Interquartile Range (IQR) and Median Absolute Deviation (MAD), already widely used in metrology. This work compares the mentioned outlier detection methods with the Isolation Forest model. Special attention is given to the impact of outliers on data distribution and each method's ability to impact mitigation, enhancing reliability. The study encompasses an analysis of the characteristics of the method for the identification of strengths and weaknesses in the context of real metrological tasks.
dc.format.extent25-29
dc.format.pages5
dc.identifier.citationAschepkov V. Methods for outlier detection in metrological studies / Valeriy Aschepkov // Measuring Equipment and Metrology : scientific journal. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 3. — P. 25–29.
dc.identifier.citationenAschepkov V. Methods for outlier detection in metrological studies / Valeriy Aschepkov // Measuring Equipment and Metrology : scientific journal. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 3. — P. 25–29.
dc.identifier.doidoi.org/10.23939/istcmtm2024.03.025
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64543
dc.language.isoen
dc.publisherВидавництво Національного університету “Львівська політехніка”
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВимірювальна техніка та метрологія, 3 (85), 2024
dc.relation.ispartofMeasuring Equipment and Metrology : scientific journal, 3 (85), 2024
dc.relation.references[1] V. O. Ashchepkov, “Application of the Isolation Forest Model for Anomaly Detection in Measurement Data” in Innovative Technologies and Scientific Solutions for Industries 2024, No. 1 (27). DOI: 10.30837/ITSSI.2024.27.236.
dc.relation.references[2] T. V. Potanina, I. V. Mikhaylenko, “Investigation of Experimental Data Samples for Outliers: Comparison of Methods” in Integrated Technologies and Energy Saving, No. 3, 2023. DOI: 10.20998/2078-5364.2023.3.07
dc.relation.references[3] Wada K. “Outliers in official statistics” in Japanese Journal of Statistics and Data Science, 2020, No. 3, pp. 669–691. DOI: 10.1007/s42081-020-00091-y
dc.relation.references[4] M. Orellana and P. Cedillo, “Outlier Detection with Data Mining Techniques and Statistical Methods”, 2019 International Conference on Information Systems and Computer Science (INCISCOS), Quito, Ecuador, 2019, pp. 51–56. DOI: 10.1109/INCISCOS49368.2019.00017
dc.relation.references[5] V. O. Aschepkov, “Research of metrological characteristics of the state primary standard of unit of volume and mass flow rate of liquid during preparation for participation in international comparisons” in Ukrainian Metrological Journal. 2024. No. 1 (77). DOI: 10.24027/2306-7039.1.2024.300937.
dc.relation.references[6] Batista E., Lau P. EURAMET regional key comparison EURAMET.M.FF-K4.b: Volume intercomparison at 20 L. Metrologia, 2009, Vol. 46(1A):07013. DOI: 10.1088/0026-1394/46/1A/07013
dc.relation.references[7] Malengo A., Batista E., Arias R., Mićić L., Bošnjaković A., Mirjana M., Piluri E., Svendsen G., Huu M., Sarevska A. and others. Final report on EURAMET project 1395/EURAMET.M.FF-K4.1.2016: volume comparison at 20 L. Metrologia, 2020. Vol. 57(1A):07021. DOI: 10.1088/0026-1394/57/1A/07021
dc.relation.references[8] Huovinen M., Frahm E. EURAMET.M.FF-S13 final report. Metrologia, 2022, Vol. 59(1A):07010. DOI: 10.1088/0026-1394/59/1A/07010
dc.relation.references[9] Geršl J., Lojek L. Final report on EURAMET project No. 1046: Intercomparison of water flow standards using electromagnetic flowmeters. Metrologia, 2013, Vol. 50(1A):07002. DOI: 10.1088/0026-1394/50/1A/07002
dc.relation.references[10] Batista E. Final report on EUROMET key comparison EUROMET.M.FF-K4 for volume intercomparison of 100 ml Gay-Lussac pycnometer. Metrologia, 2006, Vol. 43 (1A):07009. DOI: 10.1088/0026-1394/43/1A/07009
dc.relation.references[11] Benkova M., Frahm E., Romieu K., Warnecke H., Büker O., Haack S., Akselli B., Mazur V., Berkmann C., Zygmantas G. Comparisons of standards for liquid flow rates under static load changes. Metrologia, 2024, Vol. 61(1A):07003. DOI: 10.1088/0026-1394/61/1A/07003
dc.relation.referencesen[1] V. O. Ashchepkov, "Application of the Isolation Forest Model for Anomaly Detection in Measurement Data" in Innovative Technologies and Scientific Solutions for Industries 2024, No. 1 (27). DOI: 10.30837/ITSSI.2024.27.236.
dc.relation.referencesen[2] T. V. Potanina, I. V. Mikhaylenko, "Investigation of Experimental Data Samples for Outliers: Comparison of Methods" in Integrated Technologies and Energy Saving, No. 3, 2023. DOI: 10.20998/2078-5364.2023.3.07
dc.relation.referencesen[3] Wada K. "Outliers in official statistics" in Japanese Journal of Statistics and Data Science, 2020, No. 3, pp. 669–691. DOI: 10.1007/s42081-020-00091-y
dc.relation.referencesen[4] M. Orellana and P. Cedillo, "Outlier Detection with Data Mining Techniques and Statistical Methods", 2019 International Conference on Information Systems and Computer Science (INCISCOS), Quito, Ecuador, 2019, pp. 51–56. DOI: 10.1109/INCISCOS49368.2019.00017
dc.relation.referencesen[5] V. O. Aschepkov, "Research of metrological characteristics of the state primary standard of unit of volume and mass flow rate of liquid during preparation for participation in international comparisons" in Ukrainian Metrological Journal. 2024. No. 1 (77). DOI: 10.24027/2306-7039.1.2024.300937.
dc.relation.referencesen[6] Batista E., Lau P. EURAMET regional key comparison EURAMET.M.FF-K4.b: Volume intercomparison at 20 L. Metrologia, 2009, Vol. 46(1A):07013. DOI: 10.1088/0026-1394/46/1A/07013
dc.relation.referencesen[7] Malengo A., Batista E., Arias R., Mićić L., Bošnjaković A., Mirjana M., Piluri E., Svendsen G., Huu M., Sarevska A. and others. Final report on EURAMET project 1395/EURAMET.M.FF-K4.1.2016: volume comparison at 20 L. Metrologia, 2020. Vol. 57(1A):07021. DOI: 10.1088/0026-1394/57/1A/07021
dc.relation.referencesen[8] Huovinen M., Frahm E. EURAMET.M.FF-S13 final report. Metrologia, 2022, Vol. 59(1A):07010. DOI: 10.1088/0026-1394/59/1A/07010
dc.relation.referencesen[9] Geršl J., Lojek L. Final report on EURAMET project No. 1046: Intercomparison of water flow standards using electromagnetic flowmeters. Metrologia, 2013, Vol. 50(1A):07002. DOI: 10.1088/0026-1394/50/1A/07002
dc.relation.referencesen[10] Batista E. Final report on EUROMET key comparison EUROMET.M.FF-K4 for volume intercomparison of 100 ml Gay-Lussac pycnometer. Metrologia, 2006, Vol. 43 (1A):07009. DOI: 10.1088/0026-1394/43/1A/07009
dc.relation.referencesen[11] Benkova M., Frahm E., Romieu K., Warnecke H., Büker O., Haack S., Akselli B., Mazur V., Berkmann C., Zygmantas G. Comparisons of standards for liquid flow rates under static load changes. Metrologia, 2024, Vol. 61(1A):07003. DOI: 10.1088/0026-1394/61/1A/07003
dc.rights.holder© Національний університет “Львівська політехніка”, 2027
dc.subjectMetrology
dc.subjectOutliers
dc.subjectAnomalies
dc.subjectUncertainty
dc.subjectError
dc.subjectIsolation forest method
dc.subjectRobust methods
dc.titleMethods for outlier detection in metrological studies
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v85n3_Aschepkov_V-Methods_for_outlier_detection_25-29.pdf
Size:
195.99 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v85n3_Aschepkov_V-Methods_for_outlier_detection_25-29__COVER.png
Size:
495.69 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: