Theoretical analysis of existing concepts to evaluate the non-failure of rc structures in operation

dc.citation.epage6
dc.citation.issue2
dc.citation.spage1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorТитаренко, Р. Ю.
dc.contributor.authorХміль, Р. Є.
dc.contributor.authorДанкевич, І. П.
dc.contributor.authorTytarenko, Roman
dc.contributor.authorKhmil, Roman
dc.contributor.authorDankevych, Iryna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-04-10T08:44:29Z
dc.date.available2023-04-10T08:44:29Z
dc.date.created2021-11-11
dc.date.issued2021-11-11
dc.description.abstractПредставлено теоретичний аналіз наявних концепцій оцінювання безвідмовності залізобетонних конструкцій, що перебувають в експлуатації. Для проведення аналізу автори розглянули низку наукових праць як українських, так і зарубіжних дослідників. Основну увагу звернуто на роботи, в яких модель стохастичної природи роботи залізобетонної конструкції містила випадкові параметри діючих навантажень (постійних й змінних), а також резерв її несучої здатності та експлуатаційної придатності (геометричні розміри поперечних перерізів конструктивних елементів, міцнісні та деформаційні характеристики матеріалів тощо). Серед інших, на думку авторів, важливими проблемами для аналізу окремої праці були обсяг статистичної вибірки випадкових параметрів, їхня кількість та вплив на результат дослідження, а також раціональність (за конкретних умов) прийнятого методу розрахунку ймовірності відмови (або безвідмовної роботи) залізобетонної конструкції, що перебуває в експлуатації. На основі опрацювання низки наукових праць, автори виділяють актуальність, переваги та недоліки запропонованих там концепцій оцінювання безвідмовності, а також формулюють висновки та рекомендації щодо подальших експериментально-теоретичних досліджень у цьому напрямі. Крім того, автори виявили, що значний вплив на ймовірність безвідмовної роботи тієї чи іншої залізобетонної конструкції, що перебуває в експлуатації, мають стохастичні параметри змінних кліматичних навантажень (температурного, снігового, вітрового та ожеледного – відповідно до актуальних метеорологічних даних), агресивного середовища (корозія залізобетону), механічних пошкоджень бетону та арматури, а також реологічних властивостей залізобетону як композитного матеріалу. Насамкінець у статті встановлено, що з погляду вдосконалення тих чи інших концепцій оцінювання безвідмовності, чисельне моделювання залізобетонних конструкцій, що перебуває в експлуатації, а також нелінійний розрахунок парметрів їхнього напружено-деформованого стану доцільно виконувати в сучасних ПК (типу ЛІРА-САПР, ANSYS, SCAD Office, Femap with NX Nastran тощо) методом скінчених елементів.
dc.description.abstractThe article presents a theoretical analysis of existing concepts to evaluate the non-failure of RC structures in operation. To perform the analysis, the authors considered a number of scientific works of both Ukrainian and foreign researchers. The main focus was on works in which the model of the stochastic nature of the RC structure operation included random parameters of acting loads, as well as the reserve of its bearing capacity and serviceability (geometric dimensions of cross sections of constructive members, strength and deformation characteristics of materials, etc.). Among others, according to the authors, important problems in terms of analysis of a single work were the volume of statistical selection of random parameters, their number and impact on the study result, as well as rationality of the adopted method of calculating the probability of failure (or non-failure work) of RC structure in operation. Based on the processing of a number of scientific works, the authors highlight the relevance, advantages and disadvantages of the concepts of non-failure assessment proposed there, as well as the formulate the conclusions and recommendations for further experimental and theoretical research in this area.
dc.format.extent1-6
dc.format.pages6
dc.identifier.citationTytarenko R. Theoretical analysis of existing concepts to evaluate the non-failure of rc structures in operation / Roman Tytarenko, Roman Khmil, Iryna Dankevych // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 3. — No 2. — P. 1–6.
dc.identifier.citationenTytarenko R., Khmil R., Dankevych I. (2021) Theoretical analysis of existing concepts to evaluate the non-failure of rc structures in operation. Theory and Building Practice (Lviv), vol. 3, no 2, pp. 1-6.
dc.identifier.doihttps://doi.org/10.23939/jtbp2021.02.001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57931
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 2 (3), 2021
dc.relation.referencesSystem for ensuring the reliability and safety of building objects. General principles of reliability assurance
dc.relation.referencesand constructive safety of buildings and structures. DBN V.1.2-14:2018. State Building Codes of Ukraine. (2018).
dc.relation.referencesKyiv: Ministry of Regional Development, Construction and Housing and Communal Service of Ukraine (in
dc.relation.referencesUkrainian). URL:https://uscc.ua/uploads/page/images/normativnye%20dokumenty/dbn/DBN-V1214-2018.pdf
dc.relation.referencesEurocode 0. Basis of structural design. EN 1990:2002. European Standart. (2002). Brussels: European
dc.relation.referencesCommittee for Standardization. URL:https://www.phd.eng.br/wp-content/uploads/2015/12/en.1990.2002.pdf
dc.relation.referencesISO 2394:2015. General principles on reliability for structures (4th ed.). (2015). ISO. URL:https://www.sis.se/api/
dc.relation.referencesdocument/preview/918604/
dc.relation.referencesConstructions of buildings and structures. Concrete and reinforced concrete structures. Basic principles.
dc.relation.referencesDBN V.2.6-98:2009. State Building Codes of Ukraine. (2011). Kyiv: Ministry of Regional Development and
dc.relation.referencesConstruction of Ukraine (in Ukrainian). URL: http://interiorfor.com/wp-content/uploads/2017/01/26_98_2009.pdf
dc.relation.referencesConstructions of buildings and structures. Concrete and reinforced concrete structures made of heavy
dc.relation.referencesconcrete. Design rules. DSTU B V.2.6-156:2010. National Standard of Ukraine. (2011). Kyiv: Ministry of Regional
dc.relation.referencesDevelopment and Construction of Ukraine (in Ukrainian). URL: https://dwg.ru/dnl/9603
dc.relation.referencesVoskobiinyk, O. P. (2010). Typological comparison of defects and damages of reinforced concrete, metallic
dc.relation.referencesand steel-reinforced concrete beam structures. Bulletin of the Lviv Polytechnic National University. Theory and
dc.relation.referencesBuilding Practice, 662, 97–103 (in Ukrainian). URL: http://ena.lp.edu.ua/bitstream/ntb/6747/1/20.pdf
dc.relation.referencesKlymenko, Ye. V., Antoniuk, N. R., & Polianskyi, K. V. (2019). Modeling the work of damaged reinforced
dc.relation.referencesconcrete beams in the SC LIRA-SAPR. Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 77, 58–65 (in Ukrainian). doi:10.31650/2415-377X-2019-77-58-65
dc.relation.referencesFaye, P. N. (2017). Experimental Study on the Degradation Mechanism of RC Structures under Chloride
dc.relation.referencesEnvironment (PhD thesis). URL:https://www.researchgate.net/publication/335433554_Experimental_Study_on_the_
dc.relation.referencesDegradation_Mechanism_of_RC_Structures_under_Chloride_Environment
dc.relation.referencesKhaghanpour, R., Dousti, A., & Shekarchi, M. (2017). Prediction of Cover Thickness Based on Long-Term
dc.relation.referencesChloride Penetration in a Marine Environment. Journal of Performance of Constructed Facilities, 31(1). doi:10.1061/(ASCE)CF.1943-5509.0000931
dc.relation.referencesChen, D., Sun, G., Hu, D., & Shi, J. (2021). Study on the bearing capacity and chloride ion resistance of RC
dc.relation.referencesstructures under multi-factor corrosive environment and continuous load. Journal of Building Engineering, 44(6), 102990. doi:10.1016/j.jobe.2021.102990
dc.relation.referencesSakhno, S. I., Lyulchenko, E. V., Yanova, L. A., & Pyshchykova, O. V. (2020). Analysis of nonlinear
dc.relation.referencesdeformations of reinforced concrete beams by the finite element method. Mining Bulletin, 108, 27–34 (in
dc.relation.referencesUkrainian). doi:10.31721/2306-5435-2020-1-108-27-34
dc.relation.referencesBashynska, O. Yu. (2019). Creation of calculation models of building structures taking into account the
dc.relation.referencesrheological properties of reinforced concrete (PhD thesis) (in Ukrainian). URL:https://dspace.nau.edu.ua/handle/NAU/40283
dc.relation.referencesHeraskin, O. O., Rotko, S. V., & Uzhehova, O. A. (2020). Calculation of a monolithic plate taking into
dc.relation.referencesaccount the rheological properties of reinforced concrete. Modern technologies and methods of calculations in
dc.relation.referencesconstruction, 14, 63-72 (in Ukrainian). doi:10.36910/6775-2410-6208-2020-4(14)-07
dc.relation.referencesPashinsky, V. V. (2015). Regulation and zoning of the design parameters of air temperature on the territory
dc.relation.referencesof Ukraine. Municipal services of cities, 120, 49–53 (in Ukrainian). URL:http://www.irbis-nbuv.gov.ua/cgibin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=kgm_tech_2015_120_12
dc.relation.referencesKiesse, T. S., Bonnet, S., Amiri, O., & Ventura, A. (2020). Analysis of corrosion risk due to chloride diffusion for
dc.relation.referencesconcrete structures in marine environment. Marine Structures, 73, 102804. doi:10.1016/j.marstruc.2020.102804
dc.relation.referencesPellizzer, G. P., Leonel, E. D., & Nogueira, C. G. (2015). Influence of reinforcement’s corrosion into
dc.relation.referenceshyperstatic reinforced concrete beams: a probabilistic failure scenarios analysis. IBRACON Structures and Materials
dc.relation.referencesJournal, 8(4), 479-490. doi:10.1590/S1983-41952015000400004
dc.relation.referencesBastidas-Arteaga, E., Bressolette, P., Chateauneuf, A., & Sanchez-Silva, M. (2009). Probabilistic lifetime
dc.relation.referencesassessment of RC structures under coupled corrosion-fatigue deterioration processes. Structural Safety, 31(1), 84–96. doi:10.1016/j.strusafe.2008.04.001
dc.relation.referencesConciatori, D., Bruhwiler, E., & Morgenthaler, S. (2009). Calculation of reinforced concrete corrosion
dc.relation.referencesinitiation probabilities using the Rosenblueth method. International Journal of Reliability and Safety, 3(4). doi:10.1504/IJRS.2009.028581
dc.relation.referencesKrasnoshchekov, Y. V., & Zapoleva, M. Yu. (2015). Probabilistic design of structures by the given level of
dc.relation.referencesreliability. Bulletin of the Siberian State Automobile and Highway Academy, 1(41), 68–73 (in Russian).
dc.relation.referencesURL:https://cyberleninka.ru/article/n/veroyatnostnoe-proektirovanie-konstruktsiy-po-zadannomu-urovnyu-nadezhnosti
dc.relation.referencesKhmil, R. Ye., Tytarenko, R. Yu., Blikharskyy, Ya. Z., & Vegera, P. I. (2021). Improvement of the method
dc.relation.referencesof probability evaluation of the failure-free operation of reinforced concrete beams strengthened under load. IOP
dc.relation.referencesConference Series: Materials Science and Engineering, 1021, 012014. doi:10.1088/1757-899X/1021/1/012014
dc.relation.referencesKhmil, R., Tytarenko, R., Blikharskyy, Y., & Vegera, P. (2021). The Probabilistic Calculation Model of RC
dc.relation.referencesBeams, Strengthened by RC Jacket. Lecture Notes in Civil Engineering, 100, 182–191. doi:10.1007/978-3-030-57340-9_23
dc.relation.referencesVentsel, O. S. (2018). Probability theory (12th ed.). Moscow: Justitia (in Russian). URL: https://cdn1.ozone.ru/ multimedia/1020633476.pdf
dc.relation.referencesenSystem for ensuring the reliability and safety of building objects. General principles of reliability assurance
dc.relation.referencesenand constructive safety of buildings and structures. DBN V.1.2-14:2018. State Building Codes of Ukraine. (2018).
dc.relation.referencesenKyiv: Ministry of Regional Development, Construction and Housing and Communal Service of Ukraine (in
dc.relation.referencesenUkrainian). URL:https://uscc.ua/uploads/page/images/normativnye%20dokumenty/dbn/DBN-V1214-2018.pdf
dc.relation.referencesenEurocode 0. Basis of structural design. EN 1990:2002. European Standart. (2002). Brussels: European
dc.relation.referencesenCommittee for Standardization. URL:https://www.phd.eng.br/wp-content/uploads/2015/12/en.1990.2002.pdf
dc.relation.referencesenISO 2394:2015. General principles on reliability for structures (4th ed.). (2015). ISO. URL:https://www.sis.se/api/
dc.relation.referencesendocument/preview/918604/
dc.relation.referencesenConstructions of buildings and structures. Concrete and reinforced concrete structures. Basic principles.
dc.relation.referencesenDBN V.2.6-98:2009. State Building Codes of Ukraine. (2011). Kyiv: Ministry of Regional Development and
dc.relation.referencesenConstruction of Ukraine (in Ukrainian). URL: http://interiorfor.com/wp-content/uploads/2017/01/26_98_2009.pdf
dc.relation.referencesenConstructions of buildings and structures. Concrete and reinforced concrete structures made of heavy
dc.relation.referencesenconcrete. Design rules. DSTU B V.2.6-156:2010. National Standard of Ukraine. (2011). Kyiv: Ministry of Regional
dc.relation.referencesenDevelopment and Construction of Ukraine (in Ukrainian). URL: https://dwg.ru/dnl/9603
dc.relation.referencesenVoskobiinyk, O. P. (2010). Typological comparison of defects and damages of reinforced concrete, metallic
dc.relation.referencesenand steel-reinforced concrete beam structures. Bulletin of the Lviv Polytechnic National University. Theory and
dc.relation.referencesenBuilding Practice, 662, 97–103 (in Ukrainian). URL: http://ena.lp.edu.ua/bitstream/ntb/6747/1/20.pdf
dc.relation.referencesenKlymenko, Ye. V., Antoniuk, N. R., & Polianskyi, K. V. (2019). Modeling the work of damaged reinforced
dc.relation.referencesenconcrete beams in the SC LIRA-SAPR. Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 77, 58–65 (in Ukrainian). doi:10.31650/2415-377X-2019-77-58-65
dc.relation.referencesenFaye, P. N. (2017). Experimental Study on the Degradation Mechanism of RC Structures under Chloride
dc.relation.referencesenEnvironment (PhD thesis). URL:https://www.researchgate.net/publication/335433554_Experimental_Study_on_the_
dc.relation.referencesenDegradation_Mechanism_of_RC_Structures_under_Chloride_Environment
dc.relation.referencesenKhaghanpour, R., Dousti, A., & Shekarchi, M. (2017). Prediction of Cover Thickness Based on Long-Term
dc.relation.referencesenChloride Penetration in a Marine Environment. Journal of Performance of Constructed Facilities, 31(1). doi:10.1061/(ASCE)CF.1943-5509.0000931
dc.relation.referencesenChen, D., Sun, G., Hu, D., & Shi, J. (2021). Study on the bearing capacity and chloride ion resistance of RC
dc.relation.referencesenstructures under multi-factor corrosive environment and continuous load. Journal of Building Engineering, 44(6), 102990. doi:10.1016/j.jobe.2021.102990
dc.relation.referencesenSakhno, S. I., Lyulchenko, E. V., Yanova, L. A., & Pyshchykova, O. V. (2020). Analysis of nonlinear
dc.relation.referencesendeformations of reinforced concrete beams by the finite element method. Mining Bulletin, 108, 27–34 (in
dc.relation.referencesenUkrainian). doi:10.31721/2306-5435-2020-1-108-27-34
dc.relation.referencesenBashynska, O. Yu. (2019). Creation of calculation models of building structures taking into account the
dc.relation.referencesenrheological properties of reinforced concrete (PhD thesis) (in Ukrainian). URL:https://dspace.nau.edu.ua/handle/NAU/40283
dc.relation.referencesenHeraskin, O. O., Rotko, S. V., & Uzhehova, O. A. (2020). Calculation of a monolithic plate taking into
dc.relation.referencesenaccount the rheological properties of reinforced concrete. Modern technologies and methods of calculations in
dc.relation.referencesenconstruction, 14, 63-72 (in Ukrainian). doi:10.36910/6775-2410-6208-2020-4(14)-07
dc.relation.referencesenPashinsky, V. V. (2015). Regulation and zoning of the design parameters of air temperature on the territory
dc.relation.referencesenof Ukraine. Municipal services of cities, 120, 49–53 (in Ukrainian). URL:http://www.irbis-nbuv.gov.ua/cgibin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&P.21COM=S&2_S21P03=FILA=&2_S21STR=kgm_tech_2015_120_12
dc.relation.referencesenKiesse, T. S., Bonnet, S., Amiri, O., & Ventura, A. (2020). Analysis of corrosion risk due to chloride diffusion for
dc.relation.referencesenconcrete structures in marine environment. Marine Structures, 73, 102804. doi:10.1016/j.marstruc.2020.102804
dc.relation.referencesenPellizzer, G. P., Leonel, E. D., & Nogueira, C. G. (2015). Influence of reinforcement’s corrosion into
dc.relation.referencesenhyperstatic reinforced concrete beams: a probabilistic failure scenarios analysis. IBRACON Structures and Materials
dc.relation.referencesenJournal, 8(4), 479-490. doi:10.1590/S1983-41952015000400004
dc.relation.referencesenBastidas-Arteaga, E., Bressolette, P., Chateauneuf, A., & Sanchez-Silva, M. (2009). Probabilistic lifetime
dc.relation.referencesenassessment of RC structures under coupled corrosion-fatigue deterioration processes. Structural Safety, 31(1), 84–96. doi:10.1016/j.strusafe.2008.04.001
dc.relation.referencesenConciatori, D., Bruhwiler, E., & Morgenthaler, S. (2009). Calculation of reinforced concrete corrosion
dc.relation.referenceseninitiation probabilities using the Rosenblueth method. International Journal of Reliability and Safety, 3(4). doi:10.1504/IJRS.2009.028581
dc.relation.referencesenKrasnoshchekov, Y. V., & Zapoleva, M. Yu. (2015). Probabilistic design of structures by the given level of
dc.relation.referencesenreliability. Bulletin of the Siberian State Automobile and Highway Academy, 1(41), 68–73 (in Russian).
dc.relation.referencesenURL:https://cyberleninka.ru/article/n/veroyatnostnoe-proektirovanie-konstruktsiy-po-zadannomu-urovnyu-nadezhnosti
dc.relation.referencesenKhmil, R. Ye., Tytarenko, R. Yu., Blikharskyy, Ya. Z., & Vegera, P. I. (2021). Improvement of the method
dc.relation.referencesenof probability evaluation of the failure-free operation of reinforced concrete beams strengthened under load. IOP
dc.relation.referencesenConference Series: Materials Science and Engineering, 1021, 012014. doi:10.1088/1757-899X/1021/1/012014
dc.relation.referencesenKhmil, R., Tytarenko, R., Blikharskyy, Y., & Vegera, P. (2021). The Probabilistic Calculation Model of RC
dc.relation.referencesenBeams, Strengthened by RC Jacket. Lecture Notes in Civil Engineering, 100, 182–191. doi:10.1007/978-3-030-57340-9_23
dc.relation.referencesenVentsel, O. S. (2018). Probability theory (12th ed.). Moscow: Justitia (in Russian). URL: https://cdn1.ozone.ru/ multimedia/1020633476.pdf
dc.relation.urihttps://uscc.ua/uploads/page/images/normativnye%20dokumenty/dbn/DBN-V1214-2018.pdf
dc.relation.urihttps://www.phd.eng.br/wp-content/uploads/2015/12/en.1990.2002.pdf
dc.relation.urihttps://www.sis.se/api/
dc.relation.urihttp://interiorfor.com/wp-content/uploads/2017/01/26_98_2009.pdf
dc.relation.urihttps://dwg.ru/dnl/9603
dc.relation.urihttp://ena.lp.edu.ua/bitstream/ntb/6747/1/20.pdf
dc.relation.urihttps://www.researchgate.net/publication/335433554_Experimental_Study_on_the_
dc.relation.urihttps://dspace.nau.edu.ua/handle/NAU/40283
dc.relation.urihttp://www.irbis-nbuv.gov.ua/cgibin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=kgm_tech_2015_120_12
dc.relation.urihttps://cyberleninka.ru/article/n/veroyatnostnoe-proektirovanie-konstruktsiy-po-zadannomu-urovnyu-nadezhnosti
dc.relation.urihttps://cdn1.ozone.ru/
dc.rights.holder© Національний університет „Львівська політехніка“, 2021
dc.rights.holder© Tytarenko R., Khmil R., Dankevych I., 2021
dc.subjectоцінка безвідмовності
dc.subjectймовірність безвідмовної роботи
dc.subjectзалізобетон
dc.subjectдіюче навантаження на конструкцію
dc.subjectвипадковий параметр
dc.subjectстатистична вибірка
dc.subjectчисельне моделювання
dc.subjectметод розрахунку
dc.subjectметод Монте-Карло
dc.subjectnon-failure assessment
dc.subjectprobability of non-failure work
dc.subjectreinforced concrete
dc.subjectstructure acting load
dc.subjectrandom parameter
dc.subjectstatistical selection
dc.subjectnumerical simulation
dc.subjectcalculation method
dc.subjectMonte Carlo method
dc.titleTheoretical analysis of existing concepts to evaluate the non-failure of rc structures in operation
dc.title.alternativeТеоретичний аналіз існуючих концепцій оцінювання безвідмовності залізобетонних конструкцій, що знаходяться в експлуатації
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2021v3n2_Tytarenko_R-Theoretical_analysis_of_existing_1-6.pdf
Size:
249.71 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: