Theoretical analysis of existing concepts to evaluate the non-failure of rc structures in operation
dc.citation.epage | 6 | |
dc.citation.issue | 2 | |
dc.citation.spage | 1 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Титаренко, Р. Ю. | |
dc.contributor.author | Хміль, Р. Є. | |
dc.contributor.author | Данкевич, І. П. | |
dc.contributor.author | Tytarenko, Roman | |
dc.contributor.author | Khmil, Roman | |
dc.contributor.author | Dankevych, Iryna | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-04-10T08:44:29Z | |
dc.date.available | 2023-04-10T08:44:29Z | |
dc.date.created | 2021-11-11 | |
dc.date.issued | 2021-11-11 | |
dc.description.abstract | Представлено теоретичний аналіз наявних концепцій оцінювання безвідмовності залізобетонних конструкцій, що перебувають в експлуатації. Для проведення аналізу автори розглянули низку наукових праць як українських, так і зарубіжних дослідників. Основну увагу звернуто на роботи, в яких модель стохастичної природи роботи залізобетонної конструкції містила випадкові параметри діючих навантажень (постійних й змінних), а також резерв її несучої здатності та експлуатаційної придатності (геометричні розміри поперечних перерізів конструктивних елементів, міцнісні та деформаційні характеристики матеріалів тощо). Серед інших, на думку авторів, важливими проблемами для аналізу окремої праці були обсяг статистичної вибірки випадкових параметрів, їхня кількість та вплив на результат дослідження, а також раціональність (за конкретних умов) прийнятого методу розрахунку ймовірності відмови (або безвідмовної роботи) залізобетонної конструкції, що перебуває в експлуатації. На основі опрацювання низки наукових праць, автори виділяють актуальність, переваги та недоліки запропонованих там концепцій оцінювання безвідмовності, а також формулюють висновки та рекомендації щодо подальших експериментально-теоретичних досліджень у цьому напрямі. Крім того, автори виявили, що значний вплив на ймовірність безвідмовної роботи тієї чи іншої залізобетонної конструкції, що перебуває в експлуатації, мають стохастичні параметри змінних кліматичних навантажень (температурного, снігового, вітрового та ожеледного – відповідно до актуальних метеорологічних даних), агресивного середовища (корозія залізобетону), механічних пошкоджень бетону та арматури, а також реологічних властивостей залізобетону як композитного матеріалу. Насамкінець у статті встановлено, що з погляду вдосконалення тих чи інших концепцій оцінювання безвідмовності, чисельне моделювання залізобетонних конструкцій, що перебуває в експлуатації, а також нелінійний розрахунок парметрів їхнього напружено-деформованого стану доцільно виконувати в сучасних ПК (типу ЛІРА-САПР, ANSYS, SCAD Office, Femap with NX Nastran тощо) методом скінчених елементів. | |
dc.description.abstract | The article presents a theoretical analysis of existing concepts to evaluate the non-failure of RC structures in operation. To perform the analysis, the authors considered a number of scientific works of both Ukrainian and foreign researchers. The main focus was on works in which the model of the stochastic nature of the RC structure operation included random parameters of acting loads, as well as the reserve of its bearing capacity and serviceability (geometric dimensions of cross sections of constructive members, strength and deformation characteristics of materials, etc.). Among others, according to the authors, important problems in terms of analysis of a single work were the volume of statistical selection of random parameters, their number and impact on the study result, as well as rationality of the adopted method of calculating the probability of failure (or non-failure work) of RC structure in operation. Based on the processing of a number of scientific works, the authors highlight the relevance, advantages and disadvantages of the concepts of non-failure assessment proposed there, as well as the formulate the conclusions and recommendations for further experimental and theoretical research in this area. | |
dc.format.extent | 1-6 | |
dc.format.pages | 6 | |
dc.identifier.citation | Tytarenko R. Theoretical analysis of existing concepts to evaluate the non-failure of rc structures in operation / Roman Tytarenko, Roman Khmil, Iryna Dankevych // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 3. — No 2. — P. 1–6. | |
dc.identifier.citationen | Tytarenko R., Khmil R., Dankevych I. (2021) Theoretical analysis of existing concepts to evaluate the non-failure of rc structures in operation. Theory and Building Practice (Lviv), vol. 3, no 2, pp. 1-6. | |
dc.identifier.doi | https://doi.org/10.23939/jtbp2021.02.001 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/57931 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Theory and Building Practice, 2 (3), 2021 | |
dc.relation.references | System for ensuring the reliability and safety of building objects. General principles of reliability assurance | |
dc.relation.references | and constructive safety of buildings and structures. DBN V.1.2-14:2018. State Building Codes of Ukraine. (2018). | |
dc.relation.references | Kyiv: Ministry of Regional Development, Construction and Housing and Communal Service of Ukraine (in | |
dc.relation.references | Ukrainian). URL:https://uscc.ua/uploads/page/images/normativnye%20dokumenty/dbn/DBN-V1214-2018.pdf | |
dc.relation.references | Eurocode 0. Basis of structural design. EN 1990:2002. European Standart. (2002). Brussels: European | |
dc.relation.references | Committee for Standardization. URL:https://www.phd.eng.br/wp-content/uploads/2015/12/en.1990.2002.pdf | |
dc.relation.references | ISO 2394:2015. General principles on reliability for structures (4th ed.). (2015). ISO. URL:https://www.sis.se/api/ | |
dc.relation.references | document/preview/918604/ | |
dc.relation.references | Constructions of buildings and structures. Concrete and reinforced concrete structures. Basic principles. | |
dc.relation.references | DBN V.2.6-98:2009. State Building Codes of Ukraine. (2011). Kyiv: Ministry of Regional Development and | |
dc.relation.references | Construction of Ukraine (in Ukrainian). URL: http://interiorfor.com/wp-content/uploads/2017/01/26_98_2009.pdf | |
dc.relation.references | Constructions of buildings and structures. Concrete and reinforced concrete structures made of heavy | |
dc.relation.references | concrete. Design rules. DSTU B V.2.6-156:2010. National Standard of Ukraine. (2011). Kyiv: Ministry of Regional | |
dc.relation.references | Development and Construction of Ukraine (in Ukrainian). URL: https://dwg.ru/dnl/9603 | |
dc.relation.references | Voskobiinyk, O. P. (2010). Typological comparison of defects and damages of reinforced concrete, metallic | |
dc.relation.references | and steel-reinforced concrete beam structures. Bulletin of the Lviv Polytechnic National University. Theory and | |
dc.relation.references | Building Practice, 662, 97–103 (in Ukrainian). URL: http://ena.lp.edu.ua/bitstream/ntb/6747/1/20.pdf | |
dc.relation.references | Klymenko, Ye. V., Antoniuk, N. R., & Polianskyi, K. V. (2019). Modeling the work of damaged reinforced | |
dc.relation.references | concrete beams in the SC LIRA-SAPR. Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 77, 58–65 (in Ukrainian). doi:10.31650/2415-377X-2019-77-58-65 | |
dc.relation.references | Faye, P. N. (2017). Experimental Study on the Degradation Mechanism of RC Structures under Chloride | |
dc.relation.references | Environment (PhD thesis). URL:https://www.researchgate.net/publication/335433554_Experimental_Study_on_the_ | |
dc.relation.references | Degradation_Mechanism_of_RC_Structures_under_Chloride_Environment | |
dc.relation.references | Khaghanpour, R., Dousti, A., & Shekarchi, M. (2017). Prediction of Cover Thickness Based on Long-Term | |
dc.relation.references | Chloride Penetration in a Marine Environment. Journal of Performance of Constructed Facilities, 31(1). doi:10.1061/(ASCE)CF.1943-5509.0000931 | |
dc.relation.references | Chen, D., Sun, G., Hu, D., & Shi, J. (2021). Study on the bearing capacity and chloride ion resistance of RC | |
dc.relation.references | structures under multi-factor corrosive environment and continuous load. Journal of Building Engineering, 44(6), 102990. doi:10.1016/j.jobe.2021.102990 | |
dc.relation.references | Sakhno, S. I., Lyulchenko, E. V., Yanova, L. A., & Pyshchykova, O. V. (2020). Analysis of nonlinear | |
dc.relation.references | deformations of reinforced concrete beams by the finite element method. Mining Bulletin, 108, 27–34 (in | |
dc.relation.references | Ukrainian). doi:10.31721/2306-5435-2020-1-108-27-34 | |
dc.relation.references | Bashynska, O. Yu. (2019). Creation of calculation models of building structures taking into account the | |
dc.relation.references | rheological properties of reinforced concrete (PhD thesis) (in Ukrainian). URL:https://dspace.nau.edu.ua/handle/NAU/40283 | |
dc.relation.references | Heraskin, O. O., Rotko, S. V., & Uzhehova, O. A. (2020). Calculation of a monolithic plate taking into | |
dc.relation.references | account the rheological properties of reinforced concrete. Modern technologies and methods of calculations in | |
dc.relation.references | construction, 14, 63-72 (in Ukrainian). doi:10.36910/6775-2410-6208-2020-4(14)-07 | |
dc.relation.references | Pashinsky, V. V. (2015). Regulation and zoning of the design parameters of air temperature on the territory | |
dc.relation.references | of Ukraine. Municipal services of cities, 120, 49–53 (in Ukrainian). URL:http://www.irbis-nbuv.gov.ua/cgibin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=kgm_tech_2015_120_12 | |
dc.relation.references | Kiesse, T. S., Bonnet, S., Amiri, O., & Ventura, A. (2020). Analysis of corrosion risk due to chloride diffusion for | |
dc.relation.references | concrete structures in marine environment. Marine Structures, 73, 102804. doi:10.1016/j.marstruc.2020.102804 | |
dc.relation.references | Pellizzer, G. P., Leonel, E. D., & Nogueira, C. G. (2015). Influence of reinforcement’s corrosion into | |
dc.relation.references | hyperstatic reinforced concrete beams: a probabilistic failure scenarios analysis. IBRACON Structures and Materials | |
dc.relation.references | Journal, 8(4), 479-490. doi:10.1590/S1983-41952015000400004 | |
dc.relation.references | Bastidas-Arteaga, E., Bressolette, P., Chateauneuf, A., & Sanchez-Silva, M. (2009). Probabilistic lifetime | |
dc.relation.references | assessment of RC structures under coupled corrosion-fatigue deterioration processes. Structural Safety, 31(1), 84–96. doi:10.1016/j.strusafe.2008.04.001 | |
dc.relation.references | Conciatori, D., Bruhwiler, E., & Morgenthaler, S. (2009). Calculation of reinforced concrete corrosion | |
dc.relation.references | initiation probabilities using the Rosenblueth method. International Journal of Reliability and Safety, 3(4). doi:10.1504/IJRS.2009.028581 | |
dc.relation.references | Krasnoshchekov, Y. V., & Zapoleva, M. Yu. (2015). Probabilistic design of structures by the given level of | |
dc.relation.references | reliability. Bulletin of the Siberian State Automobile and Highway Academy, 1(41), 68–73 (in Russian). | |
dc.relation.references | URL:https://cyberleninka.ru/article/n/veroyatnostnoe-proektirovanie-konstruktsiy-po-zadannomu-urovnyu-nadezhnosti | |
dc.relation.references | Khmil, R. Ye., Tytarenko, R. Yu., Blikharskyy, Ya. Z., & Vegera, P. I. (2021). Improvement of the method | |
dc.relation.references | of probability evaluation of the failure-free operation of reinforced concrete beams strengthened under load. IOP | |
dc.relation.references | Conference Series: Materials Science and Engineering, 1021, 012014. doi:10.1088/1757-899X/1021/1/012014 | |
dc.relation.references | Khmil, R., Tytarenko, R., Blikharskyy, Y., & Vegera, P. (2021). The Probabilistic Calculation Model of RC | |
dc.relation.references | Beams, Strengthened by RC Jacket. Lecture Notes in Civil Engineering, 100, 182–191. doi:10.1007/978-3-030-57340-9_23 | |
dc.relation.references | Ventsel, O. S. (2018). Probability theory (12th ed.). Moscow: Justitia (in Russian). URL: https://cdn1.ozone.ru/ multimedia/1020633476.pdf | |
dc.relation.referencesen | System for ensuring the reliability and safety of building objects. General principles of reliability assurance | |
dc.relation.referencesen | and constructive safety of buildings and structures. DBN V.1.2-14:2018. State Building Codes of Ukraine. (2018). | |
dc.relation.referencesen | Kyiv: Ministry of Regional Development, Construction and Housing and Communal Service of Ukraine (in | |
dc.relation.referencesen | Ukrainian). URL:https://uscc.ua/uploads/page/images/normativnye%20dokumenty/dbn/DBN-V1214-2018.pdf | |
dc.relation.referencesen | Eurocode 0. Basis of structural design. EN 1990:2002. European Standart. (2002). Brussels: European | |
dc.relation.referencesen | Committee for Standardization. URL:https://www.phd.eng.br/wp-content/uploads/2015/12/en.1990.2002.pdf | |
dc.relation.referencesen | ISO 2394:2015. General principles on reliability for structures (4th ed.). (2015). ISO. URL:https://www.sis.se/api/ | |
dc.relation.referencesen | document/preview/918604/ | |
dc.relation.referencesen | Constructions of buildings and structures. Concrete and reinforced concrete structures. Basic principles. | |
dc.relation.referencesen | DBN V.2.6-98:2009. State Building Codes of Ukraine. (2011). Kyiv: Ministry of Regional Development and | |
dc.relation.referencesen | Construction of Ukraine (in Ukrainian). URL: http://interiorfor.com/wp-content/uploads/2017/01/26_98_2009.pdf | |
dc.relation.referencesen | Constructions of buildings and structures. Concrete and reinforced concrete structures made of heavy | |
dc.relation.referencesen | concrete. Design rules. DSTU B V.2.6-156:2010. National Standard of Ukraine. (2011). Kyiv: Ministry of Regional | |
dc.relation.referencesen | Development and Construction of Ukraine (in Ukrainian). URL: https://dwg.ru/dnl/9603 | |
dc.relation.referencesen | Voskobiinyk, O. P. (2010). Typological comparison of defects and damages of reinforced concrete, metallic | |
dc.relation.referencesen | and steel-reinforced concrete beam structures. Bulletin of the Lviv Polytechnic National University. Theory and | |
dc.relation.referencesen | Building Practice, 662, 97–103 (in Ukrainian). URL: http://ena.lp.edu.ua/bitstream/ntb/6747/1/20.pdf | |
dc.relation.referencesen | Klymenko, Ye. V., Antoniuk, N. R., & Polianskyi, K. V. (2019). Modeling the work of damaged reinforced | |
dc.relation.referencesen | concrete beams in the SC LIRA-SAPR. Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 77, 58–65 (in Ukrainian). doi:10.31650/2415-377X-2019-77-58-65 | |
dc.relation.referencesen | Faye, P. N. (2017). Experimental Study on the Degradation Mechanism of RC Structures under Chloride | |
dc.relation.referencesen | Environment (PhD thesis). URL:https://www.researchgate.net/publication/335433554_Experimental_Study_on_the_ | |
dc.relation.referencesen | Degradation_Mechanism_of_RC_Structures_under_Chloride_Environment | |
dc.relation.referencesen | Khaghanpour, R., Dousti, A., & Shekarchi, M. (2017). Prediction of Cover Thickness Based on Long-Term | |
dc.relation.referencesen | Chloride Penetration in a Marine Environment. Journal of Performance of Constructed Facilities, 31(1). doi:10.1061/(ASCE)CF.1943-5509.0000931 | |
dc.relation.referencesen | Chen, D., Sun, G., Hu, D., & Shi, J. (2021). Study on the bearing capacity and chloride ion resistance of RC | |
dc.relation.referencesen | structures under multi-factor corrosive environment and continuous load. Journal of Building Engineering, 44(6), 102990. doi:10.1016/j.jobe.2021.102990 | |
dc.relation.referencesen | Sakhno, S. I., Lyulchenko, E. V., Yanova, L. A., & Pyshchykova, O. V. (2020). Analysis of nonlinear | |
dc.relation.referencesen | deformations of reinforced concrete beams by the finite element method. Mining Bulletin, 108, 27–34 (in | |
dc.relation.referencesen | Ukrainian). doi:10.31721/2306-5435-2020-1-108-27-34 | |
dc.relation.referencesen | Bashynska, O. Yu. (2019). Creation of calculation models of building structures taking into account the | |
dc.relation.referencesen | rheological properties of reinforced concrete (PhD thesis) (in Ukrainian). URL:https://dspace.nau.edu.ua/handle/NAU/40283 | |
dc.relation.referencesen | Heraskin, O. O., Rotko, S. V., & Uzhehova, O. A. (2020). Calculation of a monolithic plate taking into | |
dc.relation.referencesen | account the rheological properties of reinforced concrete. Modern technologies and methods of calculations in | |
dc.relation.referencesen | construction, 14, 63-72 (in Ukrainian). doi:10.36910/6775-2410-6208-2020-4(14)-07 | |
dc.relation.referencesen | Pashinsky, V. V. (2015). Regulation and zoning of the design parameters of air temperature on the territory | |
dc.relation.referencesen | of Ukraine. Municipal services of cities, 120, 49–53 (in Ukrainian). URL:http://www.irbis-nbuv.gov.ua/cgibin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&P.21COM=S&2_S21P03=FILA=&2_S21STR=kgm_tech_2015_120_12 | |
dc.relation.referencesen | Kiesse, T. S., Bonnet, S., Amiri, O., & Ventura, A. (2020). Analysis of corrosion risk due to chloride diffusion for | |
dc.relation.referencesen | concrete structures in marine environment. Marine Structures, 73, 102804. doi:10.1016/j.marstruc.2020.102804 | |
dc.relation.referencesen | Pellizzer, G. P., Leonel, E. D., & Nogueira, C. G. (2015). Influence of reinforcement’s corrosion into | |
dc.relation.referencesen | hyperstatic reinforced concrete beams: a probabilistic failure scenarios analysis. IBRACON Structures and Materials | |
dc.relation.referencesen | Journal, 8(4), 479-490. doi:10.1590/S1983-41952015000400004 | |
dc.relation.referencesen | Bastidas-Arteaga, E., Bressolette, P., Chateauneuf, A., & Sanchez-Silva, M. (2009). Probabilistic lifetime | |
dc.relation.referencesen | assessment of RC structures under coupled corrosion-fatigue deterioration processes. Structural Safety, 31(1), 84–96. doi:10.1016/j.strusafe.2008.04.001 | |
dc.relation.referencesen | Conciatori, D., Bruhwiler, E., & Morgenthaler, S. (2009). Calculation of reinforced concrete corrosion | |
dc.relation.referencesen | initiation probabilities using the Rosenblueth method. International Journal of Reliability and Safety, 3(4). doi:10.1504/IJRS.2009.028581 | |
dc.relation.referencesen | Krasnoshchekov, Y. V., & Zapoleva, M. Yu. (2015). Probabilistic design of structures by the given level of | |
dc.relation.referencesen | reliability. Bulletin of the Siberian State Automobile and Highway Academy, 1(41), 68–73 (in Russian). | |
dc.relation.referencesen | URL:https://cyberleninka.ru/article/n/veroyatnostnoe-proektirovanie-konstruktsiy-po-zadannomu-urovnyu-nadezhnosti | |
dc.relation.referencesen | Khmil, R. Ye., Tytarenko, R. Yu., Blikharskyy, Ya. Z., & Vegera, P. I. (2021). Improvement of the method | |
dc.relation.referencesen | of probability evaluation of the failure-free operation of reinforced concrete beams strengthened under load. IOP | |
dc.relation.referencesen | Conference Series: Materials Science and Engineering, 1021, 012014. doi:10.1088/1757-899X/1021/1/012014 | |
dc.relation.referencesen | Khmil, R., Tytarenko, R., Blikharskyy, Y., & Vegera, P. (2021). The Probabilistic Calculation Model of RC | |
dc.relation.referencesen | Beams, Strengthened by RC Jacket. Lecture Notes in Civil Engineering, 100, 182–191. doi:10.1007/978-3-030-57340-9_23 | |
dc.relation.referencesen | Ventsel, O. S. (2018). Probability theory (12th ed.). Moscow: Justitia (in Russian). URL: https://cdn1.ozone.ru/ multimedia/1020633476.pdf | |
dc.relation.uri | https://uscc.ua/uploads/page/images/normativnye%20dokumenty/dbn/DBN-V1214-2018.pdf | |
dc.relation.uri | https://www.phd.eng.br/wp-content/uploads/2015/12/en.1990.2002.pdf | |
dc.relation.uri | https://www.sis.se/api/ | |
dc.relation.uri | http://interiorfor.com/wp-content/uploads/2017/01/26_98_2009.pdf | |
dc.relation.uri | https://dwg.ru/dnl/9603 | |
dc.relation.uri | http://ena.lp.edu.ua/bitstream/ntb/6747/1/20.pdf | |
dc.relation.uri | https://www.researchgate.net/publication/335433554_Experimental_Study_on_the_ | |
dc.relation.uri | https://dspace.nau.edu.ua/handle/NAU/40283 | |
dc.relation.uri | http://www.irbis-nbuv.gov.ua/cgibin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=kgm_tech_2015_120_12 | |
dc.relation.uri | https://cyberleninka.ru/article/n/veroyatnostnoe-proektirovanie-konstruktsiy-po-zadannomu-urovnyu-nadezhnosti | |
dc.relation.uri | https://cdn1.ozone.ru/ | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2021 | |
dc.rights.holder | © Tytarenko R., Khmil R., Dankevych I., 2021 | |
dc.subject | оцінка безвідмовності | |
dc.subject | ймовірність безвідмовної роботи | |
dc.subject | залізобетон | |
dc.subject | діюче навантаження на конструкцію | |
dc.subject | випадковий параметр | |
dc.subject | статистична вибірка | |
dc.subject | чисельне моделювання | |
dc.subject | метод розрахунку | |
dc.subject | метод Монте-Карло | |
dc.subject | non-failure assessment | |
dc.subject | probability of non-failure work | |
dc.subject | reinforced concrete | |
dc.subject | structure acting load | |
dc.subject | random parameter | |
dc.subject | statistical selection | |
dc.subject | numerical simulation | |
dc.subject | calculation method | |
dc.subject | Monte Carlo method | |
dc.title | Theoretical analysis of existing concepts to evaluate the non-failure of rc structures in operation | |
dc.title.alternative | Теоретичний аналіз існуючих концепцій оцінювання безвідмовності залізобетонних конструкцій, що знаходяться в експлуатації | |
dc.type | Article |