Distribution of vehicle speeds in traffic flow on multilane roads approaching major and metropolitan cities
dc.citation.epage | 60 | |
dc.citation.issue | 1 | |
dc.citation.spage | 48 | |
dc.citation.volume | 6 | |
dc.contributor.affiliation | National Transport University | |
dc.contributor.affiliation | State Enterprise “National Institute for Development Infrastructure” | |
dc.contributor.author | Hulchak, Oksana | |
dc.contributor.author | Popov, Stanislav | |
dc.contributor.author | Nahrebelna, Liudmyla | |
dc.contributor.author | Korchevska, Alina | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-07-23T06:57:33Z | |
dc.date.created | 2025-02-28 | |
dc.date.issued | 2025-02-28 | |
dc.description.abstract | У статті досліджено особливості розподілу швидкостей руху транспортних засобів на багатосмугових автомобільних дорогах на підходах до значних та найзначніших міст на прикладі шестисмугової ділянки автомобільної дороги М-05 Київ – Одеса. Методика дослідження ґрунтується на натурному спостереженні з використанням покадрового відеоаналізу з точністю 0,04 с, що дало змогу визначити часові інтервали між транспортними засобами та отримувати моментальну швидкість руху. У ході аналізу було побудовано теоретичні та фактичні криві розподілу швидкостей, визначено типові швидкісні діапазони для різних смуг та перевірено відповідність отриманих даних нормальному закону розподілу. У ході дослідження розподілу швидкостей транспортних засобів на багатосмугових автомобільних дорогах було визначено ключові напрями аналізу. Зокрема, дослідження спрямовувалося на перевірку відповідності емпіричних даних статистичній моделі нормального розподілу, встановлення характерних швидкісних діапазонів залежно від типу транспортного засобу, а також на оцінювання впливу інтенсивності руху та структурного складу потоку на параметри швидкості. У межах дослідження проаналізовано просторово-часову структуру транспортного потоку: встановлено добовий розподіл інтенсивності руху, його варіацію за смугами та напрямками, а також визначено фактичні та теоретичні криві розподілу швидкостей. Досліджено залежності між основними параметрами потоку – інтенсивністю, щільністю та швидкістю. Для опису закономірностей розподілу транспортних засобів по смугах застосовано метод лінійної регресії, що дало змогу побудувати аналітичні залежності N₁, N₂, N₃ від загальної інтенсивності N з використанням методу найменших квадратів. Результати дослідження показали, що розподіл швидкостей на дослідженій ділянці достатньо добре узгоджується із нормальним розподілом, а виявлені відхилення є випадковими. Отримане значення швидкості 85 % забезпеченості (98 км/год) можна використовувати як орієнтир для встановлення рекомендованих обмежень швидкості, моделювання пропускної здатності та розроблення елементів інтелектуального управління дорожнім рухом. | |
dc.description.abstract | The distribution characteristics of vehicle speeds on multilane highways approaching major and metropolitan cities, using a six-lane segment of the M-05 Kyiv – Odesa highway as a case study, are investigated in this paper. The research methodology is based on field observations employing frame-by-frame video analysis with an accuracy of 0.04 seconds, enabling precise identification of time headways between vehicles and calculating their instantaneous speeds. Both theoretical and empirical speed distribution curves were constructed. Typical speed ranges for different traffic lanes were identified, and the conformity of the observed data to the normal distribution law was statistically verified. The research identified several key analytical directions in the study of vehicle speed distribution on multilane highways. Specifically, the investigation focused on assessing the conformity of empirical data to the normal distribution model, establishing characteristic speed ranges by vehicle type, and evaluating the influence of traffic volume and traffic flow composition on speed parameters. The authors also examined the spatiotemporal structure of traffic flow, including the daily distribution of traffic volumes, lane-by-lane and directional variation, and empirical and theoretical speed distribution curves. Relationships among key traffic parameters – volume, density, and speed – were analyzed. A linear regression method was applied to describe the lane-wise distribution of vehicles, enabling the derivation of analytical dependencies N₁, N₂, and N₃ on total traffic volume N using the least squares method. The results showed that the speed distribution on the studied highway segment aligns well with the normal distribution, with observed deviations being random. The obtained 85th percentile speed (98 km/h) can serve as a reference for setting recommended speed limits, modeling roadway capacity, and developing intelligent traffic management systems components | |
dc.format.extent | 48-60 | |
dc.format.pages | 13 | |
dc.identifier.citation | Distribution of vehicle speeds in traffic flow on multilane roads approaching major and metropolitan cities / Oksana Hulchak, Stanislav Popov, Liudmyla Nahrebelna, Alina Korchevska // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 6. — No 1. — P. 48–60. | |
dc.identifier.citationen | Distribution of vehicle speeds in traffic flow on multilane roads approaching major and metropolitan cities / Oksana Hulchak, Stanislav Popov, Liudmyla Nahrebelna, Alina Korchevska // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 6. — No 1. — P. 48–60. | |
dc.identifier.doi | doi.org/10.23939/tt2025.01.048 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111503 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Transport Technologies, 1 (6), 2025 | |
dc.relation.references | 1. Polishchuk, V. P., Nahrebelna, L. P., Vyhovska, I. A., & Popov, S. Y. (2024). Applying energy principles to the assessment of road traffic safety. Journal of Transport Systems and Traffic Safety, 1(58), 133–141. DOI: 10.33744/2308-6645-2024-1-58-133-141 (in English). | |
dc.relation.references | 2. Popov, S., & Vyhovska, I. (2024). Digital Control Tower Model for Public Transport City Network. In International Scientific Conference Intelligent Transport Systems: Ecology, Safety, Quality, Comfort (pp. 385–394). Cham: Springer. DOI: 10.1007/978-3-031-87376-8_34 (in English). | |
dc.relation.references | 3. Xu, M., Di, Y., Ding, H., Zhu, Z., Chen, X., & Yang, H. (2023). AGNP: Network-wide short-term probabilistic traffic speed prediction and imputation. Communications in Transportation Research, 3, 100099. DOI: 10.1016/j.commtr.2023.100099 (in English). | |
dc.relation.references | 4. Al-Bayati, A. J., Ali, M., Alhomaidat, F., Bandara, N., & Chen, Y. (2024). The Effects of Temporary Portable Rumble Strips on Vehicle Speeds in Road Work Zones. Safety, 10(4), 105. DOI: 10.3390/safety10040105 (in English). | |
dc.relation.references | 5. Del Serrone, G., Cantisani, G., & Peluso, P. (2023). Speed data collection methods: a review. Transportation research procedia, 69, 512–519. DOI: 10.1016/j.trpro.2023.02.202 (in English). | |
dc.relation.references | 6. Ahmad, F., Ansari, M. Z., Hamid, S., & Saad, M. (2023). A Computer Vision based Vehicle Counting and Speed Detection System. In 2023 International Conference on Recent Advances in Electrical, Electronics & Digital Healthcare Technologies (REEDCON) (pp. 487–492). IEEE. DOI: 10.1109/reedcon57544.2023.10151423 (in English). | |
dc.relation.references | 7. Yanumula, V. K., Typaldos, P., Troullinos, D., Malekzadeh, M., Papamichail, I., & Papageorgiou, M. (2023). Optimal trajectory planning for connected and automated vehicles in lane-free traffic with vehicle nudging. IEEE Transactions on Intelligent Vehicles, 8(3), 2385–2399. DOI: 10.1109/tiv.2023.3241200 (in English). | |
dc.relation.references | 8. Kwon, N., Chang, I., Lee, J., & Ahn, S. (2024). Analysis of E-scooter Risk Factors by Road Types on Different Speed Levels. KSCE Journal of Civil Engineering, 28(8), 3533–3542. DOI: 10.1007/s12205-024-1335-6 (in English). | |
dc.relation.references | 9. Nahrebelna, L., Kostrulyova, T., Korchevska, A., & Shpin, D. (2024, November). Improving Traffic Safety with Using a Promising Extrapolation Method. In International Scientific Conference Intelligent Transport Systems: Ecology, Safety, Quality, Comfort (pp. 183–193). Cham: Springer. DOI: 10.1007/978-3-031-87379-9_17 (in English). | |
dc.relation.references | 10. Yu, M., Evangelou, S. A., & Dini, D. (2024). Advances in active suspension systems for road vehicles. Engineering, 33, 160–177. DOI: 10.1016/j.eng.2023.06.014 (in English). | |
dc.relation.references | 11. Pascale, A., Macedo, E., Guarnaccia, C., & Coelho, M. C. (2023). Smart mobility procedure for road traffic noise dynamic estimation by video analysis. Applied Acoustics, 208, 109381. DOI: 10.1016/j.apacoust.2023.109381 (in English). | |
dc.relation.references | 12. Astarita, V., Haghshenas, S. S., Guido, G., & Vitale, A. (2023). Developing new hybrid grey wolf optimization-based artificial neural network for predicting road crash severity. Transportation Engineering, 12, 100164. DOI: 10.1016/j.treng.2023.100164 (in English). | |
dc.relation.references | 13. Polishchuk, V., Yanishevskyi, S., Bilonoh, O., Nahrebelna, L., Trushevsky, V., Korchevska, A., ... & Vyhovska, I. (2023). Expert assessment of engineering and planning solutions to improve the safety of vulnerable road users in Ukraine. Retrieved from: https://monograph.route.ee/rout/catalog/book/978-9916-9850-2-1.ch6. DOI: 10.21303/978-9916-9850-2-1.ch6 (in English). | |
dc.relation.references | 14. Del Serrone, G., Cantisani, G., & Peluso, P. (2023). Speed data collection methods: a review. Transportation research procedia, 69, 512–519. DOI: 10.1016/j.trpro.2023.02.202 (in English). | |
dc.relation.references | 15. Polischuk, V. P., Vygovska, I. A., Nahrebelna, L .P. & Korchevska, A. A. (2023). Modeliuvannia rozpodilu transportnykh potokiv na merezhi avtomobilnykh dorih [Modeling of traffic flow distribution on the road network]. Zbirnyk naukovykh prats “Dorohy i mosty” [The Collection of scientific papers “Roads and Bridges”], 27(2023), 253–266 DOI: 10.36100/dorogimosti2023.27.253 (in Ukrainian). | |
dc.relation.references | 16. Orsini, F., Gecchele, G., Gastaldi, M., & Rossi, R. (2020). Large‐ scale road safety evaluation using extreme value theory. IET Intelligent Transport Systems, 14(9), 1004–1012. DOI: 10.1049/iet-its.2019.0633 (in English). | |
dc.relation.references | 17. . Lyashuk, O. L., Tsyon, O. P., Dzyura, V. O., Babiy, M. V., Kristopchuk, M. E., Lysenko, S. V. & Borodyak Y. D. (2022). Doslidzhennia bezpeky dorozhnoho rukhu na avtoshliakhakh [Research of road safety on highways]. Tsentralnoukrainskyi naukovyi visnyk. Tekhnichni nauky [Central Ukrainian Scientific Bulletin. Technical Sciences], 5(36), 311–317. DOI: 10.32515/2664-262X.2022.5(36).І.311-317 (in Ukrainian). | |
dc.relation.referencesen | 1. Polishchuk, V. P., Nahrebelna, L. P., Vyhovska, I. A., & Popov, S. Y. (2024). Applying energy principles to the assessment of road traffic safety. Journal of Transport Systems and Traffic Safety, 1(58), 133–141. DOI: 10.33744/2308-6645-2024-1-58-133-141 (in English). | |
dc.relation.referencesen | 2. Popov, S., & Vyhovska, I. (2024). Digital Control Tower Model for Public Transport City Network. In International Scientific Conference Intelligent Transport Systems: Ecology, Safety, Quality, Comfort (pp. 385–394). Cham: Springer. DOI: 10.1007/978-3-031-87376-8_34 (in English). | |
dc.relation.referencesen | 3. Xu, M., Di, Y., Ding, H., Zhu, Z., Chen, X., & Yang, H. (2023). AGNP: Network-wide short-term probabilistic traffic speed prediction and imputation. Communications in Transportation Research, 3, 100099. DOI: 10.1016/j.commtr.2023.100099 (in English). | |
dc.relation.referencesen | 4. Al-Bayati, A. J., Ali, M., Alhomaidat, F., Bandara, N., & Chen, Y. (2024). The Effects of Temporary Portable Rumble Strips on Vehicle Speeds in Road Work Zones. Safety, 10(4), 105. DOI: 10.3390/safety10040105 (in English). | |
dc.relation.referencesen | 5. Del Serrone, G., Cantisani, G., & Peluso, P. (2023). Speed data collection methods: a review. Transportation research procedia, 69, 512–519. DOI: 10.1016/j.trpro.2023.02.202 (in English). | |
dc.relation.referencesen | 6. Ahmad, F., Ansari, M. Z., Hamid, S., & Saad, M. (2023). A Computer Vision based Vehicle Counting and Speed Detection System. In 2023 International Conference on Recent Advances in Electrical, Electronics & Digital Healthcare Technologies (REEDCON) (pp. 487–492). IEEE. DOI: 10.1109/reedcon57544.2023.10151423 (in English). | |
dc.relation.referencesen | 7. Yanumula, V. K., Typaldos, P., Troullinos, D., Malekzadeh, M., Papamichail, I., & Papageorgiou, M. (2023). Optimal trajectory planning for connected and automated vehicles in lane-free traffic with vehicle nudging. IEEE Transactions on Intelligent Vehicles, 8(3), 2385–2399. DOI: 10.1109/tiv.2023.3241200 (in English). | |
dc.relation.referencesen | 8. Kwon, N., Chang, I., Lee, J., & Ahn, S. (2024). Analysis of E-scooter Risk Factors by Road Types on Different Speed Levels. KSCE Journal of Civil Engineering, 28(8), 3533–3542. DOI: 10.1007/s12205-024-1335-6 (in English). | |
dc.relation.referencesen | 9. Nahrebelna, L., Kostrulyova, T., Korchevska, A., & Shpin, D. (2024, November). Improving Traffic Safety with Using a Promising Extrapolation Method. In International Scientific Conference Intelligent Transport Systems: Ecology, Safety, Quality, Comfort (pp. 183–193). Cham: Springer. DOI: 10.1007/978-3-031-87379-9_17 (in English). | |
dc.relation.referencesen | 10. Yu, M., Evangelou, S. A., & Dini, D. (2024). Advances in active suspension systems for road vehicles. Engineering, 33, 160–177. DOI: 10.1016/j.eng.2023.06.014 (in English). | |
dc.relation.referencesen | 11. Pascale, A., Macedo, E., Guarnaccia, C., & Coelho, M. C. (2023). Smart mobility procedure for road traffic noise dynamic estimation by video analysis. Applied Acoustics, 208, 109381. DOI: 10.1016/j.apacoust.2023.109381 (in English). | |
dc.relation.referencesen | 12. Astarita, V., Haghshenas, S. S., Guido, G., & Vitale, A. (2023). Developing new hybrid grey wolf optimization-based artificial neural network for predicting road crash severity. Transportation Engineering, 12, 100164. DOI: 10.1016/j.treng.2023.100164 (in English). | |
dc.relation.referencesen | 13. Polishchuk, V., Yanishevskyi, S., Bilonoh, O., Nahrebelna, L., Trushevsky, V., Korchevska, A., ... & Vyhovska, I. (2023). Expert assessment of engineering and planning solutions to improve the safety of vulnerable road users in Ukraine. Retrieved from: https://monograph.route.ee/rout/catalog/book/978-9916-9850-2-1.ch6. DOI: 10.21303/978-9916-9850-2-1.ch6 (in English). | |
dc.relation.referencesen | 14. Del Serrone, G., Cantisani, G., & Peluso, P. (2023). Speed data collection methods: a review. Transportation research procedia, 69, 512–519. DOI: 10.1016/j.trpro.2023.02.202 (in English). | |
dc.relation.referencesen | 15. Polischuk, V. P., Vygovska, I. A., Nahrebelna, L .P. & Korchevska, A. A. (2023). Modeliuvannia rozpodilu transportnykh potokiv na merezhi avtomobilnykh dorih [Modeling of traffic flow distribution on the road network]. Zbirnyk naukovykh prats "Dorohy i mosty" [The Collection of scientific papers "Roads and Bridges"], 27(2023), 253–266 DOI: 10.36100/dorogimosti2023.27.253 (in Ukrainian). | |
dc.relation.referencesen | 16. Orsini, F., Gecchele, G., Gastaldi, M., & Rossi, R. (2020). Large‐ scale road safety evaluation using extreme value theory. IET Intelligent Transport Systems, 14(9), 1004–1012. DOI: 10.1049/iet-its.2019.0633 (in English). | |
dc.relation.referencesen | 17. . Lyashuk, O. L., Tsyon, O. P., Dzyura, V. O., Babiy, M. V., Kristopchuk, M. E., Lysenko, S. V. & Borodyak Y. D. (2022). Doslidzhennia bezpeky dorozhnoho rukhu na avtoshliakhakh [Research of road safety on highways]. Tsentralnoukrainskyi naukovyi visnyk. Tekhnichni nauky [Central Ukrainian Scientific Bulletin. Technical Sciences], 5(36), 311–317. DOI: 10.32515/2664-262X.2022.5(36).I.311-317 (in Ukrainian). | |
dc.relation.uri | https://monograph.route.ee/rout/catalog/book/978-9916-9850-2-1.ch6 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2025 | |
dc.rights.holder | © Hulchak O., Popov S., Nahrebelna L., Korchevska A., 2025 | |
dc.subject | автомобільна дорога | |
dc.subject | інтенсивність руху | |
dc.subject | смуга руху | |
dc.subject | швидкість | |
dc.subject | багатосмугова автомобільна дорога | |
dc.subject | емпіричне дослідження | |
dc.subject | highway | |
dc.subject | traffic volume | |
dc.subject | traffic lane | |
dc.subject | speed | |
dc.subject | multi-lane highway | |
dc.subject | empirical study | |
dc.title | Distribution of vehicle speeds in traffic flow on multilane roads approaching major and metropolitan cities | |
dc.title.alternative | Розподіл швидкостей руху транспортних засобів потоку на багатосмугових дорогах на підходах до значних та найзначніших міст | |
dc.type | Article |
Files
License bundle
1 - 1 of 1