Формування та властивості структурованих поліакриламідних гідрогелів із наночастинками CdS

dc.citation.epage160
dc.citation.issue1
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage154
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorШевчук, О. М.
dc.contributor.authorБукартик, Н. М.
dc.contributor.authorЧобіт, М. Р.
dc.contributor.authorПомилуйко, О. П.
dc.contributor.authorТокарев, В. С.
dc.contributor.authorShevchuk, O. M.
dc.contributor.authorBukartyk, N. M.
dc.contributor.authorChobit, M. R.
dc.contributor.authorPomyluiko, O. P.
dc.contributor.authorTokarev, V. S.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T09:24:47Z
dc.date.available2024-02-09T09:24:47Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractЗапропоновано новий спосіб одержання нанокомпозитних гідрогелів із вбудованими мінеральними наночастинками. Наночастинки CdS було отримано in situ в гідрогелевій матриці на основі кополімеру акриламіду та акрилової кислоти в умовах дифузійних потоків структуроутворюючих іонів Cd2+ та S2-. Формування наночастинок CdS у полімерній матриці підтверджено методами рентгеноструктурного, енергодисперсійного аналізу, УФ-спектроскопії. Досліджено вплив складу полімерної матриці на фізико-механічні властивості гідрогелю.
dc.description.abstractThe new method of obtaining nanocomposite hydrogels with embedded mineral nanoparticles has been proposed. CdS nanoparticles have been synthesized in situ in hydrogel matrix based on the copolymer of acrylamide and acrylic acid under the conditions of diffusion fluxes of Cd2+ and S2- structure-forming ions. The formation of CdS nanoparticles in polymeric matrix has been approved by the methods of XRD, energydispersive analysis, UV-spectroscopy. The influence of the content of polymer matrix onto physicomechanical properties of hydrogel has been studied.
dc.format.extent154-160
dc.format.pages7
dc.identifier.citationФормування та властивості структурованих поліакриламідних гідрогелів із наночастинками CdS / О. М. Шевчук, Н. М. Букартик, М. Р. Чобіт, О. П. Помилуйко, В. С. Токарев // Хімія, технологія речовин та їх застосування. — Львів : Видавництво Львівської політехніки, 2023. — Том 6. — № 1. — С. 154–160.
dc.identifier.citationenFormation and properties of cross-linked polyacrylamide hydrogels with CdS nanoparticles / O. M. Shevchuk, N. M. Bukartyk, M. R. Chobit, O. P. Pomyluiko, V. S. Tokarev // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 154–160.
dc.identifier.doidoi.org/10.23939/ctas2023.01.154
dc.identifier.issn2617-7307
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61187
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 1 (6), 2023
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (6), 2023
dc.relation.references1. Gaharwar, A. K., Peppas, N. A. Khademhosseini, A. (2014). Nanocomposite hydrogels for biomedical applications. Biotechnology and Bioengineering, 111(3), 441–453. doi:10.1002/bit.25160.
dc.relation.references2. Ha, Y., Shih, H., Munoz, Z., Kemp, A. Lin, C. C. (2014). Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture. Acta Biomaterialia, 10(1), 104–114. doi: 10.1016/j.actbio.2013.08.044.
dc.relation.references3. Haraguchi, K. (2007). Nanocomposite hydrogels. Current Opinion in Solid State and Materials Science, 11(3), 47–54. doi: 10.1016/j.cossms.2008.05.001.
dc.relation.references4. Gao, F. (еd.). (2012). Advances in Polymer Nanocomposites: Types and Applications. Philadelphia: Woodhead Publishing.
dc.relation.references5. Haraguchi, K. Takehisa, T. (2002). Nanocomposite hydrogels: A unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/deswelling properties. Advanced Materials, 14(16), 1120–1124. doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9.
dc.relation.references6. Merino, S., Martín, C., Kostarelos, K., Prato, M. Vazquez, E. (2015). Nanocomposite hydrogels: 3D polymer– nanoparticle synergies for on-demand drug delivery. ACS Nano, 9(5), 4686–4697. doi: 10.1021/acsnano.5b01433.
dc.relation.references7. Rafieian, S., Mirzadeh, H., Mahdavi, H. Masoumi M. E. (2019). A review on nanocomposite hydrogels and their biomedical applications. Science and Engineering of Composite Materials, 26(1), 154–174. doi: 10.1515/secm-2017-0161.
dc.relation.references8. Haraguchi, K., Farnworth, R., Ohbayashi, A. Takehisa, T. (2003). Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,Ndimethylacrylamide) and clay. Macromolecules, 36(15), 5732–5741. doi: 10.1021/ma034366i.
dc.relation.references9. Haraguchi, K., Takehisa, T. Fan, S. (2002). Effects of clay content on the properties of nanocomposite hydrogels composed of poly (n-isopropylacrylamide) and clay. Macromolecules, 35(27), 10162–10171. doi: 10.1021/ma021301r.
dc.relation.references10. Marcelo, G., Lopez-Gonzalez, M., Mendicuti, F., Tarazona, P. Valiente, M. (2014). Poly(N-isopropylacrylamide)/ gold hybrid hydrogels prepared by catechol redox chemistry. characterization and smart tunable catalytic activity. Macromolecules, 47(17), 6028–6036. doi: 10.1021/ma501214k.
dc.relation.references11. Chang, C., Peng, J., Zhang, L. Pang, D.-W. (2009). Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. Journal of Materials Chemistry, 19(41), 7771–7776. doi:10.1039/b908835k.
dc.relation.references12. Zhang, J. Wang, Z. (2022). Nanoparticle-hydrogel based sensors: synthesis and applications. Catalysts, 12, 1096. doi: 10.3390/catal12101096.
dc.relation.references13. Guo, J., Zhou, B., Du, Z., Yang, C., Kong, L. Xu, L. (2021). Soft and plasmonic hydrogel optical probe for glucose monitoring. Nanophotonics, 10(13), 3549–3558. doi: 10.1515/nanoph-2021-0360.
dc.relation.references14. Guo, M. Jiang, M. (2010). Supramolecular hydrogels with CdS quantum dots incorporated by host-guest interactions. Macromolecular Rapid Communications, 31, 1736–1739. doi: 10.1002/marc.201000255.
dc.relation.references15. Yang, J., Gao, J., Wang, X., Mei, S., Zhao, R., Hao, C., Liu, Y. (2017). Polyacrylamide hydrogel as a template in situ synthesis of CdS nanoparticles with high photocatalytic activity and photostability. Journal of Nanoparticle Research, 19, 350. doi: 10.1007/s11051-017-4048-7.
dc.relation.references16. Thoniyot, P., Tan,M. J., Karim, A. A., Young, D. J. Loh, X. J. (2015). Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multifunctional materials. Advansed Science, 2(1), 1400010-1–1400010-13. doi: 10.1002/advs.201400010.
dc.relation.references17. Shevchuk, O., Bukartyk, N., Chobit, M. Tokarev, V. (2021). Synthesis and characteristics of cross-linked polymer hydrogels with embedded CdS nanocrystals. Journal of Polymer Research, 28, 331. doi: 10.1007/s10965-021-026 62-3.
dc.relation.references18. Dannert, C., Stokke, B. T. Dias, R. S. (2019). Nanoparticle-hydrogel composites: from molecular interactions to macroscopic behavior. Polymers, 11(2), 275. doi: 10.3390/polym11020275.
dc.relation.references19. Wang, C., Flynn, N. T., Langer, R. (2004). Controlled structure and properties of thermoresponsive nanoparticle- hydrogel composites. Advanced Materials, 16(13), 1074–1079. doi: 10.1002/adma.200306516.
dc.relation.references20. Reiss, P., Protiere, M. Li L. (2009). Core/Shell Semiconductor Nanocrystals. Small, 5(2), 154–168. doi: 10.1002/smll.200800841.
dc.relation.references21. Bukartyk, N. M., Chobit, M. R., Borova, S. H., Nadashkevych, Z. Y. Tokarev, V. S. (2016). Syntez ta vlastyvosti karboksyl- i aminovmisnyh hidrogeliv na osnovi akrylamidu. Bulletin of Lviv Polytechnic National University. Series: Chemistry, materials technology and their applications,841, 345–350. https://science.lpnu.ua/schmt/allvolumes-and-issues/volume-841-2016/sintez-ta-vlastivostikarboksil-i-aminovmisnih.
dc.relation.referencesen1. Gaharwar, A. K., Peppas, N. A. Khademhosseini, A. (2014). Nanocomposite hydrogels for biomedical applications. Biotechnology and Bioengineering, 111(3), 441–453. doi:10.1002/bit.25160.
dc.relation.referencesen2. Ha, Y., Shih, H., Munoz, Z., Kemp, A. Lin, C. C. (2014). Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture. Acta Biomaterialia, 10(1), 104–114. doi: 10.1016/j.actbio.2013.08.044.
dc.relation.referencesen3. Haraguchi, K. (2007). Nanocomposite hydrogels. Current Opinion in Solid State and Materials Science, 11(3), 47–54. doi: 10.1016/j.cossms.2008.05.001.
dc.relation.referencesen4. Gao, F. (ed.). (2012). Advances in Polymer Nanocomposites: Types and Applications. Philadelphia: Woodhead Publishing.
dc.relation.referencesen5. Haraguchi, K. Takehisa, T. (2002). Nanocomposite hydrogels: A unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/deswelling properties. Advanced Materials, 14(16), 1120–1124. doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9.
dc.relation.referencesen6. Merino, S., Martín, C., Kostarelos, K., Prato, M. Vazquez, E. (2015). Nanocomposite hydrogels: 3D polymer– nanoparticle synergies for on-demand drug delivery. ACS Nano, 9(5), 4686–4697. doi: 10.1021/acsnano.5b01433.
dc.relation.referencesen7. Rafieian, S., Mirzadeh, H., Mahdavi, H. Masoumi M. E. (2019). A review on nanocomposite hydrogels and their biomedical applications. Science and Engineering of Composite Materials, 26(1), 154–174. doi: 10.1515/secm-2017-0161.
dc.relation.referencesen8. Haraguchi, K., Farnworth, R., Ohbayashi, A. Takehisa, T. (2003). Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,Ndimethylacrylamide) and clay. Macromolecules, 36(15), 5732–5741. doi: 10.1021/ma034366i.
dc.relation.referencesen9. Haraguchi, K., Takehisa, T. Fan, S. (2002). Effects of clay content on the properties of nanocomposite hydrogels composed of poly (n-isopropylacrylamide) and clay. Macromolecules, 35(27), 10162–10171. doi: 10.1021/ma021301r.
dc.relation.referencesen10. Marcelo, G., Lopez-Gonzalez, M., Mendicuti, F., Tarazona, P. Valiente, M. (2014). Poly(N-isopropylacrylamide)/ gold hybrid hydrogels prepared by catechol redox chemistry. characterization and smart tunable catalytic activity. Macromolecules, 47(17), 6028–6036. doi: 10.1021/ma501214k.
dc.relation.referencesen11. Chang, C., Peng, J., Zhang, L. Pang, D.-W. (2009). Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. Journal of Materials Chemistry, 19(41), 7771–7776. doi:10.1039/b908835k.
dc.relation.referencesen12. Zhang, J. Wang, Z. (2022). Nanoparticle-hydrogel based sensors: synthesis and applications. Catalysts, 12, 1096. doi: 10.3390/catal12101096.
dc.relation.referencesen13. Guo, J., Zhou, B., Du, Z., Yang, C., Kong, L. Xu, L. (2021). Soft and plasmonic hydrogel optical probe for glucose monitoring. Nanophotonics, 10(13), 3549–3558. doi: 10.1515/nanoph-2021-0360.
dc.relation.referencesen14. Guo, M. Jiang, M. (2010). Supramolecular hydrogels with CdS quantum dots incorporated by host-guest interactions. Macromolecular Rapid Communications, 31, 1736–1739. doi: 10.1002/marc.201000255.
dc.relation.referencesen15. Yang, J., Gao, J., Wang, X., Mei, S., Zhao, R., Hao, C., Liu, Y. (2017). Polyacrylamide hydrogel as a template in situ synthesis of CdS nanoparticles with high photocatalytic activity and photostability. Journal of Nanoparticle Research, 19, 350. doi: 10.1007/s11051-017-4048-7.
dc.relation.referencesen16. Thoniyot, P., Tan,M. J., Karim, A. A., Young, D. J. Loh, X. J. (2015). Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multifunctional materials. Advansed Science, 2(1), 1400010-1–1400010-13. doi: 10.1002/advs.201400010.
dc.relation.referencesen17. Shevchuk, O., Bukartyk, N., Chobit, M. Tokarev, V. (2021). Synthesis and characteristics of cross-linked polymer hydrogels with embedded CdS nanocrystals. Journal of Polymer Research, 28, 331. doi: 10.1007/s10965-021-026 62-3.
dc.relation.referencesen18. Dannert, C., Stokke, B. T. Dias, R. S. (2019). Nanoparticle-hydrogel composites: from molecular interactions to macroscopic behavior. Polymers, 11(2), 275. doi: 10.3390/polym11020275.
dc.relation.referencesen19. Wang, C., Flynn, N. T., Langer, R. (2004). Controlled structure and properties of thermoresponsive nanoparticle- hydrogel composites. Advanced Materials, 16(13), 1074–1079. doi: 10.1002/adma.200306516.
dc.relation.referencesen20. Reiss, P., Protiere, M. Li L. (2009). Core/Shell Semiconductor Nanocrystals. Small, 5(2), 154–168. doi: 10.1002/smll.200800841.
dc.relation.referencesen21. Bukartyk, N. M., Chobit, M. R., Borova, S. H., Nadashkevych, Z. Y. Tokarev, V. S. (2016). Syntez ta vlastyvosti karboksyl- i aminovmisnyh hidrogeliv na osnovi akrylamidu. Bulletin of Lviv Polytechnic National University. Series: Chemistry, materials technology and their applications,841, 345–350. https://science.lpnu.ua/schmt/allvolumes-and-issues/volume-841-2016/sintez-ta-vlastivostikarboksil-i-aminovmisnih.
dc.relation.urihttps://science.lpnu.ua/schmt/allvolumes-and-issues/volume-841-2016/sintez-ta-vlastivostikarboksil-i-aminovmisnih
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectгідрогель
dc.subjectнаночастинки CdS
dc.subjectкополімер
dc.subjectструктурування
dc.subjectфізико-механічні властивості
dc.subjecthydrogel
dc.subjectCdS nanoparticles
dc.subjectcopolymer
dc.subjectcross-linking
dc.subjectphysico-mechanical properties
dc.titleФормування та властивості структурованих поліакриламідних гідрогелів із наночастинками CdS
dc.title.alternativeFormation and properties of cross-linked polyacrylamide hydrogels with CdS nanoparticles
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v6n1_Shevchuk_O_M-Formation_and_properties_154-160.pdf
Size:
683.09 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v6n1_Shevchuk_O_M-Formation_and_properties_154-160__COVER.png
Size:
462.3 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: