Modern Strategies for Controlling Wind Power Plants: Technologies, Challenges and Prospects

dc.citation.epage63
dc.citation.issue1
dc.citation.journalTitleЕнергетика та системи керування
dc.citation.spage56
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКурилко, Назарій
dc.contributor.authorФедоришин, Роман
dc.contributor.authorKurylko, Nazarii
dc.contributor.authorFedoryshyn, Roman
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-10T08:12:26Z
dc.date.created2024-02-28
dc.date.issued2024-02-28
dc.description.abstractУ цій статті досліджено еволюцію стратегій керування вітроелектростанціями (ВЕС), починаючи з простих стратегій, спрямованих на оптимізацію роботи окремих вітрових турбін, до розробки складніших систем, що керують ВЕС як єдиними цілісними об'єктами. Окрема увага приділяється ключовим вимогам до систем керування ВЕС та аналізу структури ВЕС у контексті їх інтеграції в загальну енергосистему. Вивчено основні цілі систем керування ВЕС, проведено детальний огляд та аналіз стратегій керування, над якими активно ведуться наукові дослідження. Виявлено стратегії керування ВЕС, які успішно знайшли комерційне застосування, і окреслено напрямки для подальших досліджень, необхідних для оптимізації та покращення цих стратегій.
dc.description.abstractThis paper explores the evolution of wind power plant (WPP) control strategies, from simple approaches aimed at optimizing the operation of individual wind turbines to the development of more complex systems that manage WPPs as single integrated entities. Particular attention is paid to the key requirements for WPP control systems and the analysis of WPP structure, especially in the context of their integration into the overall power system. The main objectives of WPP control systems have been studied. The paper presents a detailed review and analysis of the control strategies that are being actively investigated. The control strategies that have successfully found commercial application are identified, and directions for further research needed to optimize and improve these strategies are outlined.
dc.format.extent56-63
dc.format.pages8
dc.identifier.citationKurylko N. Modern Strategies for Controlling Wind Power Plants: Technologies, Challenges and Prospects / Nazarii Kurylko, Roman Fedoryshyn // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 56–63.
dc.identifier.citationenKurylko N. Modern Strategies for Controlling Wind Power Plants: Technologies, Challenges and Prospects / Nazarii Kurylko, Roman Fedoryshyn // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 56–63.
dc.identifier.doidoi.org/10.23939/jeecs2024.01.056
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64046
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕнергетика та системи керування, 1 (10), 2024
dc.relation.ispartofEnergy Engineering and Control Systems, 1 (10), 2024
dc.relation.references[1] World Population Review. Wind Power by Country 2024: https://worldpopulationreview.com/country-rankings/wind-power-by-country. (accessed on June 9, 2024)
dc.relation.references[2] Laffitte, T., & Moshenets, I. (2023). Synchronized: The impact of the war on Ukraine’s energy landscape. Foreign Policy Research Institute. https://www.fpri.org/wp-content/uploads/2023/12/ukraine-energy-landscape.pdf. (accessed on June 9, 2024)
dc.relation.references[3] National Renewable Energy Laboratory (2023). Ukraine fights to build a more resilient, renewable energy system in the midst of war. NREL. Retrieved from https://www.nrel.gov/news/features/2023/ukraine-fights-to-build-a-more-resilient-renewable-energy-system-in-the-midst-ofwar.html. (accessed on June 9, 2024)
dc.relation.references[4] Wiser, R., Rand, J., Seel, J., Beiter, P., Baker, E., Lantz, E., & Gilman, P. (2021). Expert elicitation survey predicts 37 % to 49 % declines in wind energy costs by 2050. Nature Energy, 6(5), 555–565. https://doi.org/10.1038/s41560-021-00810-z.
dc.relation.references[5] Wright A. D., Fingersh L. J. Advanced Control Design for Wind Turbines: Part I: Control Design, Implementation, and Initial Tests. Prepared under Task No. WER8.2101. Technical Report. NREL/TP-500-42437; March 2008. Available from: https://www.nrel.gov/docs/fy08osti/42437.pdf. (accessed on June 9, 2024)
dc.relation.references[6] Schlueter, A., Javid, M., Sørensen, P., Kristoffersen, J. R., & Christiansen, C. (2022). Wind farm flow control: prospects and challenges. Wind Energy Science, 7(2271), 1–15. https://doi.org/10.5194/wes-7-2271-2022.
dc.relation.references[7] Altin, M., Teodorescu, R., Bak-Jensen, B., Rodriguez, P., & Kjær, P. C. (2010). Aspects of wind power plant collector network layout and control architecture. In Proceedings of the Danish PhD Seminar on Detailed Modelling and Validation of Electrical Components and Systems, 2010 (pp. 46–52). Fredericia, Denmark: Energinet.dk.
dc.relation.references[8] Altın, M., Göksu, Ö., Teodorescu, R., Rodriguez, P., Jensen, B.-B., & Helle, L. (2010). Overview of recent grid codes for wind power integration. In Proceedings of the 12th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM 2010). IEEE. https://doi.org/10.1109/OPTIM.2010.5510521.
dc.relation.references[9] Tsili, M., & Papathanassiou, S. (2009). Review of grid code technical requirements for wind farms. IET Renewable Power Generation, 3(3), 308–332. https://doi.org/10.1049/iet-rpg.2008.0070.
dc.relation.references[10] International Electrotechnical Commission. IEC 61400-21: Measurement and assessment of power quality characteristics of grid connected wind turbines. Available from: https://webstore.iec.ch/publication/2604. (accessed on June 9, 2024)
dc.relation.references[11] Institute of Electrical and Electronics Engineers. IEEE Std 1547-2018, IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. Available from: https://standards.ieee.org/standard/1547-2018.html. (accessed on June 9, 2024)
dc.relation.references[12] Sourkounis C, Tourou P. (2013). Grid Code Requirements for Wind Power Integration in Europe. Conference Papers in Science, 2013(1). https://doi.org/10.1155/2013/437674.
dc.relation.references[13] Díaz-González, F., Hau, M., Sumper, A., & Gomis-Bellmunt, O. (2014). Participation of wind power plants in system frequency control: Review of grid code requirements and control methods. Renewable and Sustainable Energy Reviews, 34, 551–564. https://doi.org/10.1016/j.rser.2014.03.040.
dc.relation.references[14] Etxegarai, A., Eguia, P., Torres, E., Buigues, G., & Iturregi, A. (2017). Current procedures and practices on grid code compliance verification of renewable power generation. Renewable and Sustainable Energy Reviews, 71, 191–202. https://doi.org/10.1016/j.rser.2016.12.051.
dc.relation.references[15] Bossanyi, E. A. (2003). Individual blade pitch control for load reduction. Wind Energy, 6(2), 119–128. https://doi.org/10.1002/we.76.
dc.relation.references[16] Ossmann D, Seiler P, Milliren C, Danker A. (2021). Field testing of multi-variable individual pitch control on a utility-scale wind turbine. Renewable Energy,170(2). https://doi.org/10.1016/j.renene.2021.02.039.
dc.relation.references[17] Jiménez A., Crespo A., Migoya E. (2010). Application of a LES technique to characterize the wake deflection of a wind turbine in yaw. Wind Energy, 13:559–572. https://doi.org/10.1002/we.380.
dc.relation.references[18] Gebraad P. M. O., Teeuwisse F. W., van Wingerden J. W., et al. (2016). Wind plant power optimization through yaw control using a parametric model for wake effects – a CFD simulation study. Wind Energy, 19:95–114. https://doi.org/10.1002/we.1822.
dc.relation.references[19] Campagnolo F., Petrović V., Schreiber J., et al. (2016). Wind tunnel testing of a closed-loop wake deflection controller for wind farm power maximization. J. Phys. Conf Ser., 753:032006. https://doi.org/10.1002/we.1822.
dc.relation.references[20] Siemens Gamesa Renewable Energy (n. d.). WakeAdapt: Optimizing Wind Farm Performance. Retrieved from https://www.siemensgamesa.com/products-and-services/services/wind-services/wake-adapt (accessed on June 9, 2024)
dc.relation.references[21] WindESCo (n.d.). Swarm™: Wind Farm Control. Retrieved from https://www.windesco.com/swarm (accessed on June 9, 2024)
dc.relation.references[22] Scholbrock, A., Fleming, P., Schlipf, D., Wright, A., Johnson, K., & Wang, N. (2016). Lidar-enhanced wind turbine control: Past, present, and future. In 2016 American Control Conference (ACC) (pp. Date). IEEE. https://doi.org/10.1109/ACC.2016.7525113
dc.relation.references[23] Schlipf D., Schlipf D. J., Kühn M. (2012). Nonlinear model predictive control of wind turbines using LIDAR. Wind Energy, 16(7):1107–1129. https://doi.org/10.1002/we.1533
dc.relation.references[24] Raach S., Schlipf D., Cheng P. W. (2017). Lidar-based wake tracking for closed-loop wind farm control. Wind Energ. Sci., 2:257–267. DOI:10.5194/wes-2-257-2017. Available from: https://www.wind-energ-sci.net/2/257/2017/ (accessed on June 9, 2024)
dc.relation.references[25] Windar Photonics. Windeye. Available at: https://www.windarphotonics.com/windeye. (accessed on June 9, 2024)
dc.relation.references[26] Sun, Y., Tang, X., Sun, X., Jia, D., Cao, Z., Pan, J., & Xu, B. (2018). Model predictive control and improved low-pass filtering strategies based on wind power fluctuation mitigation. Journal of Modern Power Systems and Clean Energy, 6(5), https://doi.org/10.1007/s40565-018-0474-5.
dc.relation.references[27] Yang X., Maciejowski J. M. (2012). Fault-tolerant model predictive control of a wind turbine benchmark. IFAC Proceedings Volumes, 45(20):337–342. DOI:10.3182/20120829-3-MX-2028.00134.
dc.relation.references[28] Cañizo, M., Onieva, E., Conde, A., Charramendieta, S., & Trujillo, S. (2017). Real-time predictive maintenance for wind turbines using Big Data frameworks. Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management, 70–77. https://doi.org/10.1109/ICPHM.2017.7998308.
dc.relation.references[29] Turnbull, A., & Carroll, J. (2021). Cost benefit of implementing advanced monitoring and predictive maintenance strategies for offshore wind farms. Energies, 14(16), 4922. https://doi.org/10.3390/en14164922.
dc.relation.referencesen[1] World Population Review. Wind Power by Country 2024: https://worldpopulationreview.com/country-rankings/wind-power-by-country. (accessed on June 9, 2024)
dc.relation.referencesen[2] Laffitte, T., & Moshenets, I. (2023). Synchronized: The impact of the war on Ukraine’s energy landscape. Foreign Policy Research Institute. https://www.fpri.org/wp-content/uploads/2023/12/ukraine-energy-landscape.pdf. (accessed on June 9, 2024)
dc.relation.referencesen[3] National Renewable Energy Laboratory (2023). Ukraine fights to build a more resilient, renewable energy system in the midst of war. NREL. Retrieved from https://www.nrel.gov/news/features/2023/ukraine-fights-to-build-a-more-resilient-renewable-energy-system-in-the-midst-ofwar.html. (accessed on June 9, 2024)
dc.relation.referencesen[4] Wiser, R., Rand, J., Seel, J., Beiter, P., Baker, E., Lantz, E., & Gilman, P. (2021). Expert elicitation survey predicts 37 % to 49 % declines in wind energy costs by 2050. Nature Energy, 6(5), 555–565. https://doi.org/10.1038/s41560-021-00810-z.
dc.relation.referencesen[5] Wright A. D., Fingersh L. J. Advanced Control Design for Wind Turbines: Part I: Control Design, Implementation, and Initial Tests. Prepared under Task No. WER8.2101. Technical Report. NREL/TP-500-42437; March 2008. Available from: https://www.nrel.gov/docs/fy08osti/42437.pdf. (accessed on June 9, 2024)
dc.relation.referencesen[6] Schlueter, A., Javid, M., Sørensen, P., Kristoffersen, J. R., & Christiansen, C. (2022). Wind farm flow control: prospects and challenges. Wind Energy Science, 7(2271), 1–15. https://doi.org/10.5194/wes-7-2271-2022.
dc.relation.referencesen[7] Altin, M., Teodorescu, R., Bak-Jensen, B., Rodriguez, P., & Kjær, P. C. (2010). Aspects of wind power plant collector network layout and control architecture. In Proceedings of the Danish PhD Seminar on Detailed Modelling and Validation of Electrical Components and Systems, 2010 (pp. 46–52). Fredericia, Denmark: Energinet.dk.
dc.relation.referencesen[8] Altın, M., Göksu, Ö., Teodorescu, R., Rodriguez, P., Jensen, B.-B., & Helle, L. (2010). Overview of recent grid codes for wind power integration. In Proceedings of the 12th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM 2010). IEEE. https://doi.org/10.1109/OPTIM.2010.5510521.
dc.relation.referencesen[9] Tsili, M., & Papathanassiou, S. (2009). Review of grid code technical requirements for wind farms. IET Renewable Power Generation, 3(3), 308–332. https://doi.org/10.1049/iet-rpg.2008.0070.
dc.relation.referencesen[10] International Electrotechnical Commission. IEC 61400-21: Measurement and assessment of power quality characteristics of grid connected wind turbines. Available from: https://webstore.iec.ch/publication/2604. (accessed on June 9, 2024)
dc.relation.referencesen[11] Institute of Electrical and Electronics Engineers. IEEE Std 1547-2018, IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. Available from: https://standards.ieee.org/standard/1547-2018.html. (accessed on June 9, 2024)
dc.relation.referencesen[12] Sourkounis C, Tourou P. (2013). Grid Code Requirements for Wind Power Integration in Europe. Conference Papers in Science, 2013(1). https://doi.org/10.1155/2013/437674.
dc.relation.referencesen[13] Díaz-González, F., Hau, M., Sumper, A., & Gomis-Bellmunt, O. (2014). Participation of wind power plants in system frequency control: Review of grid code requirements and control methods. Renewable and Sustainable Energy Reviews, 34, 551–564. https://doi.org/10.1016/j.rser.2014.03.040.
dc.relation.referencesen[14] Etxegarai, A., Eguia, P., Torres, E., Buigues, G., & Iturregi, A. (2017). Current procedures and practices on grid code compliance verification of renewable power generation. Renewable and Sustainable Energy Reviews, 71, 191–202. https://doi.org/10.1016/j.rser.2016.12.051.
dc.relation.referencesen[15] Bossanyi, E. A. (2003). Individual blade pitch control for load reduction. Wind Energy, 6(2), 119–128. https://doi.org/10.1002/we.76.
dc.relation.referencesen[16] Ossmann D, Seiler P, Milliren C, Danker A. (2021). Field testing of multi-variable individual pitch control on a utility-scale wind turbine. Renewable Energy,170(2). https://doi.org/10.1016/j.renene.2021.02.039.
dc.relation.referencesen[17] Jiménez A., Crespo A., Migoya E. (2010). Application of a LES technique to characterize the wake deflection of a wind turbine in yaw. Wind Energy, 13:559–572. https://doi.org/10.1002/we.380.
dc.relation.referencesen[18] Gebraad P. M. O., Teeuwisse F. W., van Wingerden J. W., et al. (2016). Wind plant power optimization through yaw control using a parametric model for wake effects – a CFD simulation study. Wind Energy, 19:95–114. https://doi.org/10.1002/we.1822.
dc.relation.referencesen[19] Campagnolo F., Petrović V., Schreiber J., et al. (2016). Wind tunnel testing of a closed-loop wake deflection controller for wind farm power maximization. J. Phys. Conf Ser., 753:032006. https://doi.org/10.1002/we.1822.
dc.relation.referencesen[20] Siemens Gamesa Renewable Energy (n. d.). WakeAdapt: Optimizing Wind Farm Performance. Retrieved from https://www.siemensgamesa.com/products-and-services/services/wind-services/wake-adapt (accessed on June 9, 2024)
dc.relation.referencesen[21] WindESCo (n.d.). Swarm™: Wind Farm Control. Retrieved from https://www.windesco.com/swarm (accessed on June 9, 2024)
dc.relation.referencesen[22] Scholbrock, A., Fleming, P., Schlipf, D., Wright, A., Johnson, K., & Wang, N. (2016). Lidar-enhanced wind turbine control: Past, present, and future. In 2016 American Control Conference (ACC) (pp. Date). IEEE. https://doi.org/10.1109/ACC.2016.7525113
dc.relation.referencesen[23] Schlipf D., Schlipf D. J., Kühn M. (2012). Nonlinear model predictive control of wind turbines using LIDAR. Wind Energy, 16(7):1107–1129. https://doi.org/10.1002/we.1533
dc.relation.referencesen[24] Raach S., Schlipf D., Cheng P. W. (2017). Lidar-based wake tracking for closed-loop wind farm control. Wind Energ. Sci., 2:257–267. DOI:10.5194/wes-2-257-2017. Available from: https://www.wind-energ-sci.net/2/257/2017/ (accessed on June 9, 2024)
dc.relation.referencesen[25] Windar Photonics. Windeye. Available at: https://www.windarphotonics.com/windeye. (accessed on June 9, 2024)
dc.relation.referencesen[26] Sun, Y., Tang, X., Sun, X., Jia, D., Cao, Z., Pan, J., & Xu, B. (2018). Model predictive control and improved low-pass filtering strategies based on wind power fluctuation mitigation. Journal of Modern Power Systems and Clean Energy, 6(5), https://doi.org/10.1007/s40565-018-0474-5.
dc.relation.referencesen[27] Yang X., Maciejowski J. M. (2012). Fault-tolerant model predictive control of a wind turbine benchmark. IFAC Proceedings Volumes, 45(20):337–342. DOI:10.3182/20120829-3-MX-2028.00134.
dc.relation.referencesen[28] Cañizo, M., Onieva, E., Conde, A., Charramendieta, S., & Trujillo, S. (2017). Real-time predictive maintenance for wind turbines using Big Data frameworks. Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management, 70–77. https://doi.org/10.1109/ICPHM.2017.7998308.
dc.relation.referencesen[29] Turnbull, A., & Carroll, J. (2021). Cost benefit of implementing advanced monitoring and predictive maintenance strategies for offshore wind farms. Energies, 14(16), 4922. https://doi.org/10.3390/en14164922.
dc.relation.urihttps://worldpopulationreview.com/country-rankings/wind-power-by-country
dc.relation.urihttps://www.fpri.org/wp-content/uploads/2023/12/ukraine-energy-landscape.pdf
dc.relation.urihttps://www.nrel.gov/news/features/2023/ukraine-fights-to-build-a-more-resilient-renewable-energy-system-in-the-midst-ofwar.html
dc.relation.urihttps://doi.org/10.1038/s41560-021-00810-z
dc.relation.urihttps://www.nrel.gov/docs/fy08osti/42437.pdf
dc.relation.urihttps://doi.org/10.5194/wes-7-2271-2022
dc.relation.urihttps://doi.org/10.1109/OPTIM.2010.5510521
dc.relation.urihttps://doi.org/10.1049/iet-rpg.2008.0070
dc.relation.urihttps://webstore.iec.ch/publication/2604
dc.relation.urihttps://standards.ieee.org/standard/1547-2018.html
dc.relation.urihttps://doi.org/10.1155/2013/437674
dc.relation.urihttps://doi.org/10.1016/j.rser.2014.03.040
dc.relation.urihttps://doi.org/10.1016/j.rser.2016.12.051
dc.relation.urihttps://doi.org/10.1002/we.76
dc.relation.urihttps://doi.org/10.1016/j.renene.2021.02.039
dc.relation.urihttps://doi.org/10.1002/we.380
dc.relation.urihttps://doi.org/10.1002/we.1822
dc.relation.urihttps://www.siemensgamesa.com/products-and-services/services/wind-services/wake-adapt
dc.relation.urihttps://www.windesco.com/swarm
dc.relation.urihttps://doi.org/10.1109/ACC.2016.7525113
dc.relation.urihttps://doi.org/10.1002/we.1533
dc.relation.urihttps://www.wind-energ-sci.net/2/257/2017/
dc.relation.urihttps://www.windarphotonics.com/windeye
dc.relation.urihttps://doi.org/10.1007/s40565-018-0474-5
dc.relation.urihttps://doi.org/10.1109/ICPHM.2017.7998308
dc.relation.urihttps://doi.org/10.3390/en14164922
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectвітроелектростанція
dc.subjectвітрова турбіна
dc.subjectсистема керування
dc.subjectенергія вітру
dc.subjectстратегія керування
dc.subjectwind power plant
dc.subjectwind turbine
dc.subjectcontrol system
dc.subjectwind power
dc.subjectcontrol strategy
dc.titleModern Strategies for Controlling Wind Power Plants: Technologies, Challenges and Prospects
dc.title.alternativeСучасні стратегії керування вітроелектростанціями: технології, виклики та перспективи
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v10n1_Kurylko_N-Modern_Strategies_for_Controlling_56-63.pdf
Size:
1.93 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v10n1_Kurylko_N-Modern_Strategies_for_Controlling_56-63__COVER.png
Size:
422 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: