Strength of inclined cross-sections of reinforced concrete protective shells under the action of punching

dc.citation.epage17
dc.citation.issue1
dc.citation.spage1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКархут, І. І.
dc.contributor.authorKarkhut, Ihor
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-04-24T08:11:48Z
dc.date.available2023-04-24T08:11:48Z
dc.date.created2022-03-03
dc.date.issued2022-03-03
dc.description.abstractВивчено досвід армування та підсилення похилих перерізів у зонах впливу поперечних сил та навантаження продавлювання різними матеріалами та конструктивними заходами. Подано результати експериментальних досліджень похилих перерізів захисних конструкцій на ділянці впливу місцевого аварійного навантаження продавлювання. За результатами експериментальних досліджень 12 зразків отримані руйнівні зусилля продавлювання. Наведено результати порівняння розрахунків міцності за різними гіпотезами та методиками для зразків, виготовлених із важкого бетону на портландцементі двох класів міцності на стискання С10/12, С16/20 із застосуванням додаткового горизонтального армування та без нього. В статті наведено армування та міцність похилих перетинів за кута руйнування γ = 40°. Виконано аналіз результатів та розроблено рекомендації із конструювання похилих перерізів тонких плит та оболонок у зоні продавлювання. Отримані експериментально значення несучої здатності бетонних та залізобетонних зразків під час продавлювання добре корелюють із результатами, теоретично визначеними за залежностями, що враховують нагельний ефект арматури та фактичну міцність бетону. Максимальні відхилення теоретичних значень від експериментальних 0–(+30) % як під час руйнування по похилих, так і по нормальних перетинах. Забезпечити відсутність зминання бетону стержнями та розколювання у площині горизонтальних сіток рекомендовано обмеженням максимальних діаметрів та кроку арматури, мінімального класу бетону. Очевидні технологічні переваги дають змогу рекомендувати застосування на ділянках імовірного прикладання місцевого аварійного динамічного навантаження додаткових горизонтальних сіток замість вертикальних хомутів
dc.description.abstractThe experience of inclined cross-sections in the zones of influence of transverse forces and punching loads has been studied. The results of experimental studies of inclined cross-sections of protective structures in the area of influence of local emergency load on punching are presented. The article presents the reinforcement and strength of inclined cross-sections at the angle of destruction γ = 40°. The analysis of the results was carried out and recommendations were developed for the design of inclined cross-sections of shells in the punching zone. The experimentally obtained values of the bearing capacity of concrete and reinforced concrete samples during punching correlate well with the results of theoretically determined dependencies that take into account the pin effect of reinforcement and the actual strength of concrete.
dc.format.extent1-17
dc.format.pages17
dc.identifier.citationKarkhut I. Strength of inclined cross-sections of reinforced concrete protective shells under the action of punching / Ihor Karkhut // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 4. — No 1. — P. 1–17.
dc.identifier.citationenKarkhut I. Strength of inclined cross-sections of reinforced concrete protective shells under the action of punching / Ihor Karkhut // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 4. — No 1. — P. 1–17.
dc.identifier.doidoi.org/10.23939/jtbp2022.01.001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57975
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 1 (4), 2022
dc.relation.referencesKarkhut, I. I. (2015). Temperature loads on reinforced concrete protective structures. - Lviv. Vydavnytstvo
dc.relation.referencesLvivskoi Politehniky (in Ukrainian). https://vlp.com.ua/node/14808.
dc.relation.referencesEibl, J. (2003). Airplane Impact on Nuclear Power plants. Proceedings of the 17th international conference on
dc.relation.referencesstructural mechanics in reactor technology (SMiRT 17). Prague, Czech Republic: Vysoka skola technicka. August 17–22. http://inis.iaea.org/search/search.aspx?orig_q=RN:36071655.
dc.relation.referencesRaghupati Roy, U. S. P. Verma and A. S. Warudcar. (1999). Analysis of Massive Reinforced Concrete Ring
dc.relation.referencesBeam of Nuclear Containment Structure due to Heat of Hydration. Transactions of the 15th International Conference
dc.relation.referenceson Structural Mechanics in Reactor Technology (SMiRT 15). Seoul, Korea, August 15–20.
dc.relation.referenceshttps://repository.lib.ncsu.edu/handle/1840.20/30202.
dc.relation.referencesBriffaut, M., Benboudjema, F., Torrenti, J. M., Hanas, G. (2011). Numerical analysis of the thermal active
dc.relation.referencesrestrained shrinkage ring test to study the early age behavior of massive concrete structures. Engineering structures, 33 (4), 1390–1401. https://doi.org/10.1016/j.engstruct.2010.12.044
dc.relation.referencesKrálik Juraj (2014). Safety of Nuclear Power Plants against the Aircraft Attack. Applied Mechanics and
dc.relation.referencesMaterials, Vol 617, 76–80. Online: 2014-08-18©. Trans Tech Publications, Switzerland. DOI: 10.4028/
dc.relation.referenceswww.scientific.net/AMM.617.76
dc.relation.referencesMakarenko, L. P. (1986). Recommendations for the calculation of reinforced concrete protective shells of
dc.relation.referencesnuclear power plants in an emergency, 22 p. Rivne: IIVH (in Russian).
dc.relation.referencesDuan, Z. P., Zhang, L. S., Wen, L. J., Guo, C., Bai, Z. L., Ou, Z. C., Huang, F. L. (2018). Experimental
dc.relation.referencesresearch on impact loading characteristics by full-scale airplane impacting on concrete target. Nucl. Eng. Des., 328, 292–300. DOI: 10.1016/j.nucengdes.2018.01.021.
dc.relation.referencesLuchko, J. J., Mamlin, S. V. (2018). Dynamics of rod systems and structures. Lviv: Kameniar, 524 p. (in
dc.relation.referencesUkrainian). ISBN 978-966-607-416-3. https://www.kamenyar.com.ua/nashi-vydannya/vydannya-2018/160-luchko-jj-mimlin-s-v-dinamika-sterzhnevikh-sistem-ta-sporud.html.
dc.relation.referencesSadique, M. R., Iqbal, M. A., Bhargava, P. (2013). Nuclear containment structure subjected to commercial and
dc.relation.referencesfighter aircraft crash. Nucl. Eng. Des., 260, 30–46. DOI: 10.1016/j.nucengdes.2013.03.009.
dc.relation.referencesLo Frano, R., Forasassi, G. (2011). Preliminary evaluation of aircraft impact on a near term nuclear power
dc.relation.referencesplant. Nucl. Eng. Des., 241 (12), 5245–5250. DOI: 10.1016/j.nucengdes.2011.11.019.
dc.relation.referencesBabaev, V. M., Bambura, A. M., Pustovoitova, O. M., Reznik, P. A., Stoianov, E. H., Shmukler, V. S. (2015).
dc.relation.referencesPractical calculation of elements of reinforced concrete structures by DBN V.2.6-98 compared with the calculations
dc.relation.referencesfor SNiP 2.03.01–84* I EN 1992-1-1 (Eurocode 2), 208 p. Kharkiv: Zoloti storinky (in Ukrainian). ISBN 978-966-400-327-5.
dc.relation.referencesKarkhut I. I. (2021). Design and construction in areas with high seismic activity. Lviv: Vydavnytstvo Lvivskoi
dc.relation.referencespolitehniky, 188 p. https://vlp.com.ua/node/20395.
dc.relation.referencesMaksymovych, S., Krochak, O., Karkhut, I., Vashkevych, R. (2021). Experimental Study of Crack Resistance
dc.relation.referencesand Shear Strength of Single-Span Reinforced Concrete Beams Under a Concentrated Load at a/d = 1. In:
dc.relation.referencesBlikharskyy, Z. (eds) Proceedings of EcoComfort 2020. EcoComfort 2020. Lecture Notes in Civil Engineering,
dc.relation.referencesVol. 100. Springer, Cham. https://doi.org/10.1007/978-3-030-57340-9_34.
dc.relation.referencesBlikharskyy, Z. Ya., Karkhut, I. I. (2017). Сalculation and design of bent reinforced concrete elements, 188 p.
dc.relation.referencesLviv: Vydavnytstvo Lvivskoi politehniky (in Ukrainian). https://vlp.com.ua/node/20235.
dc.relation.referencesBlikharskyy, Z., Khmil, R., Vegera, P. (2017). Shear strength of reinforced concrete beams strengthened
dc.relation.referencesby PBO fiber mesh under loading. In: MATEC Web of Conferences, Vol. 116, 02006. https://doi.org/10.1051/
dc.relation.referencesmatecconf/201711602006.
dc.relation.referencesBobalo, T., Blikharskyy, Y., Vashkevych, R., Volynets M. (2018). Bearing capacity of RC beams
dc.relation.referencesreinforced with high strength rebars and steel plate. In: MATEC Web of conferences, Vol. 230 02003.
dc.relation.referenceshttps://doi.org/10.1051/matecconf/201823002003.
dc.relation.referencesSelejdak, J., Blikharskyy, Y., Khmil, R., Blikharskyy, Z. (2020). Calculation of Reinforced Concrete Columns
dc.relation.referencesStrengthened by CFRP. In: Blikharskyy, Z., Koszelnik, P., Mesaros, P. (eds) Proceedings of CEE 2019. CEE 2019.
dc.relation.referencesLecture Notes in Civil Engineering, vol. 47. Springer, Cham. https://doi.org/10.1007/978-3-030-27011-7_51.
dc.relation.referencesBlikharskyy, Y., Khmil, R., Blikharskyy, Z. (2018). Research of RC columns strengthened by carbon FRP
dc.relation.referencesunder loading. MATEC Web of conferences 174, 04017. https://doi.org/10.1051/matecconf/201817404017.
dc.relation.referencesCavagnis, F., Simões, J.T., Fernández Ruiz, M., Muttoni, A. (2020). Shear strength of members without
dc.relation.referencestransverse reinforcements based on development of critical shear crack. ACI Struct. J., 117(1), 103–118.
dc.relation.referenceshttp://dx.doi.org/10.14359/51718012.
dc.relation.referencesMaksymovych S. B., Krochak O. V. (2019). Experimental studies of crack resistance and strength of inclined
dc.relation.referencessections of reinforced concrete beams loaded with concentrated forces. J. Resour. Saving Mater. Build. Struct., 37, 164–174. Rivne: Volynski oberehy (in Ukrainian). ISBN 978-966-416-682-6.
dc.relation.referencesKarkhut, I. (2021). Determining the Stressed-Strained State of Concrete in the Zone of Exposure to Local
dc.relation.referencesLaser Radiation. Eastern-European Journal of Enterprise Technologies, 3(7(111), 24–36. DOI:10.15587/1729-4061.2021.232671, Available at SSRN: https://ssrn.com/abstract=3887769.
dc.relation.referencesConcrete and reinforced concrete structures made of heavy concrete. Design rules. DSTU B V.2.6-156-2010,
dc.relation.referencesNational Standard of Ukraine (2011). Kyiv: Ukrarkhbudinform (in Ukrainian).
dc.relation.referencesenKarkhut, I. I. (2015). Temperature loads on reinforced concrete protective structures, Lviv. Vydavnytstvo
dc.relation.referencesenLvivskoi Politehniky (in Ukrainian). https://vlp.com.ua/node/14808.
dc.relation.referencesenEibl, J. (2003). Airplane Impact on Nuclear Power plants. Proceedings of the 17th international conference on
dc.relation.referencesenstructural mechanics in reactor technology (SMiRT 17). Prague, Czech Republic: Vysoka skola technicka. August 17–22. http://inis.iaea.org/search/search.aspx?orig_q=RN:36071655.
dc.relation.referencesenRaghupati Roy, U. S. P. Verma and A. S. Warudcar. (1999). Analysis of Massive Reinforced Concrete Ring
dc.relation.referencesenBeam of Nuclear Containment Structure due to Heat of Hydration. Transactions of the 15th International Conference
dc.relation.referencesenon Structural Mechanics in Reactor Technology (SMiRT 15). Seoul, Korea, August 15–20.
dc.relation.referencesenhttps://repository.lib.ncsu.edu/handle/1840.20/30202.
dc.relation.referencesenBriffaut, M., Benboudjema, F., Torrenti, J. M., Hanas, G. (2011). Numerical analysis of the thermal active
dc.relation.referencesenrestrained shrinkage ring test to study the early age behavior of massive concrete structures. Engineering structures, 33 (4), 1390–1401. https://doi.org/10.1016/j.engstruct.2010.12.044
dc.relation.referencesenKrálik Juraj (2014). Safety of Nuclear Power Plants against the Aircraft Attack. Applied Mechanics and
dc.relation.referencesenMaterials, Vol 617, 76–80. Online: 2014-08-18©. Trans Tech Publications, Switzerland. DOI: 10.4028/
dc.relation.referencesenwww.scientific.net/AMM.617.76
dc.relation.referencesenMakarenko, L. P. (1986). Recommendations for the calculation of reinforced concrete protective shells of
dc.relation.referencesennuclear power plants in an emergency, 22 p. Rivne: IIVH (in Russian).
dc.relation.referencesenDuan, Z. P., Zhang, L. S., Wen, L. J., Guo, C., Bai, Z. L., Ou, Z. C., Huang, F. L. (2018). Experimental
dc.relation.referencesenresearch on impact loading characteristics by full-scale airplane impacting on concrete target. Nucl. Eng. Des., 328, 292–300. DOI: 10.1016/j.nucengdes.2018.01.021.
dc.relation.referencesenLuchko, J. J., Mamlin, S. V. (2018). Dynamics of rod systems and structures. Lviv: Kameniar, 524 p. (in
dc.relation.referencesenUkrainian). ISBN 978-966-607-416-3. https://www.kamenyar.com.ua/nashi-vydannya/vydannya-2018/160-luchko-jj-mimlin-s-v-dinamika-sterzhnevikh-sistem-ta-sporud.html.
dc.relation.referencesenSadique, M. R., Iqbal, M. A., Bhargava, P. (2013). Nuclear containment structure subjected to commercial and
dc.relation.referencesenfighter aircraft crash. Nucl. Eng. Des., 260, 30–46. DOI: 10.1016/j.nucengdes.2013.03.009.
dc.relation.referencesenLo Frano, R., Forasassi, G. (2011). Preliminary evaluation of aircraft impact on a near term nuclear power
dc.relation.referencesenplant. Nucl. Eng. Des., 241 (12), 5245–5250. DOI: 10.1016/j.nucengdes.2011.11.019.
dc.relation.referencesenBabaev, V. M., Bambura, A. M., Pustovoitova, O. M., Reznik, P. A., Stoianov, E. H., Shmukler, V. S. (2015).
dc.relation.referencesenPractical calculation of elements of reinforced concrete structures by DBN V.2.6-98 compared with the calculations
dc.relation.referencesenfor SNiP 2.03.01–84* I EN 1992-1-1 (Eurocode 2), 208 p. Kharkiv: Zoloti storinky (in Ukrainian). ISBN 978-966-400-327-5.
dc.relation.referencesenKarkhut I. I. (2021). Design and construction in areas with high seismic activity. Lviv: Vydavnytstvo Lvivskoi
dc.relation.referencesenpolitehniky, 188 p. https://vlp.com.ua/node/20395.
dc.relation.referencesenMaksymovych, S., Krochak, O., Karkhut, I., Vashkevych, R. (2021). Experimental Study of Crack Resistance
dc.relation.referencesenand Shear Strength of Single-Span Reinforced Concrete Beams Under a Concentrated Load at a/d = 1. In:
dc.relation.referencesenBlikharskyy, Z. (eds) Proceedings of EcoComfort 2020. EcoComfort 2020. Lecture Notes in Civil Engineering,
dc.relation.referencesenVol. 100. Springer, Cham. https://doi.org/10.1007/978-3-030-57340-9_34.
dc.relation.referencesenBlikharskyy, Z. Ya., Karkhut, I. I. (2017). Salculation and design of bent reinforced concrete elements, 188 p.
dc.relation.referencesenLviv: Vydavnytstvo Lvivskoi politehniky (in Ukrainian). https://vlp.com.ua/node/20235.
dc.relation.referencesenBlikharskyy, Z., Khmil, R., Vegera, P. (2017). Shear strength of reinforced concrete beams strengthened
dc.relation.referencesenby PBO fiber mesh under loading. In: MATEC Web of Conferences, Vol. 116, 02006. https://doi.org/10.1051/
dc.relation.referencesenmatecconf/201711602006.
dc.relation.referencesenBobalo, T., Blikharskyy, Y., Vashkevych, R., Volynets M. (2018). Bearing capacity of RC beams
dc.relation.referencesenreinforced with high strength rebars and steel plate. In: MATEC Web of conferences, Vol. 230 02003.
dc.relation.referencesenhttps://doi.org/10.1051/matecconf/201823002003.
dc.relation.referencesenSelejdak, J., Blikharskyy, Y., Khmil, R., Blikharskyy, Z. (2020). Calculation of Reinforced Concrete Columns
dc.relation.referencesenStrengthened by CFRP. In: Blikharskyy, Z., Koszelnik, P., Mesaros, P. (eds) Proceedings of CEE 2019. CEE 2019.
dc.relation.referencesenLecture Notes in Civil Engineering, vol. 47. Springer, Cham. https://doi.org/10.1007/978-3-030-27011-7_51.
dc.relation.referencesenBlikharskyy, Y., Khmil, R., Blikharskyy, Z. (2018). Research of RC columns strengthened by carbon FRP
dc.relation.referencesenunder loading. MATEC Web of conferences 174, 04017. https://doi.org/10.1051/matecconf/201817404017.
dc.relation.referencesenCavagnis, F., Simões, J.T., Fernández Ruiz, M., Muttoni, A. (2020). Shear strength of members without
dc.relation.referencesentransverse reinforcements based on development of critical shear crack. ACI Struct. J., 117(1), 103–118.
dc.relation.referencesenhttp://dx.doi.org/10.14359/51718012.
dc.relation.referencesenMaksymovych S. B., Krochak O. V. (2019). Experimental studies of crack resistance and strength of inclined
dc.relation.referencesensections of reinforced concrete beams loaded with concentrated forces. J. Resour. Saving Mater. Build. Struct., 37, 164–174. Rivne: Volynski oberehy (in Ukrainian). ISBN 978-966-416-682-6.
dc.relation.referencesenKarkhut, I. (2021). Determining the Stressed-Strained State of Concrete in the Zone of Exposure to Local
dc.relation.referencesenLaser Radiation. Eastern-European Journal of Enterprise Technologies, 3(7(111), 24–36. DOI:10.15587/1729-4061.2021.232671, Available at SSRN: https://ssrn.com/abstract=3887769.
dc.relation.referencesenConcrete and reinforced concrete structures made of heavy concrete. Design rules. DSTU B V.2.6-156-2010,
dc.relation.referencesenNational Standard of Ukraine (2011). Kyiv: Ukrarkhbudinform (in Ukrainian).
dc.relation.urihttps://vlp.com.ua/node/14808
dc.relation.urihttp://inis.iaea.org/search/search.aspx?orig_q=RN:36071655
dc.relation.urihttps://repository.lib.ncsu.edu/handle/1840.20/30202
dc.relation.urihttps://doi.org/10.1016/j.engstruct.2010.12.044
dc.relation.urihttps://www.kamenyar.com.ua/nashi-vydannya/vydannya-2018/160-luchko-jj-mimlin-s-v-dinamika-sterzhnevikh-sistem-ta-sporud.html
dc.relation.urihttps://vlp.com.ua/node/20395
dc.relation.urihttps://doi.org/10.1007/978-3-030-57340-9_34
dc.relation.urihttps://vlp.com.ua/node/20235
dc.relation.urihttps://doi.org/10.1051/
dc.relation.urihttps://doi.org/10.1051/matecconf/201823002003
dc.relation.urihttps://doi.org/10.1007/978-3-030-27011-7_51
dc.relation.urihttps://doi.org/10.1051/matecconf/201817404017
dc.relation.urihttp://dx.doi.org/10.14359/51718012
dc.relation.urihttps://ssrn.com/abstract=3887769
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Karkhut I., 2022
dc.subjectзахисна конструкція
dc.subjectаварія літака
dc.subjectважкий бетон
dc.subjectпродавлювання
dc.subjectгоризонтальне армування
dc.subjectпохилі перерізи
dc.subjectrotective structure
dc.subjectaircraft crash
dc.subjectheavy concrete
dc.subjectpunching
dc.subjecthorizontal reinforcement
dc.subjectinclined sections
dc.titleStrength of inclined cross-sections of reinforced concrete protective shells under the action of punching
dc.title.alternativeМіцність похилих перерізів залізобетонних захисних оболонок за дії продавлювання
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v4n1_Karkhut_I-Strength_of_inclined_cross_1-17.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v4n1_Karkhut_I-Strength_of_inclined_cross_1-17__COVER.png
Size:
441.06 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: