Strength of inclined cross-sections of reinforced concrete protective shells under the action of punching
dc.citation.epage | 17 | |
dc.citation.issue | 1 | |
dc.citation.spage | 1 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Кархут, І. І. | |
dc.contributor.author | Karkhut, Ihor | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-04-24T08:11:48Z | |
dc.date.available | 2023-04-24T08:11:48Z | |
dc.date.created | 2022-03-03 | |
dc.date.issued | 2022-03-03 | |
dc.description.abstract | Вивчено досвід армування та підсилення похилих перерізів у зонах впливу поперечних сил та навантаження продавлювання різними матеріалами та конструктивними заходами. Подано результати експериментальних досліджень похилих перерізів захисних конструкцій на ділянці впливу місцевого аварійного навантаження продавлювання. За результатами експериментальних досліджень 12 зразків отримані руйнівні зусилля продавлювання. Наведено результати порівняння розрахунків міцності за різними гіпотезами та методиками для зразків, виготовлених із важкого бетону на портландцементі двох класів міцності на стискання С10/12, С16/20 із застосуванням додаткового горизонтального армування та без нього. В статті наведено армування та міцність похилих перетинів за кута руйнування γ = 40°. Виконано аналіз результатів та розроблено рекомендації із конструювання похилих перерізів тонких плит та оболонок у зоні продавлювання. Отримані експериментально значення несучої здатності бетонних та залізобетонних зразків під час продавлювання добре корелюють із результатами, теоретично визначеними за залежностями, що враховують нагельний ефект арматури та фактичну міцність бетону. Максимальні відхилення теоретичних значень від експериментальних 0–(+30) % як під час руйнування по похилих, так і по нормальних перетинах. Забезпечити відсутність зминання бетону стержнями та розколювання у площині горизонтальних сіток рекомендовано обмеженням максимальних діаметрів та кроку арматури, мінімального класу бетону. Очевидні технологічні переваги дають змогу рекомендувати застосування на ділянках імовірного прикладання місцевого аварійного динамічного навантаження додаткових горизонтальних сіток замість вертикальних хомутів | |
dc.description.abstract | The experience of inclined cross-sections in the zones of influence of transverse forces and punching loads has been studied. The results of experimental studies of inclined cross-sections of protective structures in the area of influence of local emergency load on punching are presented. The article presents the reinforcement and strength of inclined cross-sections at the angle of destruction γ = 40°. The analysis of the results was carried out and recommendations were developed for the design of inclined cross-sections of shells in the punching zone. The experimentally obtained values of the bearing capacity of concrete and reinforced concrete samples during punching correlate well with the results of theoretically determined dependencies that take into account the pin effect of reinforcement and the actual strength of concrete. | |
dc.format.extent | 1-17 | |
dc.format.pages | 17 | |
dc.identifier.citation | Karkhut I. Strength of inclined cross-sections of reinforced concrete protective shells under the action of punching / Ihor Karkhut // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 4. — No 1. — P. 1–17. | |
dc.identifier.citationen | Karkhut I. Strength of inclined cross-sections of reinforced concrete protective shells under the action of punching / Ihor Karkhut // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 4. — No 1. — P. 1–17. | |
dc.identifier.doi | doi.org/10.23939/jtbp2022.01.001 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/57975 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Theory and Building Practice, 1 (4), 2022 | |
dc.relation.references | Karkhut, I. I. (2015). Temperature loads on reinforced concrete protective structures. - Lviv. Vydavnytstvo | |
dc.relation.references | Lvivskoi Politehniky (in Ukrainian). https://vlp.com.ua/node/14808. | |
dc.relation.references | Eibl, J. (2003). Airplane Impact on Nuclear Power plants. Proceedings of the 17th international conference on | |
dc.relation.references | structural mechanics in reactor technology (SMiRT 17). Prague, Czech Republic: Vysoka skola technicka. August 17–22. http://inis.iaea.org/search/search.aspx?orig_q=RN:36071655. | |
dc.relation.references | Raghupati Roy, U. S. P. Verma and A. S. Warudcar. (1999). Analysis of Massive Reinforced Concrete Ring | |
dc.relation.references | Beam of Nuclear Containment Structure due to Heat of Hydration. Transactions of the 15th International Conference | |
dc.relation.references | on Structural Mechanics in Reactor Technology (SMiRT 15). Seoul, Korea, August 15–20. | |
dc.relation.references | https://repository.lib.ncsu.edu/handle/1840.20/30202. | |
dc.relation.references | Briffaut, M., Benboudjema, F., Torrenti, J. M., Hanas, G. (2011). Numerical analysis of the thermal active | |
dc.relation.references | restrained shrinkage ring test to study the early age behavior of massive concrete structures. Engineering structures, 33 (4), 1390–1401. https://doi.org/10.1016/j.engstruct.2010.12.044 | |
dc.relation.references | Králik Juraj (2014). Safety of Nuclear Power Plants against the Aircraft Attack. Applied Mechanics and | |
dc.relation.references | Materials, Vol 617, 76–80. Online: 2014-08-18©. Trans Tech Publications, Switzerland. DOI: 10.4028/ | |
dc.relation.references | www.scientific.net/AMM.617.76 | |
dc.relation.references | Makarenko, L. P. (1986). Recommendations for the calculation of reinforced concrete protective shells of | |
dc.relation.references | nuclear power plants in an emergency, 22 p. Rivne: IIVH (in Russian). | |
dc.relation.references | Duan, Z. P., Zhang, L. S., Wen, L. J., Guo, C., Bai, Z. L., Ou, Z. C., Huang, F. L. (2018). Experimental | |
dc.relation.references | research on impact loading characteristics by full-scale airplane impacting on concrete target. Nucl. Eng. Des., 328, 292–300. DOI: 10.1016/j.nucengdes.2018.01.021. | |
dc.relation.references | Luchko, J. J., Mamlin, S. V. (2018). Dynamics of rod systems and structures. Lviv: Kameniar, 524 p. (in | |
dc.relation.references | Ukrainian). ISBN 978-966-607-416-3. https://www.kamenyar.com.ua/nashi-vydannya/vydannya-2018/160-luchko-jj-mimlin-s-v-dinamika-sterzhnevikh-sistem-ta-sporud.html. | |
dc.relation.references | Sadique, M. R., Iqbal, M. A., Bhargava, P. (2013). Nuclear containment structure subjected to commercial and | |
dc.relation.references | fighter aircraft crash. Nucl. Eng. Des., 260, 30–46. DOI: 10.1016/j.nucengdes.2013.03.009. | |
dc.relation.references | Lo Frano, R., Forasassi, G. (2011). Preliminary evaluation of aircraft impact on a near term nuclear power | |
dc.relation.references | plant. Nucl. Eng. Des., 241 (12), 5245–5250. DOI: 10.1016/j.nucengdes.2011.11.019. | |
dc.relation.references | Babaev, V. M., Bambura, A. M., Pustovoitova, O. M., Reznik, P. A., Stoianov, E. H., Shmukler, V. S. (2015). | |
dc.relation.references | Practical calculation of elements of reinforced concrete structures by DBN V.2.6-98 compared with the calculations | |
dc.relation.references | for SNiP 2.03.01–84* I EN 1992-1-1 (Eurocode 2), 208 p. Kharkiv: Zoloti storinky (in Ukrainian). ISBN 978-966-400-327-5. | |
dc.relation.references | Karkhut I. I. (2021). Design and construction in areas with high seismic activity. Lviv: Vydavnytstvo Lvivskoi | |
dc.relation.references | politehniky, 188 p. https://vlp.com.ua/node/20395. | |
dc.relation.references | Maksymovych, S., Krochak, O., Karkhut, I., Vashkevych, R. (2021). Experimental Study of Crack Resistance | |
dc.relation.references | and Shear Strength of Single-Span Reinforced Concrete Beams Under a Concentrated Load at a/d = 1. In: | |
dc.relation.references | Blikharskyy, Z. (eds) Proceedings of EcoComfort 2020. EcoComfort 2020. Lecture Notes in Civil Engineering, | |
dc.relation.references | Vol. 100. Springer, Cham. https://doi.org/10.1007/978-3-030-57340-9_34. | |
dc.relation.references | Blikharskyy, Z. Ya., Karkhut, I. I. (2017). Сalculation and design of bent reinforced concrete elements, 188 p. | |
dc.relation.references | Lviv: Vydavnytstvo Lvivskoi politehniky (in Ukrainian). https://vlp.com.ua/node/20235. | |
dc.relation.references | Blikharskyy, Z., Khmil, R., Vegera, P. (2017). Shear strength of reinforced concrete beams strengthened | |
dc.relation.references | by PBO fiber mesh under loading. In: MATEC Web of Conferences, Vol. 116, 02006. https://doi.org/10.1051/ | |
dc.relation.references | matecconf/201711602006. | |
dc.relation.references | Bobalo, T., Blikharskyy, Y., Vashkevych, R., Volynets M. (2018). Bearing capacity of RC beams | |
dc.relation.references | reinforced with high strength rebars and steel plate. In: MATEC Web of conferences, Vol. 230 02003. | |
dc.relation.references | https://doi.org/10.1051/matecconf/201823002003. | |
dc.relation.references | Selejdak, J., Blikharskyy, Y., Khmil, R., Blikharskyy, Z. (2020). Calculation of Reinforced Concrete Columns | |
dc.relation.references | Strengthened by CFRP. In: Blikharskyy, Z., Koszelnik, P., Mesaros, P. (eds) Proceedings of CEE 2019. CEE 2019. | |
dc.relation.references | Lecture Notes in Civil Engineering, vol. 47. Springer, Cham. https://doi.org/10.1007/978-3-030-27011-7_51. | |
dc.relation.references | Blikharskyy, Y., Khmil, R., Blikharskyy, Z. (2018). Research of RC columns strengthened by carbon FRP | |
dc.relation.references | under loading. MATEC Web of conferences 174, 04017. https://doi.org/10.1051/matecconf/201817404017. | |
dc.relation.references | Cavagnis, F., Simões, J.T., Fernández Ruiz, M., Muttoni, A. (2020). Shear strength of members without | |
dc.relation.references | transverse reinforcements based on development of critical shear crack. ACI Struct. J., 117(1), 103–118. | |
dc.relation.references | http://dx.doi.org/10.14359/51718012. | |
dc.relation.references | Maksymovych S. B., Krochak O. V. (2019). Experimental studies of crack resistance and strength of inclined | |
dc.relation.references | sections of reinforced concrete beams loaded with concentrated forces. J. Resour. Saving Mater. Build. Struct., 37, 164–174. Rivne: Volynski oberehy (in Ukrainian). ISBN 978-966-416-682-6. | |
dc.relation.references | Karkhut, I. (2021). Determining the Stressed-Strained State of Concrete in the Zone of Exposure to Local | |
dc.relation.references | Laser Radiation. Eastern-European Journal of Enterprise Technologies, 3(7(111), 24–36. DOI:10.15587/1729-4061.2021.232671, Available at SSRN: https://ssrn.com/abstract=3887769. | |
dc.relation.references | Concrete and reinforced concrete structures made of heavy concrete. Design rules. DSTU B V.2.6-156-2010, | |
dc.relation.references | National Standard of Ukraine (2011). Kyiv: Ukrarkhbudinform (in Ukrainian). | |
dc.relation.referencesen | Karkhut, I. I. (2015). Temperature loads on reinforced concrete protective structures, Lviv. Vydavnytstvo | |
dc.relation.referencesen | Lvivskoi Politehniky (in Ukrainian). https://vlp.com.ua/node/14808. | |
dc.relation.referencesen | Eibl, J. (2003). Airplane Impact on Nuclear Power plants. Proceedings of the 17th international conference on | |
dc.relation.referencesen | structural mechanics in reactor technology (SMiRT 17). Prague, Czech Republic: Vysoka skola technicka. August 17–22. http://inis.iaea.org/search/search.aspx?orig_q=RN:36071655. | |
dc.relation.referencesen | Raghupati Roy, U. S. P. Verma and A. S. Warudcar. (1999). Analysis of Massive Reinforced Concrete Ring | |
dc.relation.referencesen | Beam of Nuclear Containment Structure due to Heat of Hydration. Transactions of the 15th International Conference | |
dc.relation.referencesen | on Structural Mechanics in Reactor Technology (SMiRT 15). Seoul, Korea, August 15–20. | |
dc.relation.referencesen | https://repository.lib.ncsu.edu/handle/1840.20/30202. | |
dc.relation.referencesen | Briffaut, M., Benboudjema, F., Torrenti, J. M., Hanas, G. (2011). Numerical analysis of the thermal active | |
dc.relation.referencesen | restrained shrinkage ring test to study the early age behavior of massive concrete structures. Engineering structures, 33 (4), 1390–1401. https://doi.org/10.1016/j.engstruct.2010.12.044 | |
dc.relation.referencesen | Králik Juraj (2014). Safety of Nuclear Power Plants against the Aircraft Attack. Applied Mechanics and | |
dc.relation.referencesen | Materials, Vol 617, 76–80. Online: 2014-08-18©. Trans Tech Publications, Switzerland. DOI: 10.4028/ | |
dc.relation.referencesen | www.scientific.net/AMM.617.76 | |
dc.relation.referencesen | Makarenko, L. P. (1986). Recommendations for the calculation of reinforced concrete protective shells of | |
dc.relation.referencesen | nuclear power plants in an emergency, 22 p. Rivne: IIVH (in Russian). | |
dc.relation.referencesen | Duan, Z. P., Zhang, L. S., Wen, L. J., Guo, C., Bai, Z. L., Ou, Z. C., Huang, F. L. (2018). Experimental | |
dc.relation.referencesen | research on impact loading characteristics by full-scale airplane impacting on concrete target. Nucl. Eng. Des., 328, 292–300. DOI: 10.1016/j.nucengdes.2018.01.021. | |
dc.relation.referencesen | Luchko, J. J., Mamlin, S. V. (2018). Dynamics of rod systems and structures. Lviv: Kameniar, 524 p. (in | |
dc.relation.referencesen | Ukrainian). ISBN 978-966-607-416-3. https://www.kamenyar.com.ua/nashi-vydannya/vydannya-2018/160-luchko-jj-mimlin-s-v-dinamika-sterzhnevikh-sistem-ta-sporud.html. | |
dc.relation.referencesen | Sadique, M. R., Iqbal, M. A., Bhargava, P. (2013). Nuclear containment structure subjected to commercial and | |
dc.relation.referencesen | fighter aircraft crash. Nucl. Eng. Des., 260, 30–46. DOI: 10.1016/j.nucengdes.2013.03.009. | |
dc.relation.referencesen | Lo Frano, R., Forasassi, G. (2011). Preliminary evaluation of aircraft impact on a near term nuclear power | |
dc.relation.referencesen | plant. Nucl. Eng. Des., 241 (12), 5245–5250. DOI: 10.1016/j.nucengdes.2011.11.019. | |
dc.relation.referencesen | Babaev, V. M., Bambura, A. M., Pustovoitova, O. M., Reznik, P. A., Stoianov, E. H., Shmukler, V. S. (2015). | |
dc.relation.referencesen | Practical calculation of elements of reinforced concrete structures by DBN V.2.6-98 compared with the calculations | |
dc.relation.referencesen | for SNiP 2.03.01–84* I EN 1992-1-1 (Eurocode 2), 208 p. Kharkiv: Zoloti storinky (in Ukrainian). ISBN 978-966-400-327-5. | |
dc.relation.referencesen | Karkhut I. I. (2021). Design and construction in areas with high seismic activity. Lviv: Vydavnytstvo Lvivskoi | |
dc.relation.referencesen | politehniky, 188 p. https://vlp.com.ua/node/20395. | |
dc.relation.referencesen | Maksymovych, S., Krochak, O., Karkhut, I., Vashkevych, R. (2021). Experimental Study of Crack Resistance | |
dc.relation.referencesen | and Shear Strength of Single-Span Reinforced Concrete Beams Under a Concentrated Load at a/d = 1. In: | |
dc.relation.referencesen | Blikharskyy, Z. (eds) Proceedings of EcoComfort 2020. EcoComfort 2020. Lecture Notes in Civil Engineering, | |
dc.relation.referencesen | Vol. 100. Springer, Cham. https://doi.org/10.1007/978-3-030-57340-9_34. | |
dc.relation.referencesen | Blikharskyy, Z. Ya., Karkhut, I. I. (2017). Salculation and design of bent reinforced concrete elements, 188 p. | |
dc.relation.referencesen | Lviv: Vydavnytstvo Lvivskoi politehniky (in Ukrainian). https://vlp.com.ua/node/20235. | |
dc.relation.referencesen | Blikharskyy, Z., Khmil, R., Vegera, P. (2017). Shear strength of reinforced concrete beams strengthened | |
dc.relation.referencesen | by PBO fiber mesh under loading. In: MATEC Web of Conferences, Vol. 116, 02006. https://doi.org/10.1051/ | |
dc.relation.referencesen | matecconf/201711602006. | |
dc.relation.referencesen | Bobalo, T., Blikharskyy, Y., Vashkevych, R., Volynets M. (2018). Bearing capacity of RC beams | |
dc.relation.referencesen | reinforced with high strength rebars and steel plate. In: MATEC Web of conferences, Vol. 230 02003. | |
dc.relation.referencesen | https://doi.org/10.1051/matecconf/201823002003. | |
dc.relation.referencesen | Selejdak, J., Blikharskyy, Y., Khmil, R., Blikharskyy, Z. (2020). Calculation of Reinforced Concrete Columns | |
dc.relation.referencesen | Strengthened by CFRP. In: Blikharskyy, Z., Koszelnik, P., Mesaros, P. (eds) Proceedings of CEE 2019. CEE 2019. | |
dc.relation.referencesen | Lecture Notes in Civil Engineering, vol. 47. Springer, Cham. https://doi.org/10.1007/978-3-030-27011-7_51. | |
dc.relation.referencesen | Blikharskyy, Y., Khmil, R., Blikharskyy, Z. (2018). Research of RC columns strengthened by carbon FRP | |
dc.relation.referencesen | under loading. MATEC Web of conferences 174, 04017. https://doi.org/10.1051/matecconf/201817404017. | |
dc.relation.referencesen | Cavagnis, F., Simões, J.T., Fernández Ruiz, M., Muttoni, A. (2020). Shear strength of members without | |
dc.relation.referencesen | transverse reinforcements based on development of critical shear crack. ACI Struct. J., 117(1), 103–118. | |
dc.relation.referencesen | http://dx.doi.org/10.14359/51718012. | |
dc.relation.referencesen | Maksymovych S. B., Krochak O. V. (2019). Experimental studies of crack resistance and strength of inclined | |
dc.relation.referencesen | sections of reinforced concrete beams loaded with concentrated forces. J. Resour. Saving Mater. Build. Struct., 37, 164–174. Rivne: Volynski oberehy (in Ukrainian). ISBN 978-966-416-682-6. | |
dc.relation.referencesen | Karkhut, I. (2021). Determining the Stressed-Strained State of Concrete in the Zone of Exposure to Local | |
dc.relation.referencesen | Laser Radiation. Eastern-European Journal of Enterprise Technologies, 3(7(111), 24–36. DOI:10.15587/1729-4061.2021.232671, Available at SSRN: https://ssrn.com/abstract=3887769. | |
dc.relation.referencesen | Concrete and reinforced concrete structures made of heavy concrete. Design rules. DSTU B V.2.6-156-2010, | |
dc.relation.referencesen | National Standard of Ukraine (2011). Kyiv: Ukrarkhbudinform (in Ukrainian). | |
dc.relation.uri | https://vlp.com.ua/node/14808 | |
dc.relation.uri | http://inis.iaea.org/search/search.aspx?orig_q=RN:36071655 | |
dc.relation.uri | https://repository.lib.ncsu.edu/handle/1840.20/30202 | |
dc.relation.uri | https://doi.org/10.1016/j.engstruct.2010.12.044 | |
dc.relation.uri | https://www.kamenyar.com.ua/nashi-vydannya/vydannya-2018/160-luchko-jj-mimlin-s-v-dinamika-sterzhnevikh-sistem-ta-sporud.html | |
dc.relation.uri | https://vlp.com.ua/node/20395 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-57340-9_34 | |
dc.relation.uri | https://vlp.com.ua/node/20235 | |
dc.relation.uri | https://doi.org/10.1051/ | |
dc.relation.uri | https://doi.org/10.1051/matecconf/201823002003 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-27011-7_51 | |
dc.relation.uri | https://doi.org/10.1051/matecconf/201817404017 | |
dc.relation.uri | http://dx.doi.org/10.14359/51718012 | |
dc.relation.uri | https://ssrn.com/abstract=3887769 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.rights.holder | © Karkhut I., 2022 | |
dc.subject | захисна конструкція | |
dc.subject | аварія літака | |
dc.subject | важкий бетон | |
dc.subject | продавлювання | |
dc.subject | горизонтальне армування | |
dc.subject | похилі перерізи | |
dc.subject | rotective structure | |
dc.subject | aircraft crash | |
dc.subject | heavy concrete | |
dc.subject | punching | |
dc.subject | horizontal reinforcement | |
dc.subject | inclined sections | |
dc.title | Strength of inclined cross-sections of reinforced concrete protective shells under the action of punching | |
dc.title.alternative | Міцність похилих перерізів залізобетонних захисних оболонок за дії продавлювання | |
dc.type | Article |
Files
License bundle
1 - 1 of 1