Особливості генерування послідовності уточнених поліноміальних матриць Фібоначчі

dc.contributor.affiliationНаціональний університет «Львівська політехніка»
dc.contributor.authorГрицюк , Павло
dc.coverage.placenameЛьвів
dc.date.accessioned2025-10-29T14:50:16Z
dc.date.issued2025
dc.date.submitted2025
dc.description.abstractУ роботі проаналізовано особливості формування n-ої послідовності уточнених поліноміальних матриць Фібоначчі порядку m, елементами яких є поліноми Фібоначчі не вище ступеня m+n–2. Запропоновані матриці придатні до обчислення визначників та побудови обернених матриць, що дає змогу використовувати їх у завданнях матричного шифрування блокових даних. Встановлено, що хоча впродовж останнього десятиліття опубліковано чимало досліджень, присвячених різним підходам до побудови поліноміальних матриць Фібоначчі та обґрунтуванню їхньої доцільності для криптографії, на практиці їх застосування залишається обмеженим. Проведено аналіз послідовностей поліноміальних матриць Фібоначчі порядку від 2 до 5, виявлено обмеження традиційного підходу, зокрема малу кількість різних елементів k=3, незалежну від порядку матриці, що знижує їхню стійкість до криптоатак. Запропоновано уточнену структуру, у якій кількість різних поліномів залежить від порядку матриці m і становить k=m+1. Розроблено метод генерування послідовностей уточнених поліноміальних матриць Фібоначчі на підставі рекурентного матричного співвідношення: нову матрицю отримують шляхом множення змінної x на елементи поточної матриці з подальшим додаванням результатів до попередньої матриці з групуванням подібних доданків. Наведено приклад побудови восьми уточнених матриць Фібоначчі порядків від 2 до 4, що дало змогу дослідити особливості їх структури та методи обчислення визначників і обернених матриць. Окрім цього, виявлено властивість, яка дає змогу формувати уточнені матриці без використання рекурентного співвідношення – винятково на підставі номерів поліномів Фібоначчі типу m+n–2–j, що визначаються положенням елемента в матриці, а саме ∀j∈[0÷(m–1)] Розроблено програмне забезпечення для генерування таких матриць, обчислення їх визначників і обернених матриць. Продемонстровано приклад використання уточненої поліноміальної матриці Фібоначчі в завданні шифрування блокових даних, що дає змогу наочно зрозуміти як принцип шифрування, так і процес дешифрування. The features of generating the nth sequence of refined Fibonacci polynomial matrices of the mth order, the elements of which are Fibonacci polynomials of no higher than (m+n–2)th number, are considered. The obtained Fibonacci matrices allow finding both their determinants and inverse matrices suitable for matrix encryption of block data. It was found that even over the last decade a significant number of publications have been published, each of which substantiates different approaches to generating sequences of Fibonacci polynomial matrices and proves the feasibility of their use for encrypting block data. It was found that the use of such matrices as a separate procedure for protecting block data in the theory and practice of cryptography is extremely rare. The Fibonacci polynomial matrix sequences from the 2nd to the 5th order are analyzed, according to which shortcomings in the traditional approach to forming the structure of the elements of such matrices are revealed, first of all, the number (k) of its different elements, which are Fibonacci polynomials of the not higher than (n–1)th power. It is established that for Fibonacci matrices of any order (m) of such different Fibonacci polynomials there will be only k = 3, the structure of which will depend only on the number (n) of the sequence of the Fibonacci polynomial matrix. Such a small number is not only uninformative and easily analyzable by a cryptanalyst but also vulnerable to cryptanalysis. The structure of the elements of Fibonacci polynomial matrices is specified, the number of which already depends on the order of the matrix (m) and is k = m+1. A method for generating a sequence of refined Fibonacci polynomial matrices has been developed, which consists in using a recurrent matrix relation, according to which the next polynomial matrix is formed by multiplying the variable x sequentially by the elements of the current matrix, adding the elements of the newly generated matrix to those of the previous matrix, after which all similar terms are grouped in the formed elements. The mechanisms for forming a sequence of 8 polynomial refined Fibonacci matrices from the 2nd to the 4th order, the elements of which are Fibonacci polynomials of no higher than (m+n–2)th power, have been presented, which made it possible to analyze not only the features of their construction, but also to understand the corresponding procedures for finding their determinants and inverse matrices. It was found that the proposed structure of the elements of the nth sequence of Fibonacci polynomial matrices of the mth order has an interesting property, according to which it is possible to avoid the use of the recurrent matrix relation, and to generate the corresponding Fibonacci polynomial matrices only by the numbers (m+n–2–j)th sequence of Fibonacci polynomials, the specific values of which depend on their location in the matrix and the number of its column, namely ∀j∈[0÷(m–1)]. Software has been developed that allows generating both sequences of refined Fibonacci polynomial matrices of the mth order, and finding their determinants and inverse polynomial matrices of a similar order. An example of the application of the matrix method of encrypting block data with a refined Fibonacci polynomial matrix is given, which allows the interested reader to understand the basic principle of encrypting both the initial message and decrypting the encrypted message.
dc.format.pages343-365
dc.identifier.citationГрицюк П. Особливості генерування послідовності уточнених поліноміальних матриць Фібоначчі / Павло Грицюк // Вісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі. — Львів : Видавництво Львівської політехніки, 2025. — № 17. — С. 343–365.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/115812
dc.language.isouk
dc.publisherНаціональний університет «Львівська політехніка»
dc.relation.references1. Abd-Elhameed, Waleed Mohamed, Philippou, Andreas N., & Zeyada, Nasr Anwer. (2022). Novel Results for Two Generalized Classes of Fibonacci and Lucas Polynomials and Their Uses in the Reduction of Some Radicals. Mathematics, 10(7), article ID 2342. https://doi.org/10.3390/math10132342 2. Asci, M., & Tasci, D. (2007). On Fibonacci, Lucas and special orthogonal polynomials. Journal of Computational and Applied Mathematics. https://doi.org/10.1016/J.CAM.2007.01.026 3. Ashok, G., Ashok Kumar, S., Chaya Kumari, D., & Ramakrishna, M. (2022). A type of public cryptosystem using polynomials and Pell sequences. Journal of Discrete Mathematical Sciences and Cryptography, 25(7), 1951–1963. https://doi.org/10.1080/09720529.2022.2133237 4. Ashok, Gudela, Sadasivuni, Ashok Kumar, & Kumari, Dushma. (2023, August). An Approach of Cryptosystem using Polynomials and Lucas Numbers. Journal of Harbin Engineering University, 44(8), 25–31. Retrieved from: https://www.researchgate.net/publication/372991199_An_Approach_of_Cryptosystem_ using_Polynomials_and_Lucas_Numbers 5. Basin, S. L. (1963). The Appearance of Fibonacci Numbers and the Q Matrix in Electrical Network Theory. Mathematics Magazine, 36(2), 84–97. https://doi.org/10.2307/2688890 6. Basu, M., & Prasad, B. (2009). The Generalized relations among the code elements for Fibonacci coding theory. Chaos, Solitons and Fractals, Vol. 41, issue 5, 2517–2525. https://doi.org/10.1016/j.chaos.2008.09.030 7. Basu, Manjusri, & Das, Monojit. (2017). Coding theory on generalized Fibonacci n-step polynomials. Journal of Information and Optimization Sciences, Vol. 38, issue 1, 83–131. https://doi.org/10.1080/02522667.2016.1160618 8. Basu, Manjusri, & Prasad, Bandhu. (2009, November). Coding theory on the m-extension of the Fibonacci p numbers. Chaos, Solitons, & Fractals, Vol. 42, issue 4, 30, 2522–2530. https://doi.org/10.1016/ j.chaos.2009.03.197 9. Basu, Manjusri, & Prasad, Bandhu. (2011). Coding theory on the (m,t)-extension of the Fibonacci p-numbers. Discrete Mathematics, Algorithms and Applications, Vol. 3, 259–267. https://doi.org/10.1142 /S1793830911001097 10. Esmaeili, M., & Esmaeili, M. (2009). Polynomial Fibonacci-Hessenberg matrices. Chaos, Solitons and Fractals, Vol. 41, issue 5, 2820–2827. https://doi.org/10.1016/j.chaos.2008.10.012 11. Esmaeili, M., Esmaeili, M., & Gulliver, T. A. (2011). High-rate Fibonacci polynomial codes. In: Proceedings of IEEE International Symposium on Information Theory Proceedings, St. Petersburg, Russia, pp. 1921–1924. https://doi.org/10.1109/ISIT.2011.6033886 12. Esmaili, M., Moosavi, M., & Gulliver, T. A. (2017, January). A new class of Fibonacci sequence based error correcting codes. Cryptography and Communications, Vol. 9, 379–396. https://doi.org/10.1007/s12095-015-0178-x 13. Esmaili, Mostafa, & Esmaeili, Morteza. (2010). A Fibonacci-polynomial based coding method with error detection and correction. Computers and Mathematics with Applications, Vol. 60, issue 10, 2738–2752. https://doi.org/10.1016/j.camwa.2010.08.091 14. Falcon, S., & Plaza, A. (2009, February). On k-Fibonacci sequences and polynomials and their derivatives. Chaos, Solitons and Fractals, Vol. 39, issue 3, 1005–1019. https://doi.org/10.1016/j.chaos.2007.03.007 15. Fox, William P., & West, Richard D. (2024, September). Numerical Methods and Analysis with Mathematical Modelling (Textbooks in Mathematics). Chapman and Hall/CRC, 424 p. Retrieved from: https://www.amazon.com/Numerical-Mathematical-Modelling-Textbooks-Mathematics/dp/1032697237 16. Grytsiuk, P. Y., & Hrytsiuk, Y. I. (2025). Method for generating a sequence of Fibonacci polynomial matrices and their features for use in block data encryption. Scientific Bulletin of UNFU, 35(1), 173–191. https://doi.org/10.36930/40350121 17. Grytsiuk, P. Y., & Hrytsiuk, Y. I. (2024). Methods for generating Fibonacci polynomials and features of their use for data encryption. Scientific Bulletin of UNFU, 34(7), 161–173. https://doi.org/10.36930/40340720 18. Hoggat, V. E., Bicknell, Marjorie. (1973). Roots of fibonacci polynomials. The Fibonacci Quarterly, Vol. 11, issue 3, 271–274. https://doi.org/10.1080/00150517.1973.12430825 19. Lee, G. Y., & Asci, M. (2012). Some Properties of the (p,q)-Fibonacci and (p,q)-Lucas Polynomials. Journal of Applied Mathematics, Vol. 2012, article ID 264842, 18 p. https://doi.org/10.1155/2012/264842 20. Nalli, A Ayse, & Haukkanen, Pentti. (2009, December). On generalized Fibonacci and Lucas polynomials. Chaos Solitons & Fractals, Vol. 42, issue 5, 3179–3186. https://doi.org/10.1016/J.CHAOS.2009.04.048 21. Nihal Tas, Sumeyra Ucar, Nihal Yilmaz Ozgur, & Oztunc Kaymak. (2018). A new coding/decoding algorithm using Fibonacci numbers. Discrete Mathematics, Algorithms and Applications, Vol. 10, No. 02, article ID 1850028. https://doi.org/10.1142/S1793830918500283 22. Özkan, Engin, Taştan, Merve & Aydoğdu, Ali. (2019). Fibonacci Sayılarının Ailesinde 3-Fibonacci Polinomları. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Cilt: 12 Sayı: 2, 926–933. [In Turkish] https://doi.org/10.18185/erzifbed.512100 23. Prasad, Bandhu. (2014). Coding theory on (h(x), g(y))-extension of Fibonacci p-numbers polynomials. Universal Journal of Computational Mathematics, Vol. 2(1), 6–10. https://doi.org/10.13189/ujcmj.2014.020102 24. Prasad, Bandhu. (2014). High rates of Fibonacci polynomials coding theory. Discrete Mathematics, Algorithms and Applications, Vol. 06, No. 04, article ID 1450053. https://doi.org/10.1142/S1793830914500530 25. Prasad, Bandhu. (2019). The generalized relations among the code elements for a new complex Fibonacci matrix. Discrete Mathematics, Algorithms and Applications, Vol. 11, No. 02, article ID 1950026. https://doi.org/10.1142/S1793830919500265 26. Prasad, K., & Mahato, H. (2021). Cryptography using generalized Fibonacci matrices with Affine-Hill cipher. Journal of Discrete Mathematical Sciences and Cryptography, 25(8), 2341–2352. Corpus ID: 14098285. https://doi.org/10.1080/09720529.2020.1838744 27. Ramirez, J. L. (2013). On convolved generalized Fibonacci and Lucas polynomials. Applied Mathematics and Computation, 229, 208–213. https://doi.org/10.1016/j.amc.2013.12.049 28. Robbins, N. (1991). Vieta's triangular array and a r elated family of polynomials. International Journal of Mathematics and Mathematical Sciences, Vol. 14, no. 2, 239–244. https://doi.org/10.1155/S0161171291000261 29. Sikhwal, Omprakash, & Vyas, Yashwant. (2016, October). Generalized Fibonacci Polynomials and Some Fundamental Properties. SCIREA Journal of Mathematics, Vol, 1, issue 1, 16–23. Retrieved from: https://article.scirea.org/pdf/11002.pdf 30. Sikhwal1, Omprakash, & Vyas, Yashwant. (2014). Fibonacci Polynomials and Determinant Identities. Turkish Journal of Analysis and Number Theory, 2(5), 189–192. https://doi.org/10.12691/tjant-2-5-6 31. Stakhov, A. P. (2006, October). Fibonacci matrices, a generalization of the "Cassini formula", and a new coding theory. Chaos, Solitons, & Fractals, Vol. 30, issue 1, 56–66. https://doi.org/10.1016/j.chaos.2005.12.054 32. Taştan, M., & Özkan, E. (2021). Catalan transform of the k-Pell, k-Pell–Lucas and modified k-Pell sequence. Notes on Number Theory and Discrete Mathematics, 27(1), 198–207. https://doi.org/10.7546/nntdm.2021.27.1.198-207 33. Uçar, S. (2017). On some properties of generalized Fibonacci and Lucas Polynomials. An International Journal of Optimization and Control: Theories https://doi.org/10.11121/IJOCTA.01.2017.00398 & Applications (IJOCTA), 7(2), 216–224. 34. Vajda, S. (2007, December). Fibonacci and Lucas Numbers, and the Golden Section. Theory and Applications (Dover Books on Mathematics). Dover Publications, 192 p. Retrieved from: https://www.amazon.com/Fibonacci Lucas-Numbers-Golden-Section/dp/0486462765 35. Wang, Weiping, & Wang, Hui. (2017, August). Generalized Humbert polynomials via generalized Fibonacci polynomials. Applied Mathematics and Computation, Vol. 307, 204–216. https://doi.org/10.1016/j.amc.2017.02.050 36. Yakymenko, I., Karpinski, M., Shevchuk, R., & Kasianchuk, M. (2024, May). Symmetric Encryption Algorithms in a Polynomial Residue Number System. Journal of Applied Mathematics. https://doi.org/10.1155/2024/4894415 37. Yang, Jizhen, & Zhang, Zhizheng. (2018, December). Some identities of the generalized Fibonacci and Lucas sequences. Applied Mathematics and Computation, Vol. 339, 451–458. https://doi.org/10.1016/j.amc.2018.07.054
dc.relation.urihttps://doi.org/10.23939/sisn2025.17.343
dc.subjectпослідовність поліномів Фібоначчі; рекурентне матричне співвідношення; механізм утворення послідовності; обернена поліноміальна матриця Фібоначчі; зашифроване повідомлення; матричний метод шифрування даних; sequence of Fibonacci polynomials; recurrent matrix relation; sequence formation mechanism; inverse Fibonacci polynomial matrix; encrypted message; matrix data encryption method
dc.subject.udc004.[021+023+67+9]:519.6
dc.titleОсобливості генерування послідовності уточнених поліноміальних матриць Фібоначчі
dc.title.alternativeFeatures of generation sequences of refined Fibonacci polynomial matrices
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
maket25066219052025ves-346-368.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: