Особливості проєктування установки кристалічного натрію хлорату періодичним способом
| dc.citation.epage | 54 | |
| dc.citation.issue | 2 | |
| dc.citation.spage | 47 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Hatch Kuettner, м. Ессен, Німеччина | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Hatch Kuettner, Essen, Germany | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Слюзар, А. В. | |
| dc.contributor.author | Блажівський, К. І. | |
| dc.contributor.author | Бодак, П. М. | |
| dc.contributor.author | Оглашенний, Ю. І. | |
| dc.contributor.author | Блажівський, О. К. | |
| dc.contributor.author | Slyuzar, A. V. | |
| dc.contributor.author | Blazhivskyi, K. I. | |
| dc.contributor.author | Bodak, P. M. | |
| dc.contributor.author | Ohlashennyy, Yu. I. | |
| dc.contributor.author | Blazhivskyi, O. K. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2026-01-15T13:53:25Z | |
| dc.date.created | 2024-10-10 | |
| dc.date.issued | 2024-10-10 | |
| dc.description.abstract | Натрію хлорат – важливий продукт для економіки України і світу. На основі досліджень стадій електролізу водного розчину натрію хлориду і розділення хлорид-хлоратних розчинів випарюванням – кристалізацією розроблено проєкт установки періодичної дії для одержання кристалічного натрію хлорату. Результати досліджень показали, шо є можливість уникнути стадії гарячого фільтрування суспензії після випарювання і, загалом, спростити технологію та зменшити її енергоспоживання. Проєктні рішення спрямовані також на використання відновлюваних джерел енергії для процесів. | |
| dc.description.abstract | Sodium chlorate is an important product for the Ukrainian and global economy. Based on the study of the stages of electrolysis of an aqueous solution of sodium chloride and the separation of chloride-chlorate solutions by evaporation-crystallization, a design of a periodical action installation for the production of crystalline sodium chlorate was developed. The research results showed that it is possible to avoid the stage of hot filtration of the suspension after evaporation and, in general, to simplify the technology and reduce its energy consumption. Design solutions are also aimed at using renewable energy sources for the processes. | |
| dc.format.extent | 47-54 | |
| dc.format.pages | 8 | |
| dc.identifier.citation | Особливості проєктування установки кристалічного натрію хлорату періодичним способом / А. В. Слюзар, К. І. Блажівський, П. М. Бодак, Ю. І. Оглашенний, О. К. Блажівський // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2024. — Том 7. — № 2. — С. 47–54. | |
| dc.identifier.citation2015 | Особливості проєктування установки кристалічного натрію хлорату періодичним способом / Слюзар А. В. та ін. // Chemistry, Technology and Application of Substances, Львів. 2024. Том 7. № 2. С. 47–54. | |
| dc.identifier.citationenAPA | Slyuzar, A. V., Blazhivskyi, K. I., Bodak, P. M., Ohlashennyy, Yu. I., & Blazhivskyi, O. K. (2024). Osoblyvosti proiektuvannia ustanovky krystalichnoho natriiu khloratu periodychnym sposobom [Designing features of the crystalline sodium chlorate installation by a periodical process]. Chemistry, Technology and Application of Substances, 7(2), 47-54. Lviv Politechnic Publishing House. [in Ukrainian]. | |
| dc.identifier.citationenCHICAGO | Slyuzar A. V., Blazhivskyi K. I., Bodak P. M., Ohlashennyy Yu. I., Blazhivskyi O. K. (2024) Osoblyvosti proiektuvannia ustanovky krystalichnoho natriiu khloratu periodychnym sposobom [Designing features of the crystalline sodium chlorate installation by a periodical process]. Chemistry, Technology and Application of Substances (Lviv), vol. 7, no 2, pp. 47-54 [in Ukrainian]. | |
| dc.identifier.doi | https://doi.org/10.23939/ctas2024.02.047 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/124467 | |
| dc.language.iso | uk | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (7), 2024 | |
| dc.relation.references | 1. Vogt, H., Balej, J., Bennett, J. E., Wintzer, P., Sheikh, S. A., & Gallone, P. (2000). Chlorine oxides and chlorine oxygen acids. Ullmann’s Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a06_483. | |
| dc.relation.references | 2. Girenko, D. D., Velichenko, A. B. & Shmychkova, O. B. (2021). Electrolysis of NaCl solutions in flow systems. Journal of Chemistry and Technologies, 29(1), 31–41. https://doi.org/10.15421/082111. | |
| dc.relation.references | 3. Kristoffer Hedensted (2017). Energy efficiency in the sodium chlorate process. From electrocatalysis to pilot plant investigations. Thesis for the degree of Doctor of Technology in natural science, with a focus on chemistry. Available online at: http://handle.net/2077/52081. | |
| dc.relation.references | 4. Endrődi, B., Sandin, S.,Wildlock, M., Simic, N.,& Cornell, A. (2019). Suppressed oxygen evolution during chlorate formation from hypochlorite in the presence of chromium (VI). Journal of Chemical Technology & Biotechnology,94(5), 1520–1527. https://doi.org/10.1002/jctb.5911. | |
| dc.relation.references | 5. Endrődi, B., Simic, N., Wildlock, M., & Cornell, A. (2017). A review of chromium (VI) use in chlorate electrolysis: Functions, challenges and suggested alternatives. Electrochimica Acta, 234, 108–122. https://doi.org/10.1016/j.electacta.2017.02.150. | |
| dc.relation.references | 6. Wanngård, J., & Wildlock, M. (2017). The catalyzing effect of chromate in the chlorate formation reaction. Chemical Engineering Research and Design, 121,438–447. https://doi.org/10.1016/j.cherd.2017.03.021. | |
| dc.relation.references | 7. Szabó, M., Lihi, N., Simic, N., Fábián, I. (2021). Potential catalysts for the production of NaClO3 in the decomposition of HOCl, Chemical Engineering Research and Design, 169, 97–102. https://doi.org/10.1016/j.cherd.2021.03.010. | |
| dc.relation.references | 8. Endrődi, B., Sandin, S., Smulders, V., Simic, N., Wildlock, M., Mul, G., Mei, B. T., & Cornell, A. (2018). Towards sustainable chlorate production: The effect of permanganate addition on current efficiency. Journal of Cleaner Production, 182, 529–537. https://doi.org/10.1016/j.jclepro.2018.02.071. | |
| dc.relation.references | 9. Endrődi, B., Stojanovic, A., Cuartero, M., Simic, N., Wildlock, M., de Marco, R., Crespo, G. A., & Cornell, A. (2019). Selective hydrogen evolution on manganese oxide coated electrodes: New cathodes for sodium chlorate production. ACS Sustainable Chemistry & Engineering, 7(14), 12170–12178. https://doi.org/10.1021/acssuschemeng.9b01279. | |
| dc.relation.references | 10. Gebert, A., Lacroix, M., Savadogo, O., & Schulz, R. (2000). Cathodes for chlorate electrolysis with nanocrystalline Ti–Ru–Fe–O catalyst. Journal of Applied Electrochemistry, 30(9), 1061–1067. https://doi.org/10.1023/a:1004030706423. | |
| dc.relation.references | 11. Gajic-Krstajic, L., Elezovic, N., Jovic, B., Martelli, G., Jovic, V., & Krstajic, N. (2016). Fe-Mo alloy coatings as cathodes in chlorate production process. Chemical Industry, 70(1), 81–89. https://doi.org/10.2298/hemind150119014g. | |
| dc.relation.references | 12. Endrődi, B., Diaz-Morales, O., Mattinen, U., Cuartero, M., Padinjarethil, A. K., Simic, N., Wildlock, M., Crespo, G. A., & Cornell, A. (2020). Selective electrochemical hydrogen evolution on cerium oxide protected catalyst surfaces. Electrochimica Acta, 341,136022. https://doi.org/10.1016/j.electacta.2020.136022. | |
| dc.relation.references | 13. Macounová, K. M., Simic, N., Ahlberg, E., & Krtil, P. (2018). Electrocatalytic aspects of the chlorate process: A Voltammetric and DEMS comparison of RuO2 and DSA anodes. Journal of the Electrochemical Society,165(14). E751–E758. https://doi.org/10.1149/2.0241814jes. | |
| dc.relation.references | 14. Krstić, V., Pešovski. B. (2019. Reviews the research on some dimensionally stable anodes (DSA) based on titanium. Hydrometallurgy, 185, 71–75.https://doi.org/10.1016/j.hydromet.2019.01.018. | |
| dc.relation.referencesen | 1. Vogt, H., Balej, J., Bennett, J. E., Wintzer, P., Sheikh, S. A., & Gallone, P. (2000). Chlorine oxides and chlorine oxygen acids. Ullmann’s Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a06_483. | |
| dc.relation.referencesen | 2. Girenko, D. D., Velichenko, A. B. & Shmychkova, O. B. (2021). Electrolysis of NaCl solutions in flow systems. Journal of Chemistry and Technologies, 29(1), 31–41. https://doi.org/10.15421/082111. | |
| dc.relation.referencesen | 3. Kristoffer Hedensted (2017). Energy efficiency in the sodium chlorate process. From electrocatalysis to pilot plant investigations. Thesis for the degree of Doctor of Technology in natural science, with a focus on chemistry. Available online at: http://handle.net/2077/52081. | |
| dc.relation.referencesen | 4. Endrődi, B., Sandin, S.,Wildlock, M., Simic, N.,& Cornell, A. (2019). Suppressed oxygen evolution during chlorate formation from hypochlorite in the presence of chromium (VI). Journal of Chemical Technology & Biotechnology,94(5), 1520–1527. https://doi.org/10.1002/jctb.5911. | |
| dc.relation.referencesen | 5. Endrődi, B., Simic, N., Wildlock, M., & Cornell, A. (2017). A review of chromium (VI) use in chlorate electrolysis: Functions, challenges and suggested alternatives. Electrochimica Acta, 234, 108–122. https://doi.org/10.1016/j.electacta.2017.02.150. | |
| dc.relation.referencesen | 6. Wanngård, J., & Wildlock, M. (2017). The catalyzing effect of chromate in the chlorate formation reaction. Chemical Engineering Research and Design, 121,438–447. https://doi.org/10.1016/j.cherd.2017.03.021. | |
| dc.relation.referencesen | 7. Szabó, M., Lihi, N., Simic, N., Fábián, I. (2021). Potential catalysts for the production of NaClO3 in the decomposition of HOCl, Chemical Engineering Research and Design, 169, 97–102. https://doi.org/10.1016/j.cherd.2021.03.010. | |
| dc.relation.referencesen | 8. Endrődi, B., Sandin, S., Smulders, V., Simic, N., Wildlock, M., Mul, G., Mei, B. T., & Cornell, A. (2018). Towards sustainable chlorate production: The effect of permanganate addition on current efficiency. Journal of Cleaner Production, 182, 529–537. https://doi.org/10.1016/j.jclepro.2018.02.071. | |
| dc.relation.referencesen | 9. Endrődi, B., Stojanovic, A., Cuartero, M., Simic, N., Wildlock, M., de Marco, R., Crespo, G. A., & Cornell, A. (2019). Selective hydrogen evolution on manganese oxide coated electrodes: New cathodes for sodium chlorate production. ACS Sustainable Chemistry & Engineering, 7(14), 12170–12178. https://doi.org/10.1021/acssuschemeng.9b01279. | |
| dc.relation.referencesen | 10. Gebert, A., Lacroix, M., Savadogo, O., & Schulz, R. (2000). Cathodes for chlorate electrolysis with nanocrystalline Ti–Ru–Fe–O catalyst. Journal of Applied Electrochemistry, 30(9), 1061–1067. https://doi.org/10.1023/a:1004030706423. | |
| dc.relation.referencesen | 11. Gajic-Krstajic, L., Elezovic, N., Jovic, B., Martelli, G., Jovic, V., & Krstajic, N. (2016). Fe-Mo alloy coatings as cathodes in chlorate production process. Chemical Industry, 70(1), 81–89. https://doi.org/10.2298/hemind150119014g. | |
| dc.relation.referencesen | 12. Endrődi, B., Diaz-Morales, O., Mattinen, U., Cuartero, M., Padinjarethil, A. K., Simic, N., Wildlock, M., Crespo, G. A., & Cornell, A. (2020). Selective electrochemical hydrogen evolution on cerium oxide protected catalyst surfaces. Electrochimica Acta, 341,136022. https://doi.org/10.1016/j.electacta.2020.136022. | |
| dc.relation.referencesen | 13. Macounová, K. M., Simic, N., Ahlberg, E., & Krtil, P. (2018). Electrocatalytic aspects of the chlorate process: A Voltammetric and DEMS comparison of RuO2 and DSA anodes. Journal of the Electrochemical Society,165(14). E751–E758. https://doi.org/10.1149/2.0241814jes. | |
| dc.relation.referencesen | 14. Krstić, V., Pešovski. B. (2019. Reviews the research on some dimensionally stable anodes (DSA) based on titanium. Hydrometallurgy, 185, 71–75.https://doi.org/10.1016/j.hydromet.2019.01.018. | |
| dc.relation.uri | https://doi.org/10.1002/14356007.a06_483 | |
| dc.relation.uri | https://doi.org/10.15421/082111 | |
| dc.relation.uri | http://handle.net/2077/52081 | |
| dc.relation.uri | https://doi.org/10.1002/jctb.5911 | |
| dc.relation.uri | https://doi.org/10.1016/j.electacta.2017.02.150 | |
| dc.relation.uri | https://doi.org/10.1016/j.cherd.2017.03.021 | |
| dc.relation.uri | https://doi.org/10.1016/j.cherd.2021.03.010 | |
| dc.relation.uri | https://doi.org/10.1016/j.jclepro.2018.02.071 | |
| dc.relation.uri | https://doi.org/10.1021/acssuschemeng.9b01279 | |
| dc.relation.uri | https://doi.org/10.1023/a:1004030706423 | |
| dc.relation.uri | https://doi.org/10.2298/hemind150119014g | |
| dc.relation.uri | https://doi.org/10.1016/j.electacta.2020.136022 | |
| dc.relation.uri | https://doi.org/10.1149/2.0241814jes | |
| dc.relation.uri | https://doi.org/10.1016/j.hydromet.2019.01.018 | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2024 | |
| dc.subject | натрію хлорат | |
| dc.subject | водень | |
| dc.subject | електроліз | |
| dc.subject | випарювання | |
| dc.subject | кристалізація | |
| dc.subject | періо- дичний процес | |
| dc.subject | установка | |
| dc.subject | проєктування | |
| dc.subject | sodium chlorate | |
| dc.subject | hydrogen | |
| dc.subject | electrolysis | |
| dc.subject | evaporation | |
| dc.subject | crystallization | |
| dc.subject | periodic process | |
| dc.subject | installation | |
| dc.subject | design | |
| dc.title | Особливості проєктування установки кристалічного натрію хлорату періодичним способом | |
| dc.title.alternative | Designing features of the crystalline sodium chlorate installation by a periodical process | |
| dc.type | Article |