Особливості проєктування установки кристалічного натрію хлорату періодичним способом

dc.citation.epage54
dc.citation.issue2
dc.citation.spage47
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationHatch Kuettner, м. Ессен, Німеччина
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationHatch Kuettner, Essen, Germany
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСлюзар, А. В.
dc.contributor.authorБлажівський, К. І.
dc.contributor.authorБодак, П. М.
dc.contributor.authorОглашенний, Ю. І.
dc.contributor.authorБлажівський, О. К.
dc.contributor.authorSlyuzar, A. V.
dc.contributor.authorBlazhivskyi, K. I.
dc.contributor.authorBodak, P. M.
dc.contributor.authorOhlashennyy, Yu. I.
dc.contributor.authorBlazhivskyi, O. K.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2026-01-15T13:53:25Z
dc.date.created2024-10-10
dc.date.issued2024-10-10
dc.description.abstractНатрію хлорат – важливий продукт для економіки України і світу. На основі досліджень стадій електролізу водного розчину натрію хлориду і розділення хлорид-хлоратних розчинів випарюванням – кристалізацією розроблено проєкт установки періодичної дії для одержання кристалічного натрію хлорату. Результати досліджень показали, шо є можливість уникнути стадії гарячого фільтрування суспензії після випарювання і, загалом, спростити технологію та зменшити її енергоспоживання. Проєктні рішення спрямовані також на використання відновлюваних джерел енергії для процесів.
dc.description.abstractSodium chlorate is an important product for the Ukrainian and global economy. Based on the study of the stages of electrolysis of an aqueous solution of sodium chloride and the separation of chloride-chlorate solutions by evaporation-crystallization, a design of a periodical action installation for the production of crystalline sodium chlorate was developed. The research results showed that it is possible to avoid the stage of hot filtration of the suspension after evaporation and, in general, to simplify the technology and reduce its energy consumption. Design solutions are also aimed at using renewable energy sources for the processes.
dc.format.extent47-54
dc.format.pages8
dc.identifier.citationОсобливості проєктування установки кристалічного натрію хлорату періодичним способом / А. В. Слюзар, К. І. Блажівський, П. М. Бодак, Ю. І. Оглашенний, О. К. Блажівський // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2024. — Том 7. — № 2. — С. 47–54.
dc.identifier.citation2015Особливості проєктування установки кристалічного натрію хлорату періодичним способом / Слюзар А. В. та ін. // Chemistry, Technology and Application of Substances, Львів. 2024. Том 7. № 2. С. 47–54.
dc.identifier.citationenAPASlyuzar, A. V., Blazhivskyi, K. I., Bodak, P. M., Ohlashennyy, Yu. I., & Blazhivskyi, O. K. (2024). Osoblyvosti proiektuvannia ustanovky krystalichnoho natriiu khloratu periodychnym sposobom [Designing features of the crystalline sodium chlorate installation by a periodical process]. Chemistry, Technology and Application of Substances, 7(2), 47-54. Lviv Politechnic Publishing House. [in Ukrainian].
dc.identifier.citationenCHICAGOSlyuzar A. V., Blazhivskyi K. I., Bodak P. M., Ohlashennyy Yu. I., Blazhivskyi O. K. (2024) Osoblyvosti proiektuvannia ustanovky krystalichnoho natriiu khloratu periodychnym sposobom [Designing features of the crystalline sodium chlorate installation by a periodical process]. Chemistry, Technology and Application of Substances (Lviv), vol. 7, no 2, pp. 47-54 [in Ukrainian].
dc.identifier.doihttps://doi.org/10.23939/ctas2024.02.047
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124467
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (7), 2024
dc.relation.references1. Vogt, H., Balej, J., Bennett, J. E., Wintzer, P., Sheikh, S. A., & Gallone, P. (2000). Chlorine oxides and chlorine oxygen acids. Ullmann’s Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a06_483.
dc.relation.references2. Girenko, D. D., Velichenko, A. B. & Shmychkova, O. B. (2021). Electrolysis of NaCl solutions in flow systems. Journal of Chemistry and Technologies, 29(1), 31–41. https://doi.org/10.15421/082111.
dc.relation.references3. Kristoffer Hedensted (2017). Energy efficiency in the sodium chlorate process. From electrocatalysis to pilot plant investigations. Thesis for the degree of Doctor of Technology in natural science, with a focus on chemistry. Available online at: http://handle.net/2077/52081.
dc.relation.references4. Endrődi, B., Sandin, S.,Wildlock, M., Simic, N.,& Cornell, A. (2019). Suppressed oxygen evolution during chlorate formation from hypochlorite in the presence of chromium (VI). Journal of Chemical Technology & Biotechnology,94(5), 1520–1527. https://doi.org/10.1002/jctb.5911.
dc.relation.references5. Endrődi, B., Simic, N., Wildlock, M., & Cornell, A. (2017). A review of chromium (VI) use in chlorate electrolysis: Functions, challenges and suggested alternatives. Electrochimica Acta, 234, 108–122. https://doi.org/10.1016/j.electacta.2017.02.150.
dc.relation.references6. Wanngård, J., & Wildlock, M. (2017). The catalyzing effect of chromate in the chlorate formation reaction. Chemical Engineering Research and Design, 121,438–447. https://doi.org/10.1016/j.cherd.2017.03.021.
dc.relation.references7. Szabó, M., Lihi, N., Simic, N., Fábián, I. (2021). Potential catalysts for the production of NaClO3 in the decomposition of HOCl, Chemical Engineering Research and Design, 169, 97–102. https://doi.org/10.1016/j.cherd.2021.03.010.
dc.relation.references8. Endrődi, B., Sandin, S., Smulders, V., Simic, N., Wildlock, M., Mul, G., Mei, B. T., & Cornell, A. (2018). Towards sustainable chlorate production: The effect of permanganate addition on current efficiency. Journal of Cleaner Production, 182, 529–537. https://doi.org/10.1016/j.jclepro.2018.02.071.
dc.relation.references9. Endrődi, B., Stojanovic, A., Cuartero, M., Simic, N., Wildlock, M., de Marco, R., Crespo, G. A., & Cornell, A. (2019). Selective hydrogen evolution on manganese oxide coated electrodes: New cathodes for sodium chlorate production. ACS Sustainable Chemistry & Engineering, 7(14), 12170–12178. https://doi.org/10.1021/acssuschemeng.9b01279.
dc.relation.references10. Gebert, A., Lacroix, M., Savadogo, O., & Schulz, R. (2000). Cathodes for chlorate electrolysis with nanocrystalline Ti–Ru–Fe–O catalyst. Journal of Applied Electrochemistry, 30(9), 1061–1067. https://doi.org/10.1023/a:1004030706423.
dc.relation.references11. Gajic-Krstajic, L., Elezovic, N., Jovic, B., Martelli, G., Jovic, V., & Krstajic, N. (2016). Fe-Mo alloy coatings as cathodes in chlorate production process. Chemical Industry, 70(1), 81–89. https://doi.org/10.2298/hemind150119014g.
dc.relation.references12. Endrődi, B., Diaz-Morales, O., Mattinen, U., Cuartero, M., Padinjarethil, A. K., Simic, N., Wildlock, M., Crespo, G. A., & Cornell, A. (2020). Selective electrochemical hydrogen evolution on cerium oxide protected catalyst surfaces. Electrochimica Acta, 341,136022. https://doi.org/10.1016/j.electacta.2020.136022.
dc.relation.references13. Macounová, K. M., Simic, N., Ahlberg, E., & Krtil, P. (2018). Electrocatalytic aspects of the chlorate process: A Voltammetric and DEMS comparison of RuO2 and DSA anodes. Journal of the Electrochemical Society,165(14). E751–E758. https://doi.org/10.1149/2.0241814jes.
dc.relation.references14. Krstić, V., Pešovski. B. (2019. Reviews the research on some dimensionally stable anodes (DSA) based on titanium. Hydrometallurgy, 185, 71–75.https://doi.org/10.1016/j.hydromet.2019.01.018.
dc.relation.referencesen1. Vogt, H., Balej, J., Bennett, J. E., Wintzer, P., Sheikh, S. A., & Gallone, P. (2000). Chlorine oxides and chlorine oxygen acids. Ullmann’s Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a06_483.
dc.relation.referencesen2. Girenko, D. D., Velichenko, A. B. & Shmychkova, O. B. (2021). Electrolysis of NaCl solutions in flow systems. Journal of Chemistry and Technologies, 29(1), 31–41. https://doi.org/10.15421/082111.
dc.relation.referencesen3. Kristoffer Hedensted (2017). Energy efficiency in the sodium chlorate process. From electrocatalysis to pilot plant investigations. Thesis for the degree of Doctor of Technology in natural science, with a focus on chemistry. Available online at: http://handle.net/2077/52081.
dc.relation.referencesen4. Endrődi, B., Sandin, S.,Wildlock, M., Simic, N.,& Cornell, A. (2019). Suppressed oxygen evolution during chlorate formation from hypochlorite in the presence of chromium (VI). Journal of Chemical Technology & Biotechnology,94(5), 1520–1527. https://doi.org/10.1002/jctb.5911.
dc.relation.referencesen5. Endrődi, B., Simic, N., Wildlock, M., & Cornell, A. (2017). A review of chromium (VI) use in chlorate electrolysis: Functions, challenges and suggested alternatives. Electrochimica Acta, 234, 108–122. https://doi.org/10.1016/j.electacta.2017.02.150.
dc.relation.referencesen6. Wanngård, J., & Wildlock, M. (2017). The catalyzing effect of chromate in the chlorate formation reaction. Chemical Engineering Research and Design, 121,438–447. https://doi.org/10.1016/j.cherd.2017.03.021.
dc.relation.referencesen7. Szabó, M., Lihi, N., Simic, N., Fábián, I. (2021). Potential catalysts for the production of NaClO3 in the decomposition of HOCl, Chemical Engineering Research and Design, 169, 97–102. https://doi.org/10.1016/j.cherd.2021.03.010.
dc.relation.referencesen8. Endrődi, B., Sandin, S., Smulders, V., Simic, N., Wildlock, M., Mul, G., Mei, B. T., & Cornell, A. (2018). Towards sustainable chlorate production: The effect of permanganate addition on current efficiency. Journal of Cleaner Production, 182, 529–537. https://doi.org/10.1016/j.jclepro.2018.02.071.
dc.relation.referencesen9. Endrődi, B., Stojanovic, A., Cuartero, M., Simic, N., Wildlock, M., de Marco, R., Crespo, G. A., & Cornell, A. (2019). Selective hydrogen evolution on manganese oxide coated electrodes: New cathodes for sodium chlorate production. ACS Sustainable Chemistry & Engineering, 7(14), 12170–12178. https://doi.org/10.1021/acssuschemeng.9b01279.
dc.relation.referencesen10. Gebert, A., Lacroix, M., Savadogo, O., & Schulz, R. (2000). Cathodes for chlorate electrolysis with nanocrystalline Ti–Ru–Fe–O catalyst. Journal of Applied Electrochemistry, 30(9), 1061–1067. https://doi.org/10.1023/a:1004030706423.
dc.relation.referencesen11. Gajic-Krstajic, L., Elezovic, N., Jovic, B., Martelli, G., Jovic, V., & Krstajic, N. (2016). Fe-Mo alloy coatings as cathodes in chlorate production process. Chemical Industry, 70(1), 81–89. https://doi.org/10.2298/hemind150119014g.
dc.relation.referencesen12. Endrődi, B., Diaz-Morales, O., Mattinen, U., Cuartero, M., Padinjarethil, A. K., Simic, N., Wildlock, M., Crespo, G. A., & Cornell, A. (2020). Selective electrochemical hydrogen evolution on cerium oxide protected catalyst surfaces. Electrochimica Acta, 341,136022. https://doi.org/10.1016/j.electacta.2020.136022.
dc.relation.referencesen13. Macounová, K. M., Simic, N., Ahlberg, E., & Krtil, P. (2018). Electrocatalytic aspects of the chlorate process: A Voltammetric and DEMS comparison of RuO2 and DSA anodes. Journal of the Electrochemical Society,165(14). E751–E758. https://doi.org/10.1149/2.0241814jes.
dc.relation.referencesen14. Krstić, V., Pešovski. B. (2019. Reviews the research on some dimensionally stable anodes (DSA) based on titanium. Hydrometallurgy, 185, 71–75.https://doi.org/10.1016/j.hydromet.2019.01.018.
dc.relation.urihttps://doi.org/10.1002/14356007.a06_483
dc.relation.urihttps://doi.org/10.15421/082111
dc.relation.urihttp://handle.net/2077/52081
dc.relation.urihttps://doi.org/10.1002/jctb.5911
dc.relation.urihttps://doi.org/10.1016/j.electacta.2017.02.150
dc.relation.urihttps://doi.org/10.1016/j.cherd.2017.03.021
dc.relation.urihttps://doi.org/10.1016/j.cherd.2021.03.010
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2018.02.071
dc.relation.urihttps://doi.org/10.1021/acssuschemeng.9b01279
dc.relation.urihttps://doi.org/10.1023/a:1004030706423
dc.relation.urihttps://doi.org/10.2298/hemind150119014g
dc.relation.urihttps://doi.org/10.1016/j.electacta.2020.136022
dc.relation.urihttps://doi.org/10.1149/2.0241814jes
dc.relation.urihttps://doi.org/10.1016/j.hydromet.2019.01.018
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.subjectнатрію хлорат
dc.subjectводень
dc.subjectелектроліз
dc.subjectвипарювання
dc.subjectкристалізація
dc.subjectперіо- дичний процес
dc.subjectустановка
dc.subjectпроєктування
dc.subjectsodium chlorate
dc.subjecthydrogen
dc.subjectelectrolysis
dc.subjectevaporation
dc.subjectcrystallization
dc.subjectperiodic process
dc.subjectinstallation
dc.subjectdesign
dc.titleОсобливості проєктування установки кристалічного натрію хлорату періодичним способом
dc.title.alternativeDesigning features of the crystalline sodium chlorate installation by a periodical process
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v7n2_Slyuzar_A_V-Designing_features_of_the_47-54.pdf
Size:
351.28 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.93 KB
Format:
Plain Text
Description: