Дослідження комплексоутворення поліетиленіміну з йонами міді (ІІ), нікелю (ІІ), кобальту (ІІ)

dc.citation.epage23
dc.citation.issue2
dc.citation.journalTitleChemistry, Technology and Application of Substances
dc.citation.spage16
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorОлійник, Л. П.
dc.contributor.authorМакота, О. І.
dc.contributor.authorКомаренська, З. М.
dc.contributor.authorГерасимчук, С. І.
dc.contributor.authorOliynyk, L. P.
dc.contributor.authorMakota, O. I.
dc.contributor.authorKomarenska, Z. M.
dc.contributor.authorGerasimchuk, S. I.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T07:39:16Z
dc.date.created2005-03-01
dc.date.issued2005-03-01
dc.description.abstractОписано вплив структури глобули поліетиленіміну на комплексоутворення з йонами міді (II), нікелю (II) та кобальту (II). Встановлено значення координаційного числа зі зміною рН розчину для комплексів етилендіаміну, діетилентриаміну та поліетиленіміну з йонами металів. Досліджено, що комплексоутворення цих йонів металів із низькомолекулярними амінами проходить через три стадії та з ПЕІ через дві стадії. Показано, що вміст вільних атомів азоту в ПЕІ, які не реагують з йонами металів, збільшується із підвищенням концентрації ПЕІ в розчині. Кількість мономерних ланок, зв’язаних із йонами металів, залежить від розміру глобули макромолекули, а також від перебігу реакції. Реакція комплексоутворення в розчині визначається дифузією іонів металів у полімерну глобулу. Якщо реакція відбувається у дифузійному полі за низької концентрації полімеру, швидкість комплексоутворення пропорційна до концентрації макромолекул та концентрації йонів металу в розчині.
dc.description.abstractThere is described the influence of polyethylenimine globule structure on complexation with copper (II), nickel (II) and cobalt (II) ions. There are determined the values of the coordination number with the change of the pH of the solution for the complexes of ethylenediamine, diethylenetriamine and polyethylenimine with metal ions. It is investigated that the complexation of these metal ions with low molecular weight amines passes through three stages and with PEI through two stages. It is shown that the content of free nitrogen atoms in PEI, which do not react with metal ions, increases with increasing concentration of PEI in solution. The number of monomer units associated with metal ions depends on the size of the globule of the macromolecule, as well as the reaction process. The complexation reaction in solution is determined by the diffusion of metal ions into the polymer globule. If the reaction takes place in a diffusion field at a low polymer concentration, the rate of complexation is proportional to the concentration of macromolecules and the concentration of metal ions in solution.
dc.format.extent16-23
dc.format.pages8
dc.identifier.citationДослідження комплексоутворення поліетиленіміну з йонами міді (ІІ), нікелю (ІІ), кобальту (ІІ) / Л. П. Олійник, О. І. Макота, З. М. Комаренська, С. І. Герасимчук // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 2. — С. 16–23.
dc.identifier.citationenResearch of complex formation of polyethylenimine with copper (ІІ), nickel (ІІ), cobalt (ІІ) ions / L. P. Oliynyk, O. I. Makota, Z. M. Komarenska, S. I. Gerasimchuk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 2. — P. 16–23.
dc.identifier.doidoi.org/10.23939/ctas2022.02.016
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63657
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.references1. Niu S., Hall M. B. (2000). Theoretical studies on reactions of transition-metal complexes. Chemical Reviews, 100(2), 353-406. DOI: 10.1021/cr980404y. https://doi.org/10.1021/cr980404y
dc.relation.references2. Swiegers G. F., Malefetse T. J. (2000). New Self-Assembled Structural Motifs in Coordination Chemistry.Chemical Reviews. Sep. 15;100(9):3539. DOI: 10.1021/cr990110s. https://doi.org/10.1021/cr990110s
dc.relation.references3. Hush N. S., Reimers J. R. (2000). Solvent effects on the electronic spectra of transition metal complexes. Chemical Reviews, 100(2), 775-796. DOI: 10.1021/cr980409v. https://doi.org/10.1021/cr980409v
dc.relation.references4. Munakata M., Wu P., Kuroda-Sowa T. (1999). Mobility of Silver (I) Ions around the Propeller Ligand, Hexaphenylbenzene (HPB), in Silver(I) π-Complexes. Inorganic Chemistry, 38(25), 5668-5673. doi.org/10.1021/ic990143q. https://doi.org/10.1021/ic990143q
dc.relation.references5. Shinpei Hasegawa, Satoshi Horike, Ryotaro Matsuda, Shuhei Furukawa, Katsunori Mochizuki, Yoshinori Kinoshita and Susumu Kitagawa (2007). Three- Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis. Journal of the American Chemical Society, 129 (9), 2607-2614. doi.org/10.1021/ja067374y. https://doi.org/10.1021/ja067374y
dc.relation.references6. Robert W. Elliott, Ashley L. Sutton, Brendan F. Abrahams, Deanna M. D'Alessandro, Lars Goerigk, Carol Hua, Timothy A. Hudson, Richard Robson, Keith F. White. (2021) Multifunctional Coordination Polymer Exhibiting Reversible Mechanical Motion Allowing Selective Uptake of Guests and Leading to Enhanced Electrical Conductivity. Inorganic Chemistry, 60(17), 13658-13668. https://doi.org/10.1021/acs.inorgchem. 1c01979. https://doi.org/10.1021/acs.inorgchem.1c01979
dc.relation.references7. Jing-Jing Huang, Jie-Hui Yu, Fu-Quan Bai, Ji- Qing Xu. White-Light-Emitting (2018). Materials and Highly Sensitive Detection of Fe3+and Polychlorinated Benzenes Based on Ln-Metal-Organic Frameworks. Crystal Growth & Design, 18(9), 5353- 5364. https://doi.org/10.1021/acs.cgd.8b00773. https://doi.org/10.1021/acs.cgd.8b00773
dc.relation.references8. Bernabé L. Rivas&Kurt E. Geckeler. Part of the Advances in Polymer Science book series. Polymer, vol. 102, Polymer Synthesis Oxidation Processes, 171- 188. 2005). DOI: 10.1007/3-540-55090-9_6. https://doi.org/10.1007/3-540-55090-9_6
dc.relation.references9. K. Geckeler, G. Lange, H. Eberhardt and E. Bayer. (2001).Polymer-metal complexes for environ- mental protection. Chemoremediation in the aqueous homogeneous phase. Pure and Applied Chemistry., Vol. 73, No. 1, 129-136. http://dx.doi.org/10.1351/ pac200173010129. https://doi.org/10.1351/pac200173010129
dc.relation.references10. Chekulayeva J. A., Fonova I. V., Ignatenko A. V., Ponomarenko V. A. (1985). Highmol Compounds (USSR), B27, 601-604. https://ur.booksc.me› book.
dc.relation.references11. Firlik S., Skupiński W., Wielgosz Z., & Stasiński J. (2015). Application of the copper (II)- aminosilane catalysts in the oxidative polymerization of 2,6-dimethylphenol. Polimery, 60(6), 372-376. https://doi.org/10.14314/polimery.2015.372. https://doi.org/10.14314/polimery.2015.372
dc.relation.references12. Oliynyk L. P., Makota О. І., Komarenska Z. M., Bernatska N. L. (2021). Іnvestigation of complex formation of cobalt (II) ions with polyacrylic acid. Chemistry, Technology and Application of Substances, Vol. 4, No. 193-198. https://doi.org/10.23939/ctas2021.01.093
dc.relation.references13. Kislenko V. N., Oliynyk L. P. Treatment of humic acids with ferric, aluminium, and chromium ions in water. Journal of Colloid and interface Science, 269(2004), 388-393. https://doi.org/10.1016/j.jcis.2003.07.040. https://doi.org/10.1016/j.jcis.2003.07.040
dc.relation.references14. Cotton F. Albert; Wilkinson, Geoffrey (2006). Quimica inorganica avanzada/ Advanced Inorganic Chemistry (Spanish Edition) b. Published by Editorial Limusa S. A. De C. V., p. 59214.
dc.relation.references15. Chundak S. Iu., Barchii I. Ie. (2019). Osnovy khimii kompleksnykh spoluk: navchalnyi posibnyk. Uzhhorod: Vyd-vo UzhNU "Hoverla" 133 s. ISVN 978- 617-7333-93-6. m. Uzhhorod, Ukraina.
dc.relation.references16. Aslışah Açıkses, Necmittin Çömez and Fatih Biryan.(2018). Preparation and Characterization of Styrene Bearing Diethanolamine Side Group, Styrene Copolymer Systems, and Their Metal Complexes. Hindawi International Journal of Polymer Science Vol. 2018, Article ID 6703783, 15 p. https://doi.org/10.1155/2018/6703783. https://doi.org/10.1155/2018/6703783
dc.relation.references17. Pomohailo A. D. Rozenberh A. S., Ufliand Y. E. (2000). Nanochastytsы metallov v polymerakh. Moskva: Khymyia.
dc.relation.references18. Lázaro-Martínez J. M., Monti G. A., Chattah A. K. (2013). Insights into the coordination sphere of copper ion in polymers containing carboxylic acid and azole groups. Polymer, 54(19), 5214-5221. https://doi.org/10.1016/j.polymer.2013.07.036
dc.relation.references19. Annenkov V. V., Danilovtseva E. N., Saraev V. V., Mikhaleva A. I. (2003). Complexation of copper (II) ions with imidazole-carboxylic polymeric systems. Journal of Polymer Science Part A: Polymer Chemistry. 41, 2256. DOI: 10.1002/pola.10769 https://doi.org/10.1002/pola.10769
dc.relation.referencesen1. Niu S., Hall M. B. (2000). Theoretical studies on reactions of transition-metal complexes. Chemical Reviews, 100(2), 353-406. DOI: 10.1021/cr980404y. https://doi.org/10.1021/cr980404y
dc.relation.referencesen2. Swiegers G. F., Malefetse T. J. (2000). New Self-Assembled Structural Motifs in Coordination Chemistry.Chemical Reviews. Sep. 15;100(9):3539. DOI: 10.1021/cr990110s. https://doi.org/10.1021/cr990110s
dc.relation.referencesen3. Hush N. S., Reimers J. R. (2000). Solvent effects on the electronic spectra of transition metal complexes. Chemical Reviews, 100(2), 775-796. DOI: 10.1021/cr980409v. https://doi.org/10.1021/cr980409v
dc.relation.referencesen4. Munakata M., Wu P., Kuroda-Sowa T. (1999). Mobility of Silver (I) Ions around the Propeller Ligand, Hexaphenylbenzene (HPB), in Silver(I) p-Complexes. Inorganic Chemistry, 38(25), 5668-5673. doi.org/10.1021/ic990143q. https://doi.org/10.1021/ic990143q
dc.relation.referencesen5. Shinpei Hasegawa, Satoshi Horike, Ryotaro Matsuda, Shuhei Furukawa, Katsunori Mochizuki, Yoshinori Kinoshita and Susumu Kitagawa (2007). Three- Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis. Journal of the American Chemical Society, 129 (9), 2607-2614. doi.org/10.1021/ja067374y. https://doi.org/10.1021/ja067374y
dc.relation.referencesen6. Robert W. Elliott, Ashley L. Sutton, Brendan F. Abrahams, Deanna M. D'Alessandro, Lars Goerigk, Carol Hua, Timothy A. Hudson, Richard Robson, Keith F. White. (2021) Multifunctional Coordination Polymer Exhibiting Reversible Mechanical Motion Allowing Selective Uptake of Guests and Leading to Enhanced Electrical Conductivity. Inorganic Chemistry, 60(17), 13658-13668. https://doi.org/10.1021/acs.inorgchem. 1c01979. https://doi.org/10.1021/acs.inorgchem.1c01979
dc.relation.referencesen7. Jing-Jing Huang, Jie-Hui Yu, Fu-Quan Bai, Ji- Qing Xu. White-Light-Emitting (2018). Materials and Highly Sensitive Detection of Fe3+and Polychlorinated Benzenes Based on Ln-Metal-Organic Frameworks. Crystal Growth & Design, 18(9), 5353- 5364. https://doi.org/10.1021/acs.cgd.8b00773. https://doi.org/10.1021/acs.cgd.8b00773
dc.relation.referencesen8. Bernabé L. Rivas&Kurt E. Geckeler. Part of the Advances in Polymer Science book series. Polymer, vol. 102, Polymer Synthesis Oxidation Processes, 171- 188. 2005). DOI: 10.1007/3-540-55090-9_6. https://doi.org/10.1007/3-540-55090-9_6
dc.relation.referencesen9. K. Geckeler, G. Lange, H. Eberhardt and E. Bayer. (2001).Polymer-metal complexes for environ- mental protection. Chemoremediation in the aqueous homogeneous phase. Pure and Applied Chemistry., Vol. 73, No. 1, 129-136. http://dx.doi.org/10.1351/ pac200173010129. https://doi.org/10.1351/pac200173010129
dc.relation.referencesen10. Chekulayeva J. A., Fonova I. V., Ignatenko A. V., Ponomarenko V. A. (1985). Highmol Compounds (USSR), B27, 601-604. https://ur.booksc.me› book.
dc.relation.referencesen11. Firlik S., Skupiński W., Wielgosz Z., & Stasiński J. (2015). Application of the copper (II)- aminosilane catalysts in the oxidative polymerization of 2,6-dimethylphenol. Polimery, 60(6), 372-376. https://doi.org/10.14314/polimery.2015.372. https://doi.org/10.14314/polimery.2015.372
dc.relation.referencesen12. Oliynyk L. P., Makota O. I., Komarenska Z. M., Bernatska N. L. (2021). Investigation of complex formation of cobalt (II) ions with polyacrylic acid. Chemistry, Technology and Application of Substances, Vol. 4, No. 193-198. https://doi.org/10.23939/ctas2021.01.093
dc.relation.referencesen13. Kislenko V. N., Oliynyk L. P. Treatment of humic acids with ferric, aluminium, and chromium ions in water. Journal of Colloid and interface Science, 269(2004), 388-393. https://doi.org/10.1016/j.jcis.2003.07.040. https://doi.org/10.1016/j.jcis.2003.07.040
dc.relation.referencesen14. Cotton F. Albert; Wilkinson, Geoffrey (2006). Quimica inorganica avanzada/ Advanced Inorganic Chemistry (Spanish Edition) b. Published by Editorial Limusa S. A. De C. V., p. 59214.
dc.relation.referencesen15. Chundak S. Iu., Barchii I. Ie. (2019). Osnovy khimii kompleksnykh spoluk: navchalnyi posibnyk. Uzhhorod: Vyd-vo UzhNU "Hoverla" 133 s. ISVN 978- 617-7333-93-6. m. Uzhhorod, Ukraina.
dc.relation.referencesen16. Aslışah Açıkses, Necmittin Çömez and Fatih Biryan.(2018). Preparation and Characterization of Styrene Bearing Diethanolamine Side Group, Styrene Copolymer Systems, and Their Metal Complexes. Hindawi International Journal of Polymer Science Vol. 2018, Article ID 6703783, 15 p. https://doi.org/10.1155/2018/6703783. https://doi.org/10.1155/2018/6703783
dc.relation.referencesen17. Pomohailo A. D. Rozenberh A. S., Ufliand Y. E. (2000). Nanochastytsy metallov v polymerakh. Moskva: Khymyia.
dc.relation.referencesen18. Lázaro-Martínez J. M., Monti G. A., Chattah A. K. (2013). Insights into the coordination sphere of copper ion in polymers containing carboxylic acid and azole groups. Polymer, 54(19), 5214-5221. https://doi.org/10.1016/j.polymer.2013.07.036
dc.relation.referencesen19. Annenkov V. V., Danilovtseva E. N., Saraev V. V., Mikhaleva A. I. (2003). Complexation of copper (II) ions with imidazole-carboxylic polymeric systems. Journal of Polymer Science Part A: Polymer Chemistry. 41, 2256. DOI: 10.1002/pola.10769 https://doi.org/10.1002/pola.10769
dc.relation.urihttps://doi.org/10.1021/cr980404y
dc.relation.urihttps://doi.org/10.1021/cr990110s
dc.relation.urihttps://doi.org/10.1021/cr980409v
dc.relation.urihttps://doi.org/10.1021/ic990143q
dc.relation.urihttps://doi.org/10.1021/ja067374y
dc.relation.urihttps://doi.org/10.1021/acs.inorgchem
dc.relation.urihttps://doi.org/10.1021/acs.inorgchem.1c01979
dc.relation.urihttps://doi.org/10.1021/acs.cgd.8b00773
dc.relation.urihttps://doi.org/10.1007/3-540-55090-9_6
dc.relation.urihttp://dx.doi.org/10.1351/
dc.relation.urihttps://doi.org/10.1351/pac200173010129
dc.relation.urihttps://ur.booksc.me
dc.relation.urihttps://doi.org/10.14314/polimery.2015.372
dc.relation.urihttps://doi.org/10.23939/ctas2021.01.093
dc.relation.urihttps://doi.org/10.1016/j.jcis.2003.07.040
dc.relation.urihttps://doi.org/10.1155/2018/6703783
dc.relation.urihttps://doi.org/10.1016/j.polymer.2013.07.036
dc.relation.urihttps://doi.org/10.1002/pola.10769
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectполіетиленімін
dc.subjectйони металів
dc.subjectкомплексоутворення
dc.subjectполіаміни
dc.subjectметало-полімерні комплекси
dc.subjectполімерна глобула
dc.subjectpolyethylenimine
dc.subjectmetal ions
dc.subjectcomplex formation
dc.subjectpolyamines
dc.subjectmetal-polymer complexes
dc.subjectpolymer globule
dc.titleДослідження комплексоутворення поліетиленіміну з йонами міді (ІІ), нікелю (ІІ), кобальту (ІІ)
dc.title.alternativeResearch of complex formation of polyethylenimine with copper (ІІ), nickel (ІІ), cobalt (ІІ) ions
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v5n2_Oliynyk_L_P-Research_of_complex_formation_16-23.pdf
Size:
3.02 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v5n2_Oliynyk_L_P-Research_of_complex_formation_16-23__COVER.png
Size:
475.94 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.9 KB
Format:
Plain Text
Description: