Determination of the removal efficiency of chloramphenicol from wastewater depending on Lemna minor biomass

dc.citation.epage66
dc.citation.issue1
dc.citation.journalTitleЕкологічні проблеми
dc.citation.spage62
dc.contributor.affiliationNational Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
dc.contributor.affiliationGdansk University of Technology
dc.contributor.authorKika, Liubov
dc.contributor.authorSablii, Larysa
dc.contributor.authorDrewnowski, Jakub
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-19T08:51:13Z
dc.date.created2025-02-27
dc.date.issued2025-02-27
dc.description.abstractThe article is dedicated to studying the effectiveness of wastewater treatment contaminated with chloramphenicol using Lemna minor with a specific biomass of 36 and 50 g/L. Purification of model solutions with an antibiotic concentration of 2–20 mg/L continued for 1–72 hours. The conducted research showed that the degree of chloramphenicol removal depends on the specific biomass of plants and the time of the process. The greatest decrease in the content of the antibiotic was observed during 24–48 hours of the purification process, then the efficiency of its removal decreased and after 72 hours it practically did not change. For concentrations of 2 and 5 mg/L with a specific biomass of L. minor of 36 g/L, the purification efficiency in 72 hours reached 23.2 % and 26.8 %, respectively. When the biomass increased to 50 g/L, the efficiency was 17 % and 19 %, respectively. The removal efficiency of chloramphenicol at a concentration of 10 mg/L reached 33 % when the specific biomass of L. minor was 36 g/L, and at a concentration of 20 mg/L – 29.5 %. For a specific biomass of 50 g/L, this indicator was 23.6 % with an antibiotic content of 10 mg/L and 21% with a content of 20 mg/L. According to the obtained results, the rational parameters of the cleaning process were established: time 48 hours and specific biomass 36 g/L allowed to achieve 29.4 % efficiency of chloramphenicol removal from wastewater at its initial concentration of 10 mg/L. Further increase in treatment time has a negligible effect on the increase in purification efficiency. An increase in duckweed biomass leads to a decrease in the efficiency of antibiotic adsorption. To process duckweed after its use in wastewater treatment to remove antibiotics fermentation technology in a methane tank can be employed along with other station waste.
dc.format.extent62-66
dc.format.pages5
dc.identifier.citationKika L. Determination of the removal efficiency of chloramphenicol from wastewater depending on Lemna minor biomass / Liubov Kika, Larysa Sablii, Jakub Drewnowski // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 10. — No 1. — P. 62–66.
dc.identifier.citationenKika L. Determination of the removal efficiency of chloramphenicol from wastewater depending on Lemna minor biomass / Liubov Kika, Larysa Sablii, Jakub Drewnowski // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 10. — No 1. — P. 62–66.
dc.identifier.doidoi.org/10.23939/ep2025.01.062
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/120448
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕкологічні проблеми, 1 (10), 2025
dc.relation.ispartofEnvironmental Problems, 1 (10), 2025
dc.relation.referencesAhammad, N. A., Zulkifli, M. A., Ahmad, M. A., Hameed, B. H., & Mohd Din, A. T. (2021). Desorption of chloramphenicol from ordered mesoporous carbon-alginate beads: effects of operating parameters, and isotherm, kinetics, and regeneration studies. Journal of Environmental Chemical Engineering, 9(1), 105015. doi: https://doi.org/10.1016/j.jece.2020.105015
dc.relation.referencesAhmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Johir, M.A.H., & Belhaj, D. (2017 a). Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment. Bioresource Technology, 238(1), 306–312. doi: https://doi.org/10.1016/j.biortech.2017.04.042
dc.relation.referencesAhmed M. B., Zhou J. L., Ngo, H. H., Guo, W., Johir, M.A.H., Sornalingam, K., & Rahman, M. S. (2017 b). Chloramphenicol interaction with functionalized biochar in water: sorptive mechanism, molecular imprinting effect and repeatable application. Science of The Total Environment, 609(1), 885–895. doi: https://doi.org/10.1016/j.scitotenv.2017.07.239
dc.relation.referencesAmbekar, C. S., Cheung, B., Lee, J., Chan, L. C., Liang, R., & Kumana, C. R. (2000). Metabolism of chloramphenicol succinate in human bone marrow. European Journal of Clinical Pharmacology, 56(1), 405–409. doi: https://doi.org/10.1007/S002280000143
dc.relation.referencesBalarak, D., Khatibi, A. D., & Chandrika, K. (2020). Antibiotics removal from aqueous Solution and pharmaceutical wastewater by adsorption process: a review. International Journal of Pharmaceutical Investigation, 10(2), 106–111. doi: https://doi.org/10.5530/ijpi.2020.2.19
dc.relation.referencesBhargava, A., Carmona, F. F., Bhargava, M., & Srivastava, S. (2023). Advancements in Phytoremediation Research for Soil and Water Resources: Harnessing Plant Power for Environmental Cleanup. Sustainability, 15(2), 1289. doi: https://doi.org/10.3390/su15021289
dc.relation.referencesBusch, G., Kassas, B., Palma, M. A., & Risius, A. (2020). Perceptions of antibiotic use in livestock farming in Germany, Italy and the United States. Livestock Science, 241(1), 104251. doi: https://doi.org/10.1016/j.livsci.2020.104251
dc.relation.referencesCarrales-Alvarado, D. H., Leyva-Ramos, R., Rodríguez-Ramos, I., Mendoza-Mendoza, E., & Moral-Rodríguez, A. E. (2020). Adsorption capacity of different types of carbon nanotubes towards metronidazole and dimetridazole antibiotics from aqueous solutions: effect of morphology and surface chemistry. Environmental Science and Pollution Research, 27(1), 17123–17137. doi: https://doi.org/10.1007/s11356-020-08110-x
dc.relation.referencesChaturvedi, P., Shukla, P., Giri, B. S., Chowdhary, P., Chandra, R., Gupta, P., & Pandey, A. (2021). Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: a review on emerging contaminants. Environmental Research, 194(1), 110664. doi: https://doi.org/10.1016/j.envres.2020.110664
dc.relation.referencesChen, A., Pang, J., Wei, X., Chen, B., & Xie, Y. (2021). Fast one-step preparation of porous carbon with hierarchical oxygen-enriched structure from waste lignin for chloramphenicol removal. Environmental Science and Pollution Research, 28(8), 27398–27410. doi: https://doi.org/10.1007/s11356-021-12640-3
dc.relation.referencesChen, D., Delmas, J-M., Hurtaud-Pessel, D., & Verdon, E. (2020). Development of a multi-class method to determine nitroimidazoles, nitrofurans, pharmacologically active dyes and chloramphenicol in aquaculture products by liquid chromatography-tandem mass spectrometry. Food Chemistry, 311(1), 125924. doi: https://doi.org/10.1016/j.foodchem.2019.125924
dc.relation.referencesChen, S., Hu, J., Han, S., Guo, Y., Belzile, N., & Deng, T. (2020). A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade. Separation and Purification Technology, 251(1), 117340. doi: https://doi.org/10.1016/j.seppur.2020.117340
dc.relation.referencesCheng, D., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Liu, Y., Wei, Q., & Wei, D. (2020). A critical review on antibiotics and hormones in swine wastewater: water pollution problems and control approaches. Journal of Hazardous Materials, 387(1), 121682. doi: https://doi.org/10.1016/j.jhazmat.2019.121682
dc.relation.referencesChoi, K., Kim, Y., Jung, J., Kim, M. H., Kim, C. S., Kim, N. H., & Park, J. (2008). Occurrences and ecological risks of roxithromycin, trimethoprim, and chloramphenicol in the Han River, Korea. Environmental Toxicology and Chemistry, 27(1), 711–719. doi: https://doi.org/10.1897/07-143.1
dc.relation.referencesLai, H. T., Hou, J. H., Su, C. I., & Chen, C. L. (2009). Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella pyrenoidosa, Isochrysis galbana, and Tetraselmis chui. Ecotoxicology and Environmental Safety, 72(2), 329–334. doi: https://doi.org/10.1016/j.ecoenv.2008.03.005
dc.relation.referencesLeston, S., Nunes, M., Viegas, I., Ramos, F., & Pardal, M. A. (2013). The effects of chloramphenicol on Ulva lactuca. Chemosphere, 91(4), 552–557. doi: https://doi.org/10.1016/j.chemosphere.2012.12.061
dc.relation.referencesLi, A., Zhou, M., Luo, P., Shang, J., Wang, P., & Lyu, L. (2020). Deposition of MOFs on polydopamine-modified electrospun polyvinyl alcohol/silica nanofibers mats for chloramphenicol adsorption in water. NANO, 15(4), 2050046. doi: https://doi.org/10.1142/S1793292020500460
dc.relation.referencesLi, P., Wu, Y., He, Y., Zhang, B., Huang, Y., Yuan, Q., & Chen, Y. (2020). Occurrence and fate of antibiotic residues and antibiotic resistance genes in a reservoir with ecological purification facilities for drinking water sources. Science of The Total Environment, 707(1), 135276. doi: https://doi.org/10.1016/j.scitotenv.2019.135276
dc.relation.referencesLibing, Ch., & Jianlong, W. (2023). Degradation of antibiotics in activated sludge by ionizing radiation: Effect of adsorption affinity of antibiotics. Chemical Engineering Journal, 468(1), 143821, doi: https://doi.org/10.1016/j.cej.2023.143821
dc.relation.referencesSingh, N., & Balomajumder, C. (2021). Phytoremediation potential of water hyacinth (Eichhornia crassipes) for phenol and cyanide elimination from synthetic/simulated wastewater. Applied Water Science, 11(144), 1-15. doi: https://doi.org/10.1007/s13201-021-01472-8
dc.relation.referencesZahari, N. Z., Fong, N. S., Cleophas, F. N., & Rahim, S. A. (2021). The Potential of Pistia stratiotes in the Phytoremediation of Selected Heavy Metals from Simulated Wastewater. International Journal of Technology, 12(3), 613-624. doi: https://doi.org/10.14716/ijtech.v12i3.4236.
dc.relation.referencesBhandari, S., Poudel, D. K., Marahatha, R., Dawadi, S., Khadayat, K., Phuyal, S., Shrestha, S., Gaire, S., Basnet, K., Khadka, U., & Parajuli, N. (2021). Microbial enzymes used in bioremediation. Journal of Chemistry, 4(1), 1-17. doi: https://doi.org/10.1155/2021/8849512
dc.relation.referencesenAhammad, N. A., Zulkifli, M. A., Ahmad, M. A., Hameed, B. H., & Mohd Din, A. T. (2021). Desorption of chloramphenicol from ordered mesoporous carbon-alginate beads: effects of operating parameters, and isotherm, kinetics, and regeneration studies. Journal of Environmental Chemical Engineering, 9(1), 105015. doi: https://doi.org/10.1016/j.jece.2020.105015
dc.relation.referencesenAhmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Johir, M.A.H., & Belhaj, D. (2017 a). Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment. Bioresource Technology, 238(1), 306–312. doi: https://doi.org/10.1016/j.biortech.2017.04.042
dc.relation.referencesenAhmed M. B., Zhou J. L., Ngo, H. H., Guo, W., Johir, M.A.H., Sornalingam, K., & Rahman, M. S. (2017 b). Chloramphenicol interaction with functionalized biochar in water: sorptive mechanism, molecular imprinting effect and repeatable application. Science of The Total Environment, 609(1), 885–895. doi: https://doi.org/10.1016/j.scitotenv.2017.07.239
dc.relation.referencesenAmbekar, C. S., Cheung, B., Lee, J., Chan, L. C., Liang, R., & Kumana, C. R. (2000). Metabolism of chloramphenicol succinate in human bone marrow. European Journal of Clinical Pharmacology, 56(1), 405–409. doi: https://doi.org/10.1007/S002280000143
dc.relation.referencesenBalarak, D., Khatibi, A. D., & Chandrika, K. (2020). Antibiotics removal from aqueous Solution and pharmaceutical wastewater by adsorption process: a review. International Journal of Pharmaceutical Investigation, 10(2), 106–111. doi: https://doi.org/10.5530/ijpi.2020.2.19
dc.relation.referencesenBhargava, A., Carmona, F. F., Bhargava, M., & Srivastava, S. (2023). Advancements in Phytoremediation Research for Soil and Water Resources: Harnessing Plant Power for Environmental Cleanup. Sustainability, 15(2), 1289. doi: https://doi.org/10.3390/su15021289
dc.relation.referencesenBusch, G., Kassas, B., Palma, M. A., & Risius, A. (2020). Perceptions of antibiotic use in livestock farming in Germany, Italy and the United States. Livestock Science, 241(1), 104251. doi: https://doi.org/10.1016/j.livsci.2020.104251
dc.relation.referencesenCarrales-Alvarado, D. H., Leyva-Ramos, R., Rodríguez-Ramos, I., Mendoza-Mendoza, E., & Moral-Rodríguez, A. E. (2020). Adsorption capacity of different types of carbon nanotubes towards metronidazole and dimetridazole antibiotics from aqueous solutions: effect of morphology and surface chemistry. Environmental Science and Pollution Research, 27(1), 17123–17137. doi: https://doi.org/10.1007/s11356-020-08110-x
dc.relation.referencesenChaturvedi, P., Shukla, P., Giri, B. S., Chowdhary, P., Chandra, R., Gupta, P., & Pandey, A. (2021). Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: a review on emerging contaminants. Environmental Research, 194(1), 110664. doi: https://doi.org/10.1016/j.envres.2020.110664
dc.relation.referencesenChen, A., Pang, J., Wei, X., Chen, B., & Xie, Y. (2021). Fast one-step preparation of porous carbon with hierarchical oxygen-enriched structure from waste lignin for chloramphenicol removal. Environmental Science and Pollution Research, 28(8), 27398–27410. doi: https://doi.org/10.1007/s11356-021-12640-3
dc.relation.referencesenChen, D., Delmas, J-M., Hurtaud-Pessel, D., & Verdon, E. (2020). Development of a multi-class method to determine nitroimidazoles, nitrofurans, pharmacologically active dyes and chloramphenicol in aquaculture products by liquid chromatography-tandem mass spectrometry. Food Chemistry, 311(1), 125924. doi: https://doi.org/10.1016/j.foodchem.2019.125924
dc.relation.referencesenChen, S., Hu, J., Han, S., Guo, Y., Belzile, N., & Deng, T. (2020). A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade. Separation and Purification Technology, 251(1), 117340. doi: https://doi.org/10.1016/j.seppur.2020.117340
dc.relation.referencesenCheng, D., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Liu, Y., Wei, Q., & Wei, D. (2020). A critical review on antibiotics and hormones in swine wastewater: water pollution problems and control approaches. Journal of Hazardous Materials, 387(1), 121682. doi: https://doi.org/10.1016/j.jhazmat.2019.121682
dc.relation.referencesenChoi, K., Kim, Y., Jung, J., Kim, M. H., Kim, C. S., Kim, N. H., & Park, J. (2008). Occurrences and ecological risks of roxithromycin, trimethoprim, and chloramphenicol in the Han River, Korea. Environmental Toxicology and Chemistry, 27(1), 711–719. doi: https://doi.org/10.1897/07-143.1
dc.relation.referencesenLai, H. T., Hou, J. H., Su, C. I., & Chen, C. L. (2009). Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella pyrenoidosa, Isochrysis galbana, and Tetraselmis chui. Ecotoxicology and Environmental Safety, 72(2), 329–334. doi: https://doi.org/10.1016/j.ecoenv.2008.03.005
dc.relation.referencesenLeston, S., Nunes, M., Viegas, I., Ramos, F., & Pardal, M. A. (2013). The effects of chloramphenicol on Ulva lactuca. Chemosphere, 91(4), 552–557. doi: https://doi.org/10.1016/j.chemosphere.2012.12.061
dc.relation.referencesenLi, A., Zhou, M., Luo, P., Shang, J., Wang, P., & Lyu, L. (2020). Deposition of MOFs on polydopamine-modified electrospun polyvinyl alcohol/silica nanofibers mats for chloramphenicol adsorption in water. NANO, 15(4), 2050046. doi: https://doi.org/10.1142/S1793292020500460
dc.relation.referencesenLi, P., Wu, Y., He, Y., Zhang, B., Huang, Y., Yuan, Q., & Chen, Y. (2020). Occurrence and fate of antibiotic residues and antibiotic resistance genes in a reservoir with ecological purification facilities for drinking water sources. Science of The Total Environment, 707(1), 135276. doi: https://doi.org/10.1016/j.scitotenv.2019.135276
dc.relation.referencesenLibing, Ch., & Jianlong, W. (2023). Degradation of antibiotics in activated sludge by ionizing radiation: Effect of adsorption affinity of antibiotics. Chemical Engineering Journal, 468(1), 143821, doi: https://doi.org/10.1016/j.cej.2023.143821
dc.relation.referencesenSingh, N., & Balomajumder, C. (2021). Phytoremediation potential of water hyacinth (Eichhornia crassipes) for phenol and cyanide elimination from synthetic/simulated wastewater. Applied Water Science, 11(144), 1-15. doi: https://doi.org/10.1007/s13201-021-01472-8
dc.relation.referencesenZahari, N. Z., Fong, N. S., Cleophas, F. N., & Rahim, S. A. (2021). The Potential of Pistia stratiotes in the Phytoremediation of Selected Heavy Metals from Simulated Wastewater. International Journal of Technology, 12(3), 613-624. doi: https://doi.org/10.14716/ijtech.v12i3.4236.
dc.relation.referencesenBhandari, S., Poudel, D. K., Marahatha, R., Dawadi, S., Khadayat, K., Phuyal, S., Shrestha, S., Gaire, S., Basnet, K., Khadka, U., & Parajuli, N. (2021). Microbial enzymes used in bioremediation. Journal of Chemistry, 4(1), 1-17. doi: https://doi.org/10.1155/2021/8849512
dc.relation.urihttps://doi.org/10.1016/j.jece.2020.105015
dc.relation.urihttps://doi.org/10.1016/j.biortech.2017.04.042
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2017.07.239
dc.relation.urihttps://doi.org/10.1007/S002280000143
dc.relation.urihttps://doi.org/10.5530/ijpi.2020.2.19
dc.relation.urihttps://doi.org/10.3390/su15021289
dc.relation.urihttps://doi.org/10.1016/j.livsci.2020.104251
dc.relation.urihttps://doi.org/10.1007/s11356-020-08110-x
dc.relation.urihttps://doi.org/10.1016/j.envres.2020.110664
dc.relation.urihttps://doi.org/10.1007/s11356-021-12640-3
dc.relation.urihttps://doi.org/10.1016/j.foodchem.2019.125924
dc.relation.urihttps://doi.org/10.1016/j.seppur.2020.117340
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2019.121682
dc.relation.urihttps://doi.org/10.1897/07-143.1
dc.relation.urihttps://doi.org/10.1016/j.ecoenv.2008.03.005
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2012.12.061
dc.relation.urihttps://doi.org/10.1142/S1793292020500460
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2019.135276
dc.relation.urihttps://doi.org/10.1016/j.cej.2023.143821
dc.relation.urihttps://doi.org/10.1007/s13201-021-01472-8
dc.relation.urihttps://doi.org/10.14716/ijtech.v12i3.4236
dc.relation.urihttps://doi.org/10.1155/2021/8849512
dc.rights.holder© Національний університет “Львівська політехніка”, 2025
dc.rights.holder© Kika L., Sablii L., Drewnowski J., 2025
dc.subjectwastewater
dc.subjecttreatment
dc.subjectbiological method
dc.subjectduckweed
dc.subjectantibiotics
dc.titleDetermination of the removal efficiency of chloramphenicol from wastewater depending on Lemna minor biomass
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2025v10n1_Kika_L-Determination_of_the_removal_62-66.pdf
Size:
1.16 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2025v10n1_Kika_L-Determination_of_the_removal_62-66__COVER.png
Size:
1.11 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: