Method of the Boiler Room Ventilation System Efficiency Experimental Determination

dc.citation.epage91
dc.citation.issue2
dc.citation.spage84
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorВозняк, О. Т.
dc.contributor.authorЮркевич, Ю. С.
dc.contributor.authorСухолова, І. Є.
dc.contributor.authorДовбуш, О. М.
dc.contributor.authorКасинець, М. Є.
dc.contributor.authorVoznyak, Orest
dc.contributor.authorYurkevych, Yuriy
dc.contributor.authorSukholova, Iryna
dc.contributor.authorDovbush, Oleksandr
dc.contributor.authorKasynets, Mariana
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2021-12-21T13:15:57Z
dc.date.available2021-12-21T13:15:57Z
dc.date.created2020-03-23
dc.date.issued2020-03-23
dc.description.abstractУ статті представлені результати теоретичних та експериментальних досліджень визначення швидкості повітряного потоку при розподілі повітря круглими та компактними струменями у приміщенні котельні, оскільки питання забезпечення нормативного повітрообміну у приміщеннях такого типу є надзвичайно актуальним. Наведені графічні та аналітичні залежності процесу. Результатами досліджень обґрунтовано високу точність визначення середньої швидкості повітряної струмини в малогабаритних приміщеннях котелень. Метою роботи є розробити метод експериментального визначення ефективності системи вентиляції в приміщенні котельні; підвищити точність визначення середньої швидкості круглих та компактних повітряних струмин у площині припливного насадка для забезпечення нормативного повітрообміну у приміщеннях котелень та обґрунтувати методику розрахунку. Встановлено характеристики та закономірності розвитку круглих та компактних струмин у приміщеннях і отримано відповідні розрахункові залежності. Також визначено, що для отримання задовільних експериментальних результатів при вимірюванні швидкості в котельні необхідно кілька разів виміряти швидкість у центрі живильної форсунки з максимальною точністю, а потім помножити результат на відносну середню швидкість: для круглої струмини vav = 0,26, а для компактної струмини – vav = 0,2025. Обґрунтовано, що застосування запропонованого методу дозволить суттєво підвищити точність визначення повітрообміну у приміщеннях котелень для забезпечення необхідної величини повітрообміну згідно з нормативними вимогами. Наведено рекомендації практичного визначення розрахункових величин для забезпечення належної вентиляції приміщень котелень.
dc.description.abstractThe issue of the normative air exchange ensuring in the premises of the boiler houses is extremely important. The article presents the results of theoretical and experimental studies of air velocity determination in the distribution of air by round and compact jets in the boiler room. Graphical and analytical dependences are given. The research results substantiate the higher accuracy of the average air flow velocity determination in small boiler rooms. The aim of the work is to develop a method for experimental determination of the efficiency of the ventilation system in the boiler room; to increase of the accuracy of the average velocity determination of the round and the compact air jets in the plane of the supply nozzle to ensure the normative air exchange of the boiler room and to substantiate of the calculation method. The characteristics and patterns of development of round and compact air jets in the premises are established and the calculated dependences are obtained. The unitless integral air velocity for the round and compact air jets in the boiler room is established. Calculation dependences for determining of the air flow rate in the boiler room have been obtained. It is substantiated that the application of the proposed method will significantly increase the accuracy of air exchange determination in the boiler rooms to ensure the required value in accordance with regulatory requirements. Also it is substantiated that to obtain satisfactory experimental results on speed measurements in the boiler room, it is necessary to measure the speed in the center of the supply nozzle several times with maximum accuracy. Then multiply the result by the relative average velocity: for a round jet vav = 0.26 and for a compact jet – vav = 0.2025. The obtained results allow to avoid a significant error (19 %) in determining the required air exchange ventilation of the boiler room. Recommendations for the practical determination of the calculated values to ensure proper ventilation of the boiler rooms are given.
dc.format.extent84-91
dc.format.pages8
dc.identifier.citationMethod of the Boiler Room Ventilation System Efficiency Experimental Determination / Orest Voznyak, Yuriy Yurkevych, Iryna Sukholova, Oleksandr Dovbush, Mariana Kasynets // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 2. — P. 84–91.
dc.identifier.citationenMethod of the Boiler Room Ventilation System Efficiency Experimental Determination / Orest Voznyak, Yuriy Yurkevych, Iryna Sukholova, Oleksandr Dovbush, Mariana Kasynets // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 2. — P. 84–91.
dc.identifier.doidoi.org/10.23939/jtbp2020.02.084
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56576
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 2 (2), 2020
dc.relation.referencesKapalo, P., Domnita, F., Bacotiu, C., & Spodyniuk, N. (2018). The impact of carbon dioxide concentration
dc.relation.referenceson the human health – case study, Journal of Applied Engineering Sciences. Vol. 8, no. 1, 2018, p. 61–66, ISSN 2284-7197, DOI: 10.2478/jaes-2018-0008.
dc.relation.referencesKapalo, P., Meciarova, L., Vilcekova, S., Burdova, E., Domnita, F., Bacotiu, & C. Peterfi, K. (2019). Investigation of CO2 production depending on physical activity of
dc.relation.referencesstudents. International Journal of Environmental
dc.relation.referencesHealth Research. Vol. 29, Issue 1, 31–44. ISSN:09603123. doi:10.1080/09603123.2018.1506570.
dc.relation.referencesKapalo, P., Sedláková, A., Košicanová, D., Voznyak, O., Lojkovics, J., & Siroczki, P. (2014). Effect of ventilation
dc.relation.referenceson indoor environmental quality in buildings. The 9th International Conference “Environmental Engineering”, 22–23 May 2014, Vilnius,
dc.relation.referencesLithuania SELECTED PAPERS, eISSN 2029-7092 / eISBN 978-609-457-640-9 Section:
dc.relation.referencesEnergy for Buildings.
dc.relation.referencesKapalo, P., Voznyak, O., Yurkevych, Yu., Myroniuk, Kh., & Sukholova, I. (2018). Ensuring comfort microclimate in
dc.relation.referencesthe classrooms under condition of the required air exchange. Eastern European Journal of Enterprise Technologies,
dc.relation.referencesVol. 5/10 (95), 6–14.
dc.relation.referencesKapalo, P., Vilcekova, S., & Voznyak, O. (2014).Using experimental measurements the concentrations of
dc.relation.referencescarbon dioxide for determining the intensity of ventilation in the rooms. Chemical Engineering Transactions,
dc.relation.referencesVol. 39, 1789–1794.ISBN 978-88-95608-30-3; ISSN 2283-9216.
dc.relation.referencesKapalo, P., Vilceková, S., Domnita, F., Bacotiu, C., & Voznyak, O. (2017). Determining the Ventilation Rate
dc.relation.referencesinside an Apartment House on the Basis of Measured Carbon Dioxide Concentrations – Case Study, The 10th
dc.relation.referencesInternational Conference on Environmental Engineering, Vilnius, Lithuania, Selected Papers, 30–35.
dc.relation.referencesRedko, A., Dzhyoiev, R., Davidenko, A., Pavlovskaya, A., Pavlovskiy, S., Redko, I., Kulikova, N., Redko, O.
dc.relation.references(2019). Aerodynamic processes and heat exchange in the furnace of a steam boiler with a secondary emitter.
dc.relation.referencesAlexandria Engineering Journal. Volume 58, Issue 1, 89–101.
dc.relation.referencesRedko, A., Kulikova, N., Pavlovskiiy, S., Redko, A. (2018). Simulation and optimization of heat-exchanger
dc.relation.referencesparameters of heat pipes by changes of entropy. Heat Transfer Research. Volume 49, Issue 16, 1545–1557.
dc.relation.referencesVoznyak, O., Korbut, V., Davydenko, B., & Sukholova, I. (2019). Air distribution efficiency in a room by a
dc.relation.referencestwo-flow device. Proceedings of CEE, Advances in Resourse-saving Technologies and Materials in Civil and
dc.relation.referencesEnvironmental Engineering, Springer, Vol. 47, 526–533.
dc.relation.referencesVoznyak, O., Myroniuk, K., & Dovbush, O. (2005). Relationship between a Person Heat Exchange and
dc.relation.referencesIndoor Climate. Selected scientific Papers 10th Rzeszow-Lviv-Kosice Conference 2005 Supplementary Issue.Technical
dc.relation.referencesUniversity of Kosice. 148–152.
dc.relation.referencesGumen, O. M., Dovhaliuk, V. B., & Міleikovskyi, V. O. (2016). Determination of the intensity of turbulence
dc.relation.referencesof streams with large-scale vortices on the basis of geometric and kinematic analysis of macrostructure. Proc. of
dc.relation.referencesLviv Polytechnic National University: The theory and building practice, No. 844, 76–83 (in Ukrainian).
dc.relation.referencesDovhaliuk, V. B., & Міleikovskyi, V. O. (2007). Efficiency of organization of air exchange in heat-stressed
dc.relation.referencespremises in compressed conditions. Journal: Building of Ukraine, No. 3, 36. (in Ukrainian).
dc.relation.referencesDovhaliuk, V. B., & Міleikovskyi, V. O. (2008). Estimated model of non-isothermal stream, which is laid
dc.relation.referencesout on a convex cylindrical surface. Ventilation, Illumination and Heat and Gas Supply: Scientific and Technical
dc.relation.referencesCollection, Issue 12, Kyiv, KNUBA, 11–32 (in Ukrainian).
dc.relation.referencesDovhaliuk V. B., & Міleikovskyi, V. O. (2013). Analytical studies of the macrostructure of jet currents for
dc.relation.referencescalculating energy-efficient systems of air distribution. Energy efficiency in construction and architecture, Issue 4, 11–32 (in Ukrainian).
dc.relation.referencesBoiler rooms. DBN В.2.5-77:2014. State Building Codes of Ukraine. (2014). Kyiv: Ukrarkhbudinform (in Ukrainian).
dc.relation.referencesenKapalo, P., Domnita, F., Bacotiu, C., & Spodyniuk, N. (2018). The impact of carbon dioxide concentration
dc.relation.referencesenon the human health – case study, Journal of Applied Engineering Sciences. Vol. 8, no. 1, 2018, p. 61–66, ISSN 2284-7197, DOI: 10.2478/jaes-2018-0008.
dc.relation.referencesenKapalo, P., Meciarova, L., Vilcekova, S., Burdova, E., Domnita, F., Bacotiu, & C. Peterfi, K. (2019). Investigation of CO2 production depending on physical activity of
dc.relation.referencesenstudents. International Journal of Environmental
dc.relation.referencesenHealth Research. Vol. 29, Issue 1, 31–44. ISSN:09603123. doi:10.1080/09603123.2018.1506570.
dc.relation.referencesenKapalo, P., Sedláková, A., Košicanová, D., Voznyak, O., Lojkovics, J., & Siroczki, P. (2014). Effect of ventilation
dc.relation.referencesenon indoor environmental quality in buildings. The 9th International Conference "Environmental Engineering", 22–23 May 2014, Vilnius,
dc.relation.referencesenLithuania SELECTED PAPERS, eISSN 2029-7092, eISBN 978-609-457-640-9 Section:
dc.relation.referencesenEnergy for Buildings.
dc.relation.referencesenKapalo, P., Voznyak, O., Yurkevych, Yu., Myroniuk, Kh., & Sukholova, I. (2018). Ensuring comfort microclimate in
dc.relation.referencesenthe classrooms under condition of the required air exchange. Eastern European Journal of Enterprise Technologies,
dc.relation.referencesenVol. 5/10 (95), 6–14.
dc.relation.referencesenKapalo, P., Vilcekova, S., & Voznyak, O. (2014).Using experimental measurements the concentrations of
dc.relation.referencesencarbon dioxide for determining the intensity of ventilation in the rooms. Chemical Engineering Transactions,
dc.relation.referencesenVol. 39, 1789–1794.ISBN 978-88-95608-30-3; ISSN 2283-9216.
dc.relation.referencesenKapalo, P., Vilceková, S., Domnita, F., Bacotiu, C., & Voznyak, O. (2017). Determining the Ventilation Rate
dc.relation.referenceseninside an Apartment House on the Basis of Measured Carbon Dioxide Concentrations – Case Study, The 10th
dc.relation.referencesenInternational Conference on Environmental Engineering, Vilnius, Lithuania, Selected Papers, 30–35.
dc.relation.referencesenRedko, A., Dzhyoiev, R., Davidenko, A., Pavlovskaya, A., Pavlovskiy, S., Redko, I., Kulikova, N., Redko, O.
dc.relation.referencesen(2019). Aerodynamic processes and heat exchange in the furnace of a steam boiler with a secondary emitter.
dc.relation.referencesenAlexandria Engineering Journal. Volume 58, Issue 1, 89–101.
dc.relation.referencesenRedko, A., Kulikova, N., Pavlovskiiy, S., Redko, A. (2018). Simulation and optimization of heat-exchanger
dc.relation.referencesenparameters of heat pipes by changes of entropy. Heat Transfer Research. Volume 49, Issue 16, 1545–1557.
dc.relation.referencesenVoznyak, O., Korbut, V., Davydenko, B., & Sukholova, I. (2019). Air distribution efficiency in a room by a
dc.relation.referencesentwo-flow device. Proceedings of CEE, Advances in Resourse-saving Technologies and Materials in Civil and
dc.relation.referencesenEnvironmental Engineering, Springer, Vol. 47, 526–533.
dc.relation.referencesenVoznyak, O., Myroniuk, K., & Dovbush, O. (2005). Relationship between a Person Heat Exchange and
dc.relation.referencesenIndoor Climate. Selected scientific Papers 10th Rzeszow-Lviv-Kosice Conference 2005 Supplementary Issue.Technical
dc.relation.referencesenUniversity of Kosice. 148–152.
dc.relation.referencesenGumen, O. M., Dovhaliuk, V. B., & Mileikovskyi, V. O. (2016). Determination of the intensity of turbulence
dc.relation.referencesenof streams with large-scale vortices on the basis of geometric and kinematic analysis of macrostructure. Proc. of
dc.relation.referencesenLviv Polytechnic National University: The theory and building practice, No. 844, 76–83 (in Ukrainian).
dc.relation.referencesenDovhaliuk, V. B., & Mileikovskyi, V. O. (2007). Efficiency of organization of air exchange in heat-stressed
dc.relation.referencesenpremises in compressed conditions. Journal: Building of Ukraine, No. 3, 36. (in Ukrainian).
dc.relation.referencesenDovhaliuk, V. B., & Mileikovskyi, V. O. (2008). Estimated model of non-isothermal stream, which is laid
dc.relation.referencesenout on a convex cylindrical surface. Ventilation, Illumination and Heat and Gas Supply: Scientific and Technical
dc.relation.referencesenCollection, Issue 12, Kyiv, KNUBA, 11–32 (in Ukrainian).
dc.relation.referencesenDovhaliuk V. B., & Mileikovskyi, V. O. (2013). Analytical studies of the macrostructure of jet currents for
dc.relation.referencesencalculating energy-efficient systems of air distribution. Energy efficiency in construction and architecture, Issue 4, 11–32 (in Ukrainian).
dc.relation.referencesenBoiler rooms. DBN V.2.5-77:2014. State Building Codes of Ukraine. (2014). Kyiv: Ukrarkhbudinform (in Ukrainian).
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.rights.holder© Voznyak O., Yurkevych Yu., Sukholova I., Dovbush O., Kasynets M., 2020
dc.subjectвентиляція
dc.subjectвитрата повітря
dc.subjectповітророзподіл
dc.subjectшвидкість повітря
dc.subjectкруглий повітряний струмінь
dc.subjectкомпактна повітряна струмина
dc.subjectventilation
dc.subjectflow rate
dc.subjectair distribution
dc.subjectair velocity
dc.subjectround air jet
dc.subjectcompact air jet
dc.titleMethod of the Boiler Room Ventilation System Efficiency Experimental Determination
dc.title.alternativeМетод експериментального визначення ефективності системи вентиляції в приміщенні котельні
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2020v2n2_Voznyak_O-Method_of_the_Boiler_Room_84-91.pdf
Size:
659.82 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2020v2n2_Voznyak_O-Method_of_the_Boiler_Room_84-91__COVER.png
Size:
437.1 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.12 KB
Format:
Plain Text
Description: