Machine learning methods in thermometers’ data extraction and processing

dc.citation.epage45
dc.citation.issue2
dc.citation.journalTitleВимірювальна техніка та метрологія
dc.citation.spage40
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorSkoropad, Pylyp
dc.contributor.authorYuras, Andrii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-13T08:43:21Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractResearch focuses on developing an all-encompassing algorithm for efficiently extracting, processing, and analyzing data about thermometers. The examination involves the application of a branch of artificial intelligence, in particular machine learning (ML) methods, as a means of automating processes. Such methods facilitate the identification and aggregation of pertinent data, the detection of gaps, and the conversion of unstructured text into an easily analyzable structured format. The paper details the employment of reinforcement learning for the automatic extraction of information from diverse resources, natural language processing for analysis of textual values, and the decision tree method for discerning patterns within the data.
dc.format.extent40-45
dc.format.pages6
dc.identifier.citationSkoropad P. Machine learning methods in thermometers’ data extraction and processing / Skoropad Pylyp, Yuras Andrii // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 2. — P. 40–45.
dc.identifier.citationenSkoropad P. Machine learning methods in thermometers’ data extraction and processing / Skoropad Pylyp, Yuras Andrii // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 2. — P. 40–45.
dc.identifier.doidoi.org/10.23939/istcmtm2024.02.040
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64147
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВимірювальна техніка та метрологія, 2 (85), 2024
dc.relation.ispartofMeasuring Equipment and Metrology, 2 (85), 2024
dc.relation.references[1] Nguyen, V. H., Sinnappan, S., and Huynh, M. (2021). Analyzing Australian SME Instagram Engagement via Web Scraping. Pacific Asia Journal of the Association for Information Systems, 13(2):11–43. Available: https://aisel.aisnet.org/pajais/vol13/iss2/2/
dc.relation.references[2] Seliverstov, Y., Seliverstov, S., Malygin, I., and Korolev, O. (2020). Traffic safety evaluation in Northwestern Federal District using sentiment analysis of Internet users’reviews. Transportation Research Procedia, 50:626–635. Available: https://doi.org/10.1016/j.trpro.2020.10.074
dc.relation.references[3] E. Suganya, S. Vijayarani, “Firefly Optimization Algorithm Based Web Scraping for Web Citation Extraction”, Wireless Personal Communications, vol. 118, no. 2, May 2021. DOI: 10.1007/s11277-021-08093-z.
dc.relation.references[4] Rahmatulloh, A., and Gunawan, R. (2020). Web Scraping with HTML DOM Method for Data Collection of Scien- tific Articles from Google Scholar. Indonesian Journal of Information Systems, 2(2):95–104. DOI: 10.24002/ijis.v2i2.3029
dc.relation.references[5] S. Kolli, P. Rama Krishna, P. Balakesava Reddy, “A Novel NLP and Machine Learning Based Text Extraction Approach from Online News Feed”, May 2021 [Online]. Available: https://www.researchgate.net/publication/351902660_A_NOVEL_NLP_AND_MACHINE_LEARNING_BASED_TEXT_EXTRACTION_APPROACH_FROM_ONLINE_NEWS_FEED.
dc.relation.references[6] Li, R. Y. M. (2020). Building updated research agenda by investigating papers indexed on Google Scholar: A natural language processing approach. In International Conference on Applied Human Factors and Ergonomics. Springer, Cham: 298–305. DOI: 10.1007/978-3-030-51328-3_42
dc.relation.references[7] Nicolas, C., Kim, J., and Chi, S. (2021). Natural language processing-based characterization of top-down communication in smart cities for enhancing citizen alignment. Sustainable Cities and Society, 66:102674. Available: https://doi.org/10.1016/j.scs.2020.102674
dc.relation.references[8] Zhou, N. Duan, S. Liu, H.-Y. Shum, “Progress in Neural NLP: Modeling, Learning, and Reasoning”, Engineering [Online]. Available: https://doi.org/10.1016/j.eng.2019.12.014
dc.relation.references[9] O. Lopatko, I. Mykytin, “Neural networks as a means of predicting the temperature value during the transient process”, Measuring Equipment and Metrology: Interdepartmental Scientific and Technical Collection, vol. 77, pp. 65-70, 2016. Available: http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=metrolog_2016_77_11
dc.relation.references[10] O. Lopatko, I. Mykytyn, “Predicting the temperature of water and air flows using a neural network”, Measuring Equipment and Metrology: Interdepartmental Scientific and Technical Collection, vol. 79, no. 3, pp. 37–41, 2018. Available: https://journals.indexcopernicus.com/search/article?articleId=2064465
dc.relation.references[11] O. Lopatko, I. Mykytyn, “Predicting the temperature value using neural networks”, All-Ukrainian Scientific and Practical Conference “Industrial Automation in Ukraine. Education and Training”, Lviv, 2016, pp. 57–58. Available: https://lpnu.ua/sites/default/files/2020/dissertation/1498/areflopatkooo.pdf
dc.relation.references[12] Z. Liu, X. Pan, “Comparison and analysis of applications of ID3, CART decision tree models and neural network model in medical diagnosis and prognosis evaluation”, Journal of Clinical Images and Medical Case Reports, vol. 2, 2021. DOI: 10.52768/2766-7820/1101
dc.relation.references[13] K. Maharana, S. Mondal, B. Nemade, “A review: Data preprocessing and data augmentation techniques” [Online]. Available: https://doi.org/10.1016/j.gltp.2022.04.020.
dc.relation.references[14] I. A. Zamfirache, R.-E. Precup, R.-C. Roman, E. M. Petriu, “Reinforcement Learning-based control using Q-learning and gravitational search algorithm with experimental validation on a nonlinear servo system”. DOI: 10.1016/j.ins.2021.10.070
dc.relation.references[15] C. Dann, Y. Mansour, M. Mohri, A. Sekhari, K. Sridharan, “Guarantees for Epsilon-Greedy Reinforcement Learning with Function Approximation”, in Proceedings of the 39th International Conference on Machine Learning, PMLR, vol. 162, pp. 4666–4689, 2022. Available: https://doi.org/10.48550/arXiv.2206.09421
dc.relation.references[16] G. Singer, I. Cohen, “An Objective-Based Entropy Approach for Interpretable Decision Tree Models in Support of Human Resource Management: The Case of Absenteeism at Work”, Faculty of Engineering, Bar-Ilan University, Ramat-Gan 52900, Israel. DOI: 10.3390/e22080821
dc.relation.referencesen[1] Nguyen, V. H., Sinnappan, S., and Huynh, M. (2021). Analyzing Australian SME Instagram Engagement via Web Scraping. Pacific Asia Journal of the Association for Information Systems, 13(2):11–43. Available: https://aisel.aisnet.org/pajais/vol13/iss2/2/
dc.relation.referencesen[2] Seliverstov, Y., Seliverstov, S., Malygin, I., and Korolev, O. (2020). Traffic safety evaluation in Northwestern Federal District using sentiment analysis of Internet users’reviews. Transportation Research Procedia, 50:626–635. Available: https://doi.org/10.1016/j.trpro.2020.10.074
dc.relation.referencesen[3] E. Suganya, S. Vijayarani, "Firefly Optimization Algorithm Based Web Scraping for Web Citation Extraction", Wireless Personal Communications, vol. 118, no. 2, May 2021. DOI: 10.1007/s11277-021-08093-z.
dc.relation.referencesen[4] Rahmatulloh, A., and Gunawan, R. (2020). Web Scraping with HTML DOM Method for Data Collection of Scien- tific Articles from Google Scholar. Indonesian Journal of Information Systems, 2(2):95–104. DOI: 10.24002/ijis.v2i2.3029
dc.relation.referencesen[5] S. Kolli, P. Rama Krishna, P. Balakesava Reddy, "A Novel NLP and Machine Learning Based Text Extraction Approach from Online News Feed", May 2021 [Online]. Available: https://www.researchgate.net/publication/351902660_A_NOVEL_NLP_AND_MACHINE_LEARNING_BASED_TEXT_EXTRACTION_APPROACH_FROM_ONLINE_NEWS_FEED.
dc.relation.referencesen[6] Li, R. Y. M. (2020). Building updated research agenda by investigating papers indexed on Google Scholar: A natural language processing approach. In International Conference on Applied Human Factors and Ergonomics. Springer, Cham: 298–305. DOI: 10.1007/978-3-030-51328-3_42
dc.relation.referencesen[7] Nicolas, C., Kim, J., and Chi, S. (2021). Natural language processing-based characterization of top-down communication in smart cities for enhancing citizen alignment. Sustainable Cities and Society, 66:102674. Available: https://doi.org/10.1016/j.scs.2020.102674
dc.relation.referencesen[8] Zhou, N. Duan, S. Liu, H.-Y. Shum, "Progress in Neural NLP: Modeling, Learning, and Reasoning", Engineering [Online]. Available: https://doi.org/10.1016/j.eng.2019.12.014
dc.relation.referencesen[9] O. Lopatko, I. Mykytin, "Neural networks as a means of predicting the temperature value during the transient process", Measuring Equipment and Metrology: Interdepartmental Scientific and Technical Collection, vol. 77, pp. 65-70, 2016. Available: http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&P.21COM=S&2_S21P03=FILA=&2_S21STR=metrolog_2016_77_11
dc.relation.referencesen[10] O. Lopatko, I. Mykytyn, "Predicting the temperature of water and air flows using a neural network", Measuring Equipment and Metrology: Interdepartmental Scientific and Technical Collection, vol. 79, no. 3, pp. 37–41, 2018. Available: https://journals.indexcopernicus.com/search/article?articleId=2064465
dc.relation.referencesen[11] O. Lopatko, I. Mykytyn, "Predicting the temperature value using neural networks", All-Ukrainian Scientific and Practical Conference "Industrial Automation in Ukraine. Education and Training", Lviv, 2016, pp. 57–58. Available: https://lpnu.ua/sites/default/files/2020/dissertation/1498/areflopatkooo.pdf
dc.relation.referencesen[12] Z. Liu, X. Pan, "Comparison and analysis of applications of ID3, CART decision tree models and neural network model in medical diagnosis and prognosis evaluation", Journal of Clinical Images and Medical Case Reports, vol. 2, 2021. DOI: 10.52768/2766-7820/1101
dc.relation.referencesen[13] K. Maharana, S. Mondal, B. Nemade, "A review: Data preprocessing and data augmentation techniques" [Online]. Available: https://doi.org/10.1016/j.gltp.2022.04.020.
dc.relation.referencesen[14] I. A. Zamfirache, R.-E. Precup, R.-C. Roman, E. M. Petriu, "Reinforcement Learning-based control using Q-learning and gravitational search algorithm with experimental validation on a nonlinear servo system". DOI: 10.1016/j.ins.2021.10.070
dc.relation.referencesen[15] C. Dann, Y. Mansour, M. Mohri, A. Sekhari, K. Sridharan, "Guarantees for Epsilon-Greedy Reinforcement Learning with Function Approximation", in Proceedings of the 39th International Conference on Machine Learning, PMLR, vol. 162, pp. 4666–4689, 2022. Available: https://doi.org/10.48550/arXiv.2206.09421
dc.relation.referencesen[16] G. Singer, I. Cohen, "An Objective-Based Entropy Approach for Interpretable Decision Tree Models in Support of Human Resource Management: The Case of Absenteeism at Work", Faculty of Engineering, Bar-Ilan University, Ramat-Gan 52900, Israel. DOI: 10.3390/e22080821
dc.relation.urihttps://aisel.aisnet.org/pajais/vol13/iss2/2/
dc.relation.urihttps://doi.org/10.1016/j.trpro.2020.10.074
dc.relation.urihttps://www.researchgate.net/publication/351902660_A_NOVEL_NLP_AND_MACHINE_LEARNING_BASED_TEXT_EXTRACTION_APPROACH_FROM_ONLINE_NEWS_FEED
dc.relation.urihttps://doi.org/10.1016/j.scs.2020.102674
dc.relation.urihttps://doi.org/10.1016/j.eng.2019.12.014
dc.relation.urihttp://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=metrolog_2016_77_11
dc.relation.urihttps://journals.indexcopernicus.com/search/article?articleId=2064465
dc.relation.urihttps://lpnu.ua/sites/default/files/2020/dissertation/1498/areflopatkooo.pdf
dc.relation.urihttps://doi.org/10.1016/j.gltp.2022.04.020
dc.relation.urihttps://doi.org/10.48550/arXiv.2206.09421
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectArtificial intelligence
dc.subjectMachine learning
dc.subjectPrediction
dc.subjectTemperature measurement
dc.subjectThermometer
dc.titleMachine learning methods in thermometers’ data extraction and processing
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v85n2_Skoropad_P-Machine_learning_methods_40-45.pdf
Size:
672.86 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v85n2_Skoropad_P-Machine_learning_methods_40-45__COVER.png
Size:
1.29 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: