Optimization of the shape and dimensions of the continuous section of the discrete-continuous inter-resonance vibrating table

dc.citation.epage20
dc.citation.issue3
dc.citation.journalTitleУкраїнський журнал із машинобудування і матеріалознавства
dc.citation.spage10
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorMaistruk, Pavlo
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-04-03T07:36:58Z
dc.date.available2024-04-03T07:36:58Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractEnergy-efficient technologies are an important aspect of the development of mechanical engineering. Therefore, the creation of highly efficient vibration technological equipment is an urgent task. There are discrete-continuous inter-resonance vibration machines that have high values of dynamic amplification of oscillations. Rectangular plates or rods are used as the reactive mass of such vibrating machines. However, the rectangular shape of the plate may not be the optimal shape for achieving maximum energy efficiency. To conduct experimental studies of alternative plates with a variable cross-section to determine the optimal shape of the reactive mass of the vibration machine. Methodology. The selection of alternative options of plates with a variable cross-section, which would satisfy the necessary conditions of fastening and the value of the natural frequency of oscillations, was carried out. Experimental studies were carried out on a sample of an inter-resonance vibrating table. The value of the power supply voltage at which loads of different masses were separated from the working body of the vibrating table for each of the plate samples was compared. Findings (results) and originality (novelty). For the first time, experimental studies of the energy efficiency of inter-resonance vibration machines with plates with a variable cross-section installed as a reactive mass were conducted. It was found that the rhomboid shape of the plate is optimal when using it as a continuous section in a vibration machine with an electromagnetic drive. It was determined that the use of diamond-shaped plates as the reactive mass of the vibrating machine can improve the energy efficiency of the inter-resonance vibrating equipment. For further analysis of plates with a variable cross-section as a reactive mass of an inter-resonance vibration machine, it is necessary to calculate and compare their lumped inertia-stiffness parameters.
dc.format.extent10-20
dc.format.pages11
dc.identifier.citationMaistruk P. Optimization of the shape and dimensions of the continuous section of the discrete-continuous inter-resonance vibrating table / Pavlo Maistruk // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 9. — No 3. — P. 10–20.
dc.identifier.citationenMaistruk P. Optimization of the shape and dimensions of the continuous section of the discrete-continuous inter-resonance vibrating table / Pavlo Maistruk // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 9. — No 3. — P. 10–20.
dc.identifier.doidoi.org/10.23939/ujmems2023.03.010
dc.identifier.issn2411-8001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61636
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал із машинобудування і матеріалознавства, 3 (9), 2023
dc.relation.ispartofUkrainian Journal of Mechanical Engineering and Materials Science, 3 (9), 2023
dc.relation.references[1] O. Lanets, Osnovy rozrakhunku ta konstruyuvannya vibratsiynykh mashyn. Knyha 1. Teoriya ta praktyka stvorennya vibratsiynykh mashyn z harmoniynym rukhom robochoho orhana [Fundamentals of analysis and design of vibrating machines. Book 1. Theory and Practice of Development of Vibratory Machines with Harmonic Motion of the Working Element Body]. Lviv, Ukraine: Lviv Polytechnic Publishing House, 2018. [in Ukrainian].
dc.relation.references[2] O.S. Lanets, O. Yu. Kachur, V. М. Korendiy. "Classical approach to determining the natural frequency of continual subsystem of three-mass inter-resonant vibratory machine", Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 5(3-4), pp. 77-87, 2019. https://doi.org/10.23939/ujmems2019.03-04.077
dc.relation.references[3] O. Lanets, R. Kachmar, P. Maistruk, I. Derevenko, A. Hordieiev. "Approximate calculation of natural frequencies of oscillations of the diamond-shaped plates of the discrete-continuous inter-resonance vibrating table", IOP Conference Series: Materials Science and Engineering, vol. 1277, pp.1-7, 2023. https://doi.org/10.1088/1757-899X/1277/1/012004
dc.relation.references[4] P. Maistruk, O. Lanets, V. Stupnytskyy, "Approximate Calculation of the Natural Oscillation Frequency of the Vibrating Table in Inter-Resonance Operation Mode", Strojnícky časopis - Journal of Mechanical Engineering, vol. 71(2), pp. 151-166, 2021. https://doi.org/10.2478/scjme-2021-0026
dc.relation.references[5] H. Kozbur, O. Shkodzinsky, I. Kozbur, N. Gashchyn. "Prediction of the boundary states for thin-walled axisymmetric shells under internal pressure and tension loads", Strojnícky časopis - Journal of Mechanical Engineering, vol. 70(1), pp. 57-68, 2020. https://doi.org/10.2478/scjme-2020-0006
dc.relation.references[6] R. Vescovini, L. Dozio, M. D'Ottavio, O. Polit. "On the application of the Ritz method to free vibration and buckling analysis of highly anisotropic plates", Composite Structures, vol. 192, pp. 460-474, 2018. https://doi.org/10.1016/j.compstruct.2018.03.017
dc.relation.references[7] A. Borković, G. Radenković, D. Majstorović, S. Milovanović, D. Milašinović, R. Cvijić. "Free vibration analysis of singly curved shells using the isogeometric finite strip method", Thin-Walled Structures, vol. 157, pp. 107-125, 2020. https://doi.org/10.1016/j.tws.2020.107125
dc.relation.references[8] K. Żur, M. Arefi, J. Kim, J. Reddy. "Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory", Composites, Part B: Engineering, vol. 182, pp. 107-601, 2020. https://doi.org/10.1016/j.compositesb.2019.107601
dc.relation.references[9] M. Boiangiu, V. Ceausu, C.D. Untaroiu, "A transfer matrix method for free vibration analysis of Euler-Bernoulli beams with variable cross section", Journal of Vibration and Control, vol. 22(11) pp. 2591-2602, 2016. https://doi.org/10.1177/1077546314550699
dc.relation.references[10] E. Demir, H. Çallioğlu, M. Sayer, "Vibration analysis of sandwich beams with variable cross section on variable Winkler elastic foundation", Science and Engineering of Composite Materials, vol. 20(4), pp. 359-370, 2013. https://doi.org/10.1515/secm-2012-0151
dc.relation.references[11] S. Zolkiewski, "Vibrations of beams with a variable cross-section fixed on rotational rigid disks", Latin American Journal of Solids and Structures, vol. 10, pp. 39-57, 2013. https://doi.org/10.1590/S1679-78252013000100005
dc.relation.references[12] V. De Biagi, B. Chiaia, G. Carlo Marano, A. Fiore, R. Greco, L. Sardone, R. Cucuzza, G. L. Cascella, M. Spinelli, N. D. Lagaros. "Series solution of beams with variable cross-section", Procedia Manufacturing, vol. 44, pp. 489-496, 2020. https://doi.org/10.1016/j.promfg.2020.02.265
dc.relation.references[13] P. Bilancia, M. Baggetta, G. Hao, G. Berselli. "A variable section beams based Bi-BCM formulation for the kinetostatic analysis of cross-axis flexural pivots", International Journal of Mechanical Sciences, vol. 205, 106587, 2021. https://doi.org/10.1016/j.ijmecsci.2021.106587
dc.relation.references[14] Y. De Santis, D. P. Pasca, A. Aloisio, A. Stenstad, K.-C. Mahnert, "Experimental, analytical and numerical investigation on the capacity of composite glulam beams with holes", Engineering Structures, vol. 285, 115995, 2023. https://doi.org/10.1016/j.engstruct.2023.115995
dc.relation.references[15] A. Elkaimbillah, B. Braikat, F. Mohri, N. Damil. "A one-dimensional model for computing forced nonlinear vibration of thin-walled composite beams with open variable cross-sections", Thin-Walled Structures, vol. 159, 107211, 2021. https://doi.org/10.1016/j.tws.2020.107211
dc.relation.referencesen[1] O. Lanets, Osnovy rozrakhunku ta konstruyuvannya vibratsiynykh mashyn. Knyha 1. Teoriya ta praktyka stvorennya vibratsiynykh mashyn z harmoniynym rukhom robochoho orhana [Fundamentals of analysis and design of vibrating machines. Book 1. Theory and Practice of Development of Vibratory Machines with Harmonic Motion of the Working Element Body]. Lviv, Ukraine: Lviv Polytechnic Publishing House, 2018. [in Ukrainian].
dc.relation.referencesen[2] O.S. Lanets, O. Yu. Kachur, V. M. Korendiy. "Classical approach to determining the natural frequency of continual subsystem of three-mass inter-resonant vibratory machine", Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 5(3-4), pp. 77-87, 2019. https://doi.org/10.23939/ujmems2019.03-04.077
dc.relation.referencesen[3] O. Lanets, R. Kachmar, P. Maistruk, I. Derevenko, A. Hordieiev. "Approximate calculation of natural frequencies of oscillations of the diamond-shaped plates of the discrete-continuous inter-resonance vibrating table", IOP Conference Series: Materials Science and Engineering, vol. 1277, pp.1-7, 2023. https://doi.org/10.1088/1757-899X/1277/1/012004
dc.relation.referencesen[4] P. Maistruk, O. Lanets, V. Stupnytskyy, "Approximate Calculation of the Natural Oscillation Frequency of the Vibrating Table in Inter-Resonance Operation Mode", Strojnícky časopis - Journal of Mechanical Engineering, vol. 71(2), pp. 151-166, 2021. https://doi.org/10.2478/scjme-2021-0026
dc.relation.referencesen[5] H. Kozbur, O. Shkodzinsky, I. Kozbur, N. Gashchyn. "Prediction of the boundary states for thin-walled axisymmetric shells under internal pressure and tension loads", Strojnícky časopis - Journal of Mechanical Engineering, vol. 70(1), pp. 57-68, 2020. https://doi.org/10.2478/scjme-2020-0006
dc.relation.referencesen[6] R. Vescovini, L. Dozio, M. D'Ottavio, O. Polit. "On the application of the Ritz method to free vibration and buckling analysis of highly anisotropic plates", Composite Structures, vol. 192, pp. 460-474, 2018. https://doi.org/10.1016/j.compstruct.2018.03.017
dc.relation.referencesen[7] A. Borković, G. Radenković, D. Majstorović, S. Milovanović, D. Milašinović, R. Cvijić. "Free vibration analysis of singly curved shells using the isogeometric finite strip method", Thin-Walled Structures, vol. 157, pp. 107-125, 2020. https://doi.org/10.1016/j.tws.2020.107125
dc.relation.referencesen[8] K. Żur, M. Arefi, J. Kim, J. Reddy. "Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory", Composites, Part B: Engineering, vol. 182, pp. 107-601, 2020. https://doi.org/10.1016/j.compositesb.2019.107601
dc.relation.referencesen[9] M. Boiangiu, V. Ceausu, C.D. Untaroiu, "A transfer matrix method for free vibration analysis of Euler-Bernoulli beams with variable cross section", Journal of Vibration and Control, vol. 22(11) pp. 2591-2602, 2016. https://doi.org/10.1177/1077546314550699
dc.relation.referencesen[10] E. Demir, H. Çallioğlu, M. Sayer, "Vibration analysis of sandwich beams with variable cross section on variable Winkler elastic foundation", Science and Engineering of Composite Materials, vol. 20(4), pp. 359-370, 2013. https://doi.org/10.1515/secm-2012-0151
dc.relation.referencesen[11] S. Zolkiewski, "Vibrations of beams with a variable cross-section fixed on rotational rigid disks", Latin American Journal of Solids and Structures, vol. 10, pp. 39-57, 2013. https://doi.org/10.1590/S1679-78252013000100005
dc.relation.referencesen[12] V. De Biagi, B. Chiaia, G. Carlo Marano, A. Fiore, R. Greco, L. Sardone, R. Cucuzza, G. L. Cascella, M. Spinelli, N. D. Lagaros. "Series solution of beams with variable cross-section", Procedia Manufacturing, vol. 44, pp. 489-496, 2020. https://doi.org/10.1016/j.promfg.2020.02.265
dc.relation.referencesen[13] P. Bilancia, M. Baggetta, G. Hao, G. Berselli. "A variable section beams based Bi-BCM formulation for the kinetostatic analysis of cross-axis flexural pivots", International Journal of Mechanical Sciences, vol. 205, 106587, 2021. https://doi.org/10.1016/j.ijmecsci.2021.106587
dc.relation.referencesen[14] Y. De Santis, D. P. Pasca, A. Aloisio, A. Stenstad, K.-C. Mahnert, "Experimental, analytical and numerical investigation on the capacity of composite glulam beams with holes", Engineering Structures, vol. 285, 115995, 2023. https://doi.org/10.1016/j.engstruct.2023.115995
dc.relation.referencesen[15] A. Elkaimbillah, B. Braikat, F. Mohri, N. Damil. "A one-dimensional model for computing forced nonlinear vibration of thin-walled composite beams with open variable cross-sections", Thin-Walled Structures, vol. 159, 107211, 2021. https://doi.org/10.1016/j.tws.2020.107211
dc.relation.urihttps://doi.org/10.23939/ujmems2019.03-04.077
dc.relation.urihttps://doi.org/10.1088/1757-899X/1277/1/012004
dc.relation.urihttps://doi.org/10.2478/scjme-2021-0026
dc.relation.urihttps://doi.org/10.2478/scjme-2020-0006
dc.relation.urihttps://doi.org/10.1016/j.compstruct.2018.03.017
dc.relation.urihttps://doi.org/10.1016/j.tws.2020.107125
dc.relation.urihttps://doi.org/10.1016/j.compositesb.2019.107601
dc.relation.urihttps://doi.org/10.1177/1077546314550699
dc.relation.urihttps://doi.org/10.1515/secm-2012-0151
dc.relation.urihttps://doi.org/10.1590/S1679-78252013000100005
dc.relation.urihttps://doi.org/10.1016/j.promfg.2020.02.265
dc.relation.urihttps://doi.org/10.1016/j.ijmecsci.2021.106587
dc.relation.urihttps://doi.org/10.1016/j.engstruct.2023.115995
dc.relation.urihttps://doi.org/10.1016/j.tws.2020.107211
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Maistruk P., 2023
dc.subjectcontinuous section
dc.subjectdiscrete-continuous oscillating system
dc.subjectinter-resonance vibration machine
dc.subjectvariable cross-section
dc.subjectnatural frequency of oscillations
dc.titleOptimization of the shape and dimensions of the continuous section of the discrete-continuous inter-resonance vibrating table
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v9n3_Maistruk_P-Optimization_of_the_shape_10-20.pdf
Size:
803.9 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v9n3_Maistruk_P-Optimization_of_the_shape_10-20__COVER.png
Size:
441.05 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description: