Optimization of the shape and dimensions of the continuous section of the discrete-continuous inter-resonance vibrating table
dc.citation.epage | 20 | |
dc.citation.issue | 3 | |
dc.citation.journalTitle | Український журнал із машинобудування і матеріалознавства | |
dc.citation.spage | 10 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Maistruk, Pavlo | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-04-03T07:36:58Z | |
dc.date.available | 2024-04-03T07:36:58Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Energy-efficient technologies are an important aspect of the development of mechanical engineering. Therefore, the creation of highly efficient vibration technological equipment is an urgent task. There are discrete-continuous inter-resonance vibration machines that have high values of dynamic amplification of oscillations. Rectangular plates or rods are used as the reactive mass of such vibrating machines. However, the rectangular shape of the plate may not be the optimal shape for achieving maximum energy efficiency. To conduct experimental studies of alternative plates with a variable cross-section to determine the optimal shape of the reactive mass of the vibration machine. Methodology. The selection of alternative options of plates with a variable cross-section, which would satisfy the necessary conditions of fastening and the value of the natural frequency of oscillations, was carried out. Experimental studies were carried out on a sample of an inter-resonance vibrating table. The value of the power supply voltage at which loads of different masses were separated from the working body of the vibrating table for each of the plate samples was compared. Findings (results) and originality (novelty). For the first time, experimental studies of the energy efficiency of inter-resonance vibration machines with plates with a variable cross-section installed as a reactive mass were conducted. It was found that the rhomboid shape of the plate is optimal when using it as a continuous section in a vibration machine with an electromagnetic drive. It was determined that the use of diamond-shaped plates as the reactive mass of the vibrating machine can improve the energy efficiency of the inter-resonance vibrating equipment. For further analysis of plates with a variable cross-section as a reactive mass of an inter-resonance vibration machine, it is necessary to calculate and compare their lumped inertia-stiffness parameters. | |
dc.format.extent | 10-20 | |
dc.format.pages | 11 | |
dc.identifier.citation | Maistruk P. Optimization of the shape and dimensions of the continuous section of the discrete-continuous inter-resonance vibrating table / Pavlo Maistruk // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 9. — No 3. — P. 10–20. | |
dc.identifier.citationen | Maistruk P. Optimization of the shape and dimensions of the continuous section of the discrete-continuous inter-resonance vibrating table / Pavlo Maistruk // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 9. — No 3. — P. 10–20. | |
dc.identifier.doi | doi.org/10.23939/ujmems2023.03.010 | |
dc.identifier.issn | 2411-8001 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61636 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Український журнал із машинобудування і матеріалознавства, 3 (9), 2023 | |
dc.relation.ispartof | Ukrainian Journal of Mechanical Engineering and Materials Science, 3 (9), 2023 | |
dc.relation.references | [1] O. Lanets, Osnovy rozrakhunku ta konstruyuvannya vibratsiynykh mashyn. Knyha 1. Teoriya ta praktyka stvorennya vibratsiynykh mashyn z harmoniynym rukhom robochoho orhana [Fundamentals of analysis and design of vibrating machines. Book 1. Theory and Practice of Development of Vibratory Machines with Harmonic Motion of the Working Element Body]. Lviv, Ukraine: Lviv Polytechnic Publishing House, 2018. [in Ukrainian]. | |
dc.relation.references | [2] O.S. Lanets, O. Yu. Kachur, V. М. Korendiy. "Classical approach to determining the natural frequency of continual subsystem of three-mass inter-resonant vibratory machine", Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 5(3-4), pp. 77-87, 2019. https://doi.org/10.23939/ujmems2019.03-04.077 | |
dc.relation.references | [3] O. Lanets, R. Kachmar, P. Maistruk, I. Derevenko, A. Hordieiev. "Approximate calculation of natural frequencies of oscillations of the diamond-shaped plates of the discrete-continuous inter-resonance vibrating table", IOP Conference Series: Materials Science and Engineering, vol. 1277, pp.1-7, 2023. https://doi.org/10.1088/1757-899X/1277/1/012004 | |
dc.relation.references | [4] P. Maistruk, O. Lanets, V. Stupnytskyy, "Approximate Calculation of the Natural Oscillation Frequency of the Vibrating Table in Inter-Resonance Operation Mode", Strojnícky časopis - Journal of Mechanical Engineering, vol. 71(2), pp. 151-166, 2021. https://doi.org/10.2478/scjme-2021-0026 | |
dc.relation.references | [5] H. Kozbur, O. Shkodzinsky, I. Kozbur, N. Gashchyn. "Prediction of the boundary states for thin-walled axisymmetric shells under internal pressure and tension loads", Strojnícky časopis - Journal of Mechanical Engineering, vol. 70(1), pp. 57-68, 2020. https://doi.org/10.2478/scjme-2020-0006 | |
dc.relation.references | [6] R. Vescovini, L. Dozio, M. D'Ottavio, O. Polit. "On the application of the Ritz method to free vibration and buckling analysis of highly anisotropic plates", Composite Structures, vol. 192, pp. 460-474, 2018. https://doi.org/10.1016/j.compstruct.2018.03.017 | |
dc.relation.references | [7] A. Borković, G. Radenković, D. Majstorović, S. Milovanović, D. Milašinović, R. Cvijić. "Free vibration analysis of singly curved shells using the isogeometric finite strip method", Thin-Walled Structures, vol. 157, pp. 107-125, 2020. https://doi.org/10.1016/j.tws.2020.107125 | |
dc.relation.references | [8] K. Żur, M. Arefi, J. Kim, J. Reddy. "Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory", Composites, Part B: Engineering, vol. 182, pp. 107-601, 2020. https://doi.org/10.1016/j.compositesb.2019.107601 | |
dc.relation.references | [9] M. Boiangiu, V. Ceausu, C.D. Untaroiu, "A transfer matrix method for free vibration analysis of Euler-Bernoulli beams with variable cross section", Journal of Vibration and Control, vol. 22(11) pp. 2591-2602, 2016. https://doi.org/10.1177/1077546314550699 | |
dc.relation.references | [10] E. Demir, H. Çallioğlu, M. Sayer, "Vibration analysis of sandwich beams with variable cross section on variable Winkler elastic foundation", Science and Engineering of Composite Materials, vol. 20(4), pp. 359-370, 2013. https://doi.org/10.1515/secm-2012-0151 | |
dc.relation.references | [11] S. Zolkiewski, "Vibrations of beams with a variable cross-section fixed on rotational rigid disks", Latin American Journal of Solids and Structures, vol. 10, pp. 39-57, 2013. https://doi.org/10.1590/S1679-78252013000100005 | |
dc.relation.references | [12] V. De Biagi, B. Chiaia, G. Carlo Marano, A. Fiore, R. Greco, L. Sardone, R. Cucuzza, G. L. Cascella, M. Spinelli, N. D. Lagaros. "Series solution of beams with variable cross-section", Procedia Manufacturing, vol. 44, pp. 489-496, 2020. https://doi.org/10.1016/j.promfg.2020.02.265 | |
dc.relation.references | [13] P. Bilancia, M. Baggetta, G. Hao, G. Berselli. "A variable section beams based Bi-BCM formulation for the kinetostatic analysis of cross-axis flexural pivots", International Journal of Mechanical Sciences, vol. 205, 106587, 2021. https://doi.org/10.1016/j.ijmecsci.2021.106587 | |
dc.relation.references | [14] Y. De Santis, D. P. Pasca, A. Aloisio, A. Stenstad, K.-C. Mahnert, "Experimental, analytical and numerical investigation on the capacity of composite glulam beams with holes", Engineering Structures, vol. 285, 115995, 2023. https://doi.org/10.1016/j.engstruct.2023.115995 | |
dc.relation.references | [15] A. Elkaimbillah, B. Braikat, F. Mohri, N. Damil. "A one-dimensional model for computing forced nonlinear vibration of thin-walled composite beams with open variable cross-sections", Thin-Walled Structures, vol. 159, 107211, 2021. https://doi.org/10.1016/j.tws.2020.107211 | |
dc.relation.referencesen | [1] O. Lanets, Osnovy rozrakhunku ta konstruyuvannya vibratsiynykh mashyn. Knyha 1. Teoriya ta praktyka stvorennya vibratsiynykh mashyn z harmoniynym rukhom robochoho orhana [Fundamentals of analysis and design of vibrating machines. Book 1. Theory and Practice of Development of Vibratory Machines with Harmonic Motion of the Working Element Body]. Lviv, Ukraine: Lviv Polytechnic Publishing House, 2018. [in Ukrainian]. | |
dc.relation.referencesen | [2] O.S. Lanets, O. Yu. Kachur, V. M. Korendiy. "Classical approach to determining the natural frequency of continual subsystem of three-mass inter-resonant vibratory machine", Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 5(3-4), pp. 77-87, 2019. https://doi.org/10.23939/ujmems2019.03-04.077 | |
dc.relation.referencesen | [3] O. Lanets, R. Kachmar, P. Maistruk, I. Derevenko, A. Hordieiev. "Approximate calculation of natural frequencies of oscillations of the diamond-shaped plates of the discrete-continuous inter-resonance vibrating table", IOP Conference Series: Materials Science and Engineering, vol. 1277, pp.1-7, 2023. https://doi.org/10.1088/1757-899X/1277/1/012004 | |
dc.relation.referencesen | [4] P. Maistruk, O. Lanets, V. Stupnytskyy, "Approximate Calculation of the Natural Oscillation Frequency of the Vibrating Table in Inter-Resonance Operation Mode", Strojnícky časopis - Journal of Mechanical Engineering, vol. 71(2), pp. 151-166, 2021. https://doi.org/10.2478/scjme-2021-0026 | |
dc.relation.referencesen | [5] H. Kozbur, O. Shkodzinsky, I. Kozbur, N. Gashchyn. "Prediction of the boundary states for thin-walled axisymmetric shells under internal pressure and tension loads", Strojnícky časopis - Journal of Mechanical Engineering, vol. 70(1), pp. 57-68, 2020. https://doi.org/10.2478/scjme-2020-0006 | |
dc.relation.referencesen | [6] R. Vescovini, L. Dozio, M. D'Ottavio, O. Polit. "On the application of the Ritz method to free vibration and buckling analysis of highly anisotropic plates", Composite Structures, vol. 192, pp. 460-474, 2018. https://doi.org/10.1016/j.compstruct.2018.03.017 | |
dc.relation.referencesen | [7] A. Borković, G. Radenković, D. Majstorović, S. Milovanović, D. Milašinović, R. Cvijić. "Free vibration analysis of singly curved shells using the isogeometric finite strip method", Thin-Walled Structures, vol. 157, pp. 107-125, 2020. https://doi.org/10.1016/j.tws.2020.107125 | |
dc.relation.referencesen | [8] K. Żur, M. Arefi, J. Kim, J. Reddy. "Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory", Composites, Part B: Engineering, vol. 182, pp. 107-601, 2020. https://doi.org/10.1016/j.compositesb.2019.107601 | |
dc.relation.referencesen | [9] M. Boiangiu, V. Ceausu, C.D. Untaroiu, "A transfer matrix method for free vibration analysis of Euler-Bernoulli beams with variable cross section", Journal of Vibration and Control, vol. 22(11) pp. 2591-2602, 2016. https://doi.org/10.1177/1077546314550699 | |
dc.relation.referencesen | [10] E. Demir, H. Çallioğlu, M. Sayer, "Vibration analysis of sandwich beams with variable cross section on variable Winkler elastic foundation", Science and Engineering of Composite Materials, vol. 20(4), pp. 359-370, 2013. https://doi.org/10.1515/secm-2012-0151 | |
dc.relation.referencesen | [11] S. Zolkiewski, "Vibrations of beams with a variable cross-section fixed on rotational rigid disks", Latin American Journal of Solids and Structures, vol. 10, pp. 39-57, 2013. https://doi.org/10.1590/S1679-78252013000100005 | |
dc.relation.referencesen | [12] V. De Biagi, B. Chiaia, G. Carlo Marano, A. Fiore, R. Greco, L. Sardone, R. Cucuzza, G. L. Cascella, M. Spinelli, N. D. Lagaros. "Series solution of beams with variable cross-section", Procedia Manufacturing, vol. 44, pp. 489-496, 2020. https://doi.org/10.1016/j.promfg.2020.02.265 | |
dc.relation.referencesen | [13] P. Bilancia, M. Baggetta, G. Hao, G. Berselli. "A variable section beams based Bi-BCM formulation for the kinetostatic analysis of cross-axis flexural pivots", International Journal of Mechanical Sciences, vol. 205, 106587, 2021. https://doi.org/10.1016/j.ijmecsci.2021.106587 | |
dc.relation.referencesen | [14] Y. De Santis, D. P. Pasca, A. Aloisio, A. Stenstad, K.-C. Mahnert, "Experimental, analytical and numerical investigation on the capacity of composite glulam beams with holes", Engineering Structures, vol. 285, 115995, 2023. https://doi.org/10.1016/j.engstruct.2023.115995 | |
dc.relation.referencesen | [15] A. Elkaimbillah, B. Braikat, F. Mohri, N. Damil. "A one-dimensional model for computing forced nonlinear vibration of thin-walled composite beams with open variable cross-sections", Thin-Walled Structures, vol. 159, 107211, 2021. https://doi.org/10.1016/j.tws.2020.107211 | |
dc.relation.uri | https://doi.org/10.23939/ujmems2019.03-04.077 | |
dc.relation.uri | https://doi.org/10.1088/1757-899X/1277/1/012004 | |
dc.relation.uri | https://doi.org/10.2478/scjme-2021-0026 | |
dc.relation.uri | https://doi.org/10.2478/scjme-2020-0006 | |
dc.relation.uri | https://doi.org/10.1016/j.compstruct.2018.03.017 | |
dc.relation.uri | https://doi.org/10.1016/j.tws.2020.107125 | |
dc.relation.uri | https://doi.org/10.1016/j.compositesb.2019.107601 | |
dc.relation.uri | https://doi.org/10.1177/1077546314550699 | |
dc.relation.uri | https://doi.org/10.1515/secm-2012-0151 | |
dc.relation.uri | https://doi.org/10.1590/S1679-78252013000100005 | |
dc.relation.uri | https://doi.org/10.1016/j.promfg.2020.02.265 | |
dc.relation.uri | https://doi.org/10.1016/j.ijmecsci.2021.106587 | |
dc.relation.uri | https://doi.org/10.1016/j.engstruct.2023.115995 | |
dc.relation.uri | https://doi.org/10.1016/j.tws.2020.107211 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Maistruk P., 2023 | |
dc.subject | continuous section | |
dc.subject | discrete-continuous oscillating system | |
dc.subject | inter-resonance vibration machine | |
dc.subject | variable cross-section | |
dc.subject | natural frequency of oscillations | |
dc.title | Optimization of the shape and dimensions of the continuous section of the discrete-continuous inter-resonance vibrating table | |
dc.type | Article |
Files
License bundle
1 - 1 of 1