Optimization Algorithms for Wireless Sensor Networks to Solve Maximization Problems

dc.citation.epage185
dc.citation.issue2
dc.citation.journalTitleДосягнення у кіберфізичних системах
dc.citation.spage181
dc.citation.volume9
dc.contributor.affiliationGori State University
dc.contributor.authorMshvidobadze, Tinatin
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-06T08:48:09Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractThe paper describes a constant time clustering algorithm that can be applied on wireless sensor networks. The scheme for rate control, scheduling, routing, and power control protocol for wireless sensor networks based on compressive sensing has been shown. Using network utility maximization formulations, cross-optimization solutions using Lagrangian multipliers in network access control and physical layers have been presented. The optimization solutions have been developed by solving the optimization model of network utility maximization. The paper presents a cross-sectional design problem that jointly maximizes network utility and lifetime. The solution to the problem leads to the optimal source rate as well as the optimal routes between each source and sink in the network. The presence of a common sink node in the network has been formulated to develop a distributed algorithm that minimizes the energy overhead in its implementation.
dc.format.extent181-185
dc.format.pages5
dc.identifier.citationMshvidobadze T. Optimization Algorithms for Wireless Sensor Networks to Solve Maximization Problems / Tinatin Mshvidobadze // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 2. — P. 181–185.
dc.identifier.citationenMshvidobadze T. Optimization Algorithms for Wireless Sensor Networks to Solve Maximization Problems / Tinatin Mshvidobadze // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 2. — P. 181–185.
dc.identifier.doidoi.org/10.23939/acps2024.02.181
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/117379
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofДосягнення у кіберфізичних системах, 2 (9), 2024
dc.relation.ispartofAdvances in Cyber-Physical Systems, 2 (9), 2024
dc.relation.references[1] Yang, X. S. (2020). Nature-inspired optimization algorithms: Challenges and open problems. Journal of Computational Science, vol. 46, pp. 101104. DOI:10.1016/j.jocs.2020.101104
dc.relation.references[2] Alabadi, M., Habbal, A., & Wei, X. (2022). Industrial internet of things: Requirements, architecture, challenges, and future research directions. IEEE Access, vol. 10, pp. 66374-66400. DOI:10.1109/ACCESS.2022.3185049
dc.relation.references[3] Ahmad, H., Khan, T. A., Stanimirović, P. S., Chu, Y. M., & Ahmad, I. (2020). Modified Variational Iteration Algorithm‐ II: Convergence and Applications to Diffusion Models. Complexity, vol. 2020(1), pp. 8841718. DOI:10.1155/2020/8841718
dc.relation.references[4] Lv, Z., Wu, J., Li, Y., & Song, H. (2022). Cross-layer optimization for industrial Internet of Things in real scene digital twins. IEEE Internet of Things Journal, vol. 9(17), pp. 15618-15629. DOI:10.1109/TMM.2023. 3331946
dc.relation.references[5] Venkatachalam, K., Prabu, P., Balaji, B. S., Kang, B. G., Nam, Y., & Abouhawwash, M. (2021). Cross-layer hidden Markov analysis for intrusion detection. CMC-Computers, Materials Continua, vol. 70(1), pp. 3685-3700. DOI:10.32604/cmc.2022.019502
dc.relation.references[6] Sankar, A., & Liu, Z. (2004). Maximum lifetime routing in wireless ad-hoc networks. IEEE INFOCOM, vol. 2, pp. 1089-1097. DOI:10.1109/INFCOM.2004.1356995
dc.relation.references[7] Cong, S., & Zhou, Y. (2023). A review of convolutional neural network architectures and their optimizations. Artificial Intelligence Review, 56(3), 1905-1969. DOI:10.1007/s10462-022-10213-5
dc.relation.references[8] Pham, K. D. (2020). Risk-Sensitive Rate Correcting for Dynamic Heterogeneous Networks: Autonomy and Resilience. 2020 IEEE Aerospace Conference, pp. 1-10. DOI:10.1109/AERO47225.2020.9172717
dc.relation.references[9] Richtárik, P., & Takác, M. (2020). Stochastic reformlations of linear systems: algorithms and convergence theory. SIAM Journal on Matrix Analysis and Applications, vol. 41(2),pp. 487-524. DOI:10.1137/18M1179249
dc.relation.references[10] Ji, K., & Ying, L. (2023). Network utility maximization with unknown utility functions: A distributed, data-driven bilevel optimization approach. Proceedings of the Twentyfourth International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, pp. 131-140. DOI:10.1145/3565287.361026
dc.relation.references[11] Aljubayri, M., Yang, Z., & Shikh‐ Bahaei, M. (2021). Cross-layer multipath congestion control, routing and scheduling design in ad hoc wireless networks. IET Communications, vol. 15(8), pp. 1096-1108. DOI:10.1049/cmu2.12145
dc.relation.references[12] Rajendran, A., Balakrishnan, N., & Ajay, P. (2022). Deep embedded median clustering for routing misbehaviour and attacks detection in ad-hoc networks. Ad Hoc Networks, vol. 126, pp. 102757. DOI:10.1016/j.adhoc.2021.10275
dc.relation.references[13] Gheisari, M., Abbasi, A. A., Sayari, Z., Rizvi, Q., Asheralieva, A., Banu, S., ... & Raza, K. A. (2020). A survey on clustering algorithms in wireless sensor networks: challenges, research, and trends. 2020 International Computer Symposium (ICS), pp. 294-299. DOI:10.1109/ICS51289.2020.00065
dc.relation.references[14] Díez-González, J., Alvarez, R., Prieto-Fernandez, N., & Perez, H. (2020). Local wireless sensor networks positioning reliability under sensor failure. Sensors, vol. 20(5), pp. 1426. DOI:10.3390/s20051426
dc.relation.references[15] Sun, Y., Wang, L., Sun, J., Wang, B., & Yuan, Y. (2023). An Implementable Augmented Lagrangian Method for Solving Second-Order Cone Constrained Variational Inequalities. Asia-Pacific Journal of Operational Research, vol. 40(03), pp. 2250030. DOI:10.1142/S0217595922500300
dc.relation.references[16] Ramakrishnan, S., & Ramaiyan, V. (2019). Completely uncoupled algorithms for network utility maximization. IEEE/ACM Transactions on Networking, vol. 27(2), pp. 607-620. DOI:10.1109/TNET.2019.2892801
dc.relation.references[17] Dogan, M. S., Lund, J. R., & Medellin-Azuara, J. (2021). Hybrid linear and nonlinear programming model for hydropower reservoir optimization. Journal of Water Resources Planning and Management, vol. 147(3), pp. 06021001. DOI:10.1061/(ASCE)WR.1943-5452.000135
dc.relation.referencesen[1] Yang, X. S. (2020). Nature-inspired optimization algorithms: Challenges and open problems. Journal of Computational Science, vol. 46, pp. 101104. DOI:10.1016/j.jocs.2020.101104
dc.relation.referencesen[2] Alabadi, M., Habbal, A., & Wei, X. (2022). Industrial internet of things: Requirements, architecture, challenges, and future research directions. IEEE Access, vol. 10, pp. 66374-66400. DOI:10.1109/ACCESS.2022.3185049
dc.relation.referencesen[3] Ahmad, H., Khan, T. A., Stanimirović, P. S., Chu, Y. M., & Ahmad, I. (2020). Modified Variational Iteration Algorithm‐ II: Convergence and Applications to Diffusion Models. Complexity, vol. 2020(1), pp. 8841718. DOI:10.1155/2020/8841718
dc.relation.referencesen[4] Lv, Z., Wu, J., Li, Y., & Song, H. (2022). Cross-layer optimization for industrial Internet of Things in real scene digital twins. IEEE Internet of Things Journal, vol. 9(17), pp. 15618-15629. DOI:10.1109/TMM.2023. 3331946
dc.relation.referencesen[5] Venkatachalam, K., Prabu, P., Balaji, B. S., Kang, B. G., Nam, Y., & Abouhawwash, M. (2021). Cross-layer hidden Markov analysis for intrusion detection. CMC-Computers, Materials Continua, vol. 70(1), pp. 3685-3700. DOI:10.32604/cmc.2022.019502
dc.relation.referencesen[6] Sankar, A., & Liu, Z. (2004). Maximum lifetime routing in wireless ad-hoc networks. IEEE INFOCOM, vol. 2, pp. 1089-1097. DOI:10.1109/INFCOM.2004.1356995
dc.relation.referencesen[7] Cong, S., & Zhou, Y. (2023). A review of convolutional neural network architectures and their optimizations. Artificial Intelligence Review, 56(3), 1905-1969. DOI:10.1007/s10462-022-10213-5
dc.relation.referencesen[8] Pham, K. D. (2020). Risk-Sensitive Rate Correcting for Dynamic Heterogeneous Networks: Autonomy and Resilience. 2020 IEEE Aerospace Conference, pp. 1-10. DOI:10.1109/AERO47225.2020.9172717
dc.relation.referencesen[9] Richtárik, P., & Takác, M. (2020). Stochastic reformlations of linear systems: algorithms and convergence theory. SIAM Journal on Matrix Analysis and Applications, vol. 41(2),pp. 487-524. DOI:10.1137/18M1179249
dc.relation.referencesen[10] Ji, K., & Ying, L. (2023). Network utility maximization with unknown utility functions: A distributed, data-driven bilevel optimization approach. Proceedings of the Twentyfourth International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, pp. 131-140. DOI:10.1145/3565287.361026
dc.relation.referencesen[11] Aljubayri, M., Yang, Z., & Shikh‐ Bahaei, M. (2021). Cross-layer multipath congestion control, routing and scheduling design in ad hoc wireless networks. IET Communications, vol. 15(8), pp. 1096-1108. DOI:10.1049/cmu2.12145
dc.relation.referencesen[12] Rajendran, A., Balakrishnan, N., & Ajay, P. (2022). Deep embedded median clustering for routing misbehaviour and attacks detection in ad-hoc networks. Ad Hoc Networks, vol. 126, pp. 102757. DOI:10.1016/j.adhoc.2021.10275
dc.relation.referencesen[13] Gheisari, M., Abbasi, A. A., Sayari, Z., Rizvi, Q., Asheralieva, A., Banu, S., ... & Raza, K. A. (2020). A survey on clustering algorithms in wireless sensor networks: challenges, research, and trends. 2020 International Computer Symposium (ICS), pp. 294-299. DOI:10.1109/ICS51289.2020.00065
dc.relation.referencesen[14] Díez-González, J., Alvarez, R., Prieto-Fernandez, N., & Perez, H. (2020). Local wireless sensor networks positioning reliability under sensor failure. Sensors, vol. 20(5), pp. 1426. DOI:10.3390/s20051426
dc.relation.referencesen[15] Sun, Y., Wang, L., Sun, J., Wang, B., & Yuan, Y. (2023). An Implementable Augmented Lagrangian Method for Solving Second-Order Cone Constrained Variational Inequalities. Asia-Pacific Journal of Operational Research, vol. 40(03), pp. 2250030. DOI:10.1142/S0217595922500300
dc.relation.referencesen[16] Ramakrishnan, S., & Ramaiyan, V. (2019). Completely uncoupled algorithms for network utility maximization. IEEE/ACM Transactions on Networking, vol. 27(2), pp. 607-620. DOI:10.1109/TNET.2019.2892801
dc.relation.referencesen[17] Dogan, M. S., Lund, J. R., & Medellin-Azuara, J. (2021). Hybrid linear and nonlinear programming model for hydropower reservoir optimization. Journal of Water Resources Planning and Management, vol. 147(3), pp. 06021001. DOI:10.1061/(ASCE)WR.1943-5452.000135
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Mshvidobadze T., 2024
dc.subjectWireless sensor networks
dc.subjectcross layer
dc.subjectoptimization
dc.subjectnetwork utility maximization
dc.subjectalgorithm
dc.titleOptimization Algorithms for Wireless Sensor Networks to Solve Maximization Problems
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v9n2_Mshvidobadze_T-Optimization_Algorithms_181-185.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v9n2_Mshvidobadze_T-Optimization_Algorithms_181-185__COVER.png
Size:
538.01 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: