Технологічні особливості одержання крохмальвмісних полілактидних матеріалів для 3D друку

dc.citation.epage154
dc.citation.issue2
dc.citation.journalTitleChemistry, Technology and Application of Substances
dc.citation.spage150
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКечур, Д. І.
dc.contributor.authorМасюк, А. С.
dc.contributor.authorЛевицький, В. Є.
dc.contributor.authorКисіль, Д. Б.
dc.contributor.authorЧопик, Н. В.
dc.contributor.authorKechur, D. I.
dc.contributor.authorMasyuk, A. S.
dc.contributor.authorLevytskyi, V. Ye.
dc.contributor.authorKysil, D. B.
dc.contributor.authorChopyk, N. V.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:12:28Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractРозроблено полілактидні композиційні матеріали з органічним наповнювачеммодифікатором – крохмалем, неорганічним наповнювачем – кальцію карбонатом і пластифікатором – епоксидованою соєвою оливою для 3D друку. На підставі модульнодеформаційного методу розрахунку визначено пружно-пластичні та деформаційні властивості розроблених модифікованих полілактидних матеріалів. Виявлено зміну модуля деформації, модуля пружності, модуля високоеластичності залежно від складу композиту. Визначено поверхневу твердість, теплостійкість за Віка і термомеханічні характеристики розроблених полілактидних матеріалів
dc.description.abstractPolylactide composite materials with organic filler-modifier starch, inorganic filler -calcium carbonate and plasticizer - epoxidized soybean oil for 3D printing have been developed. On the basis of the modular deformation method of calculation the elastic-plastic and deformation properties of the developed modified polylactide materials are determined. The change of modulus of deformation, modulus of elasticity, modulus of high elasticity depending on the composition of the composite is revealed. The surface hardness, Vicat softening point and thermomechanical characteristics of the developed polylactide materials are determined.
dc.format.extent150-154
dc.format.pages5
dc.identifier.citationТехнологічні особливості одержання крохмальвмісних полілактидних матеріалів для 3D друку / Д. І. Кечур, А. С. Масюк, В. Є. Левицький, Д. Б. Кисіль, Н. В. Чопик // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Том 6. — № 2. — С. 150–154.
dc.identifier.citationenTechnological features of obtaining starch-containing polylactide materials for 3D printing / D. I. Kechur, A. S. Masyuk, V. Ye. Levytskyi, D. B. Kysil, N. V. Chopyk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 150–154.
dc.identifier.doidoi.org/10.23939/ctas2023.02.150
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63677
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (6), 2023
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (6), 2023
dc.relation.references1. Thakur V. K., Thakur M. K., and Pappu A. Hybrid Polymer Composite Materials: properties and characterization. - Cambridge: Woodhead Publ. and Elsevier, 2017. - 430 p.
dc.relation.references2. Omari V. Mukbaniani, Tamara Tatrishvili, Marc J. M. Abadie Advanced Materials, Polymers, and Composites: New Research on Properties, Techniques, and Applications. -New York: Apple Academic Press, 2021. - 432 p. https://doi.org/10.1201/9781003105015
dc.relation.references3. Alain Dufresne, Sabu Thomas, Laly A. Pothan Biopolymer Nanocomposites: Processing, Properties, and Applications. -New York: John Wiley&Sons, 2013. - 696 p. https://doi.org/10.1002/9781118609958
dc.relation.references4. Sina Ebnesajjad Handbook of Biopolymers and Biodegradable Plastics. - New York: William Andrew,2013. - 462 p.
dc.relation.references5. Nahurskyi O., Krylova H., Vasiichuk V., Kachan S., Nahursky A., Paraniak N., Malovanyy M. (2022). Utilization of Household Plastic Waste in Technologies with Final Biodegradation, Ecological Engineering & Environmental Technology. 23(4)б 94-100. https://doi.org/10.12912/27197050/150234
dc.relation.references6. Lopes M.S., Jardini A.L., Filho R.M. (2012) Poly(lactic acid) production for tissue engineering Applications, Procedia Engineering, 42, 1402-1413. https://doi.org/10.1016/j.proeng.2012.07.534
dc.relation.references7. Maria Laura, Di Lorenzo René Androsch Industrial Applications of Poly(lactic acid). - Cham:Springer, 2018. -228 p. https://doi.org/10.1007/978-3-319-75459-8
dc.relation.references8.Levytskyi V., Katruk D., Masyuk A., Kysil Kh., Bratychak M. Jr., Chopyk N. (2021) Resistance of Polylactide Materials to Water Mediums of the Various Natures, Chemistry&Chemikal Technology, 15 (2), 191-197. https://doi.org/10.23939/chcht15.02.191
dc.relation.references9. Freeland B., McCarthy E., Balakrishnan R., Fahy S., Boland A., Rochfort K., Dabros M., Marti R., Kelleher S., Gaughran J. (2022) A ReviewofPolylacticAcidas a Replacement Material for Single-Use Laboratory Components, Materials, 15(9), 2989-2999. https://doi.org/10.3390/ma15092989
dc.relation.references10. Masyuk A., Levytskyi V., Kysil K., Bilyi L., Humenetskyi T. (2021) Influence of Calcium Phosphates on the Morphology and Properties of Polylactide Composites, Material Science, 56, 870-876. https://doi.org/10.1007/s11003-021-00506-5
dc.relation.references11. Guo J., Wang J., He Y., Sun H., Chen X., Zheng Q., Xie H. (2020) Triply Biobased Thermoplastic Composites of Polylactide/Succinylated Lignin/Epoxidized Soybean Oil, Polymers (Basel), 12, 632-639. DOI: 10.3390/polym12030632 https://doi.org/10.3390/polym12030632
dc.relation.references12. Sikora W., Levytskyi V., Moravskyi V., Gerlach H. (2013) Twin screw extrusion with Expancel foaming agent, Journal of Polymer Engineering, 33 (6), P.501-508. https://doi.org/10.1515/polyeng-2013-0006
dc.relation.references13. Syed A.M. Tofail, Elias P. Koumoulos, Amit Bandyopadhyay, Susmita Bose, Lisa O'Donoghue, Costas Charitidis (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Materials Today, 21 (1), 22-37. https://doi.org/10.1016/j.mattod.2017.07.001.
dc.relation.references14. Yahya Bozkurt, Elif Karayel (2021) 3D printing technology; methods, biomedical applications, future opportunities and trends, Journal of Materials Research and Technology, 14, 1430-1450. https://doi.org/10.1016/j.jmrt.2021.07.050.
dc.relation.referencesen1. Thakur V. K., Thakur M. K., and Pappu A. Hybrid Polymer Composite Materials: properties and characterization, Cambridge: Woodhead Publ. and Elsevier, 2017, 430 p.
dc.relation.referencesen2. Omari V. Mukbaniani, Tamara Tatrishvili, Marc J. M. Abadie Advanced Materials, Polymers, and Composites: New Research on Properties, Techniques, and Applications. -New York: Apple Academic Press, 2021, 432 p. https://doi.org/10.1201/9781003105015
dc.relation.referencesen3. Alain Dufresne, Sabu Thomas, Laly A. Pothan Biopolymer Nanocomposites: Processing, Properties, and Applications. -New York: John Wiley&Sons, 2013, 696 p. https://doi.org/10.1002/9781118609958
dc.relation.referencesen4. Sina Ebnesajjad Handbook of Biopolymers and Biodegradable Plastics, New York: William Andrew,2013, 462 p.
dc.relation.referencesen5. Nahurskyi O., Krylova H., Vasiichuk V., Kachan S., Nahursky A., Paraniak N., Malovanyy M. (2022). Utilization of Household Plastic Waste in Technologies with Final Biodegradation, Ecological Engineering & Environmental Technology. 23(4)b 94-100. https://doi.org/10.12912/27197050/150234
dc.relation.referencesen6. Lopes M.S., Jardini A.L., Filho R.M. (2012) Poly(lactic acid) production for tissue engineering Applications, Procedia Engineering, 42, 1402-1413. https://doi.org/10.1016/j.proeng.2012.07.534
dc.relation.referencesen7. Maria Laura, Di Lorenzo René Androsch Industrial Applications of Poly(lactic acid), Cham:Springer, 2018. -228 p. https://doi.org/10.1007/978-3-319-75459-8
dc.relation.referencesen8.Levytskyi V., Katruk D., Masyuk A., Kysil Kh., Bratychak M. Jr., Chopyk N. (2021) Resistance of Polylactide Materials to Water Mediums of the Various Natures, Chemistry&Chemikal Technology, 15 (2), 191-197. https://doi.org/10.23939/chcht15.02.191
dc.relation.referencesen9. Freeland B., McCarthy E., Balakrishnan R., Fahy S., Boland A., Rochfort K., Dabros M., Marti R., Kelleher S., Gaughran J. (2022) A ReviewofPolylacticAcidas a Replacement Material for Single-Use Laboratory Components, Materials, 15(9), 2989-2999. https://doi.org/10.3390/ma15092989
dc.relation.referencesen10. Masyuk A., Levytskyi V., Kysil K., Bilyi L., Humenetskyi T. (2021) Influence of Calcium Phosphates on the Morphology and Properties of Polylactide Composites, Material Science, 56, 870-876. https://doi.org/10.1007/s11003-021-00506-5
dc.relation.referencesen11. Guo J., Wang J., He Y., Sun H., Chen X., Zheng Q., Xie H. (2020) Triply Biobased Thermoplastic Composites of Polylactide/Succinylated Lignin/Epoxidized Soybean Oil, Polymers (Basel), 12, 632-639. DOI: 10.3390/polym12030632 https://doi.org/10.3390/polym12030632
dc.relation.referencesen12. Sikora W., Levytskyi V., Moravskyi V., Gerlach H. (2013) Twin screw extrusion with Expancel foaming agent, Journal of Polymer Engineering, 33 (6), P.501-508. https://doi.org/10.1515/polyeng-2013-0006
dc.relation.referencesen13. Syed A.M. Tofail, Elias P. Koumoulos, Amit Bandyopadhyay, Susmita Bose, Lisa O'Donoghue, Costas Charitidis (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Materials Today, 21 (1), 22-37. https://doi.org/10.1016/j.mattod.2017.07.001.
dc.relation.referencesen14. Yahya Bozkurt, Elif Karayel (2021) 3D printing technology; methods, biomedical applications, future opportunities and trends, Journal of Materials Research and Technology, 14, 1430-1450. https://doi.org/10.1016/j.jmrt.2021.07.050.
dc.relation.urihttps://doi.org/10.1201/9781003105015
dc.relation.urihttps://doi.org/10.1002/9781118609958
dc.relation.urihttps://doi.org/10.12912/27197050/150234
dc.relation.urihttps://doi.org/10.1016/j.proeng.2012.07.534
dc.relation.urihttps://doi.org/10.1007/978-3-319-75459-8
dc.relation.urihttps://doi.org/10.23939/chcht15.02.191
dc.relation.urihttps://doi.org/10.3390/ma15092989
dc.relation.urihttps://doi.org/10.1007/s11003-021-00506-5
dc.relation.urihttps://doi.org/10.3390/polym12030632
dc.relation.urihttps://doi.org/10.1515/polyeng-2013-0006
dc.relation.urihttps://doi.org/10.1016/j.mattod.2017.07.001
dc.relation.urihttps://doi.org/10.1016/j.jmrt.2021.07.050
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectполілактид
dc.subjectмодифікування
dc.subjectкрохмаль
dc.subjectепоксидована соєва олива
dc.subjectдеформація
dc.subjectpolylactide
dc.subjectmodification
dc.subjectstarch
dc.subjectepoxidized soybean oil
dc.subjectdeformation
dc.titleТехнологічні особливості одержання крохмальвмісних полілактидних матеріалів для 3D друку
dc.title.alternativeTechnological features of obtaining starch-containing polylactide materials for 3D printing
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v6n2_Kechur_D_I-Technological_features_150-154.pdf
Size:
593.29 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v6n2_Kechur_D_I-Technological_features_150-154__COVER.png
Size:
457.85 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.9 KB
Format:
Plain Text
Description: