The mass transfer during the dissolution of boric acid in water intensified by mechanical stirring

dc.citation.epage160
dc.citation.issue2
dc.citation.spage153
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКузик, О. О.
dc.contributor.authorАтаманюк, В. М.
dc.contributor.authorГумницький, Я. М.
dc.contributor.authorKuzyk, O. O.
dc.contributor.authorAtamanyuk, V. M.
dc.contributor.authorGumnitsky, Y. M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2026-01-15T13:53:23Z
dc.date.created2024-10-10
dc.date.issued2024-10-10
dc.description.abstractУ дослідженні наведено кінетику розчинення кульок гранул борної кислоти залежно від температури розчину та частоти обертання мішалки. Експериментально визначено коефіцієнти масовіддачі та наведено порівняння їх із теоретично визначеними. Встановлено, що за збільшення частоти обертання мішалки та температури розчину збільшується коефіцієнт масовіддачі. Отримано розрахункову залежність, яка дає змогу прогнозувати процес розчинення гранул борної кислоти залежно від температури розчину і частоти обертання мішалки. Отримані результати підтверджують суттєвий вплив конструктивних параметрів реактора та умов перемішування на процес масообміну в системі «тверде тіло – рідина». Отримані результати дослідження дають змогу змоделювати та оптимізувати процеси масообміну в системах тверде тіло – рідина, що у свою чергу дає можливість подальшої оптимізації технологічних процесів в хімічній промисловості, та забезпечення зменшення енергозатратності процесу розчинення.
dc.description.abstractThe kinetics granules of boric acid (GBA) dissolution were investigated based on the solution temperature and stirring frequency. Experimental mass transfer coefficients were determined and compared with theoretical values. The results indicate that increasing the stirring frequency and the solvent temperature increases the mass transfer coefficient. A computational relationship was derived, enabling the prediction of GBA dissolution based on solution temperature and stirring frequency. These findings highlight the significant impact of reactor parameters and mixing conditions on the mass transfer process in solid-liquid systems. The study’s results facilitate the simulation and optimization of mass transfer processes in solid-liquid systems, contributing to the optimization of chemical industry technological processes and reducing the energy consumption of the dissolution process.
dc.format.extent153-160
dc.format.pages8
dc.identifier.citationKuzyk O. O. The mass transfer during the dissolution of boric acid in water intensified by mechanical stirring / O. O. Kuzyk, V. M. Atamanyuk, Y. M. Gumnitsky // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 7. — No 2. — P. 153–160.
dc.identifier.citation2015Kuzyk O. O., Gumnitsky Y. M. The mass transfer during the dissolution of boric acid in water intensified by mechanical stirring // Chemistry, Technology and Application of Substances, Lviv. 2024. Vol 7. No 2. P. 153–160.
dc.identifier.citationenAPAKuzyk, O. O., Atamanyuk, V. M., & Gumnitsky, Y. M. (2024). The mass transfer during the dissolution of boric acid in water intensified by mechanical stirring. Chemistry, Technology and Application of Substances, 7(2), 153-160. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOKuzyk O. O., Atamanyuk V. M., Gumnitsky Y. M. (2024) The mass transfer during the dissolution of boric acid in water intensified by mechanical stirring. Chemistry, Technology and Application of Substances (Lviv), vol. 7, no 2, pp. 153-160.
dc.identifier.doihttps://doi.org/10.23939/ctas2024.02.153
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124451
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (7), 2024
dc.relation.references1. Wahl, M. (2005). Boric acid. In Encyclopedia of Toxicology (2nd ed., pp. 329–330). https://doi.org/10.1016/B0-12-369400-0/00142-3
dc.relation.references2. Nahurskyi, O. A. (2012). Zakonomirnosti kapsuluvannia rechovyn u stani pseudoridzhennia ta yikh dyfuziinoho vivilnennia: monohrafiia. Lviv: Vydavnytstvo Lvivskoi politekhniky.
dc.relation.references3. Liang H, Jahanmir S. (1995). Boric acid as an additive for core-drilling of alumina. J. Tribol., 117:65–73.
dc.relation.references4. Wei J. J., Erdemir A., Fenske G. R. (2000). Dry lubricant films for aluminum forming. Tribol. Trans.,43(3):535–41.
dc.relation.references5. Erdemir A. (1991). Tribological properties of boric acid and boric-acid-forming surfaces. Part I: crystal chemistry and mechanism of self- lubrication of boric acid. Lubr. Eng., 47:168–73.
dc.relation.references6. Rao K. P., Wei J. J. (2001). Performance of a new dry lubricant in the forming of aluminum alloy sheets. Wear, 249, 86–93.
dc.relation.references7. Lyuta, O. V., & Symak, D. M. (2018). Extraction of soluble solid phase from a layer of porous inert medium. Bulletin of Lviv Polytechnic National University. Chemistry, Technology of Substances and Their Applications, (886), 165–170.
dc.relation.references8. Atamaniuk, V. M., Symak, D. M., & Danyliuk, O. M. (2016). Dissolution of the polydisperse solid phase in a gas-liquid flow. Bulletin of Lviv Polytechnic National University. Chemistry, Technology of Substances and Their Applications, (841), 271–277.
dc.relation.references9. Symak, D., Atamaniuk, V., & Gumnitsky, Ya.(2015). Analysis of dissolution kinetics based on the local isotropic turbulence theory. Chemistry & Chemical Technology, 9(4), 493–497. https://doi.org/10.23939/chcht09.04.493
dc.relation.references10. Sabadash, V., Mylanyk, O., Matsutska, O., & Gumnytsky, J. (2017). Kinetic regularities of copper ions adsorption by natural zeolite. Chemistry & Chemical Technology, 11(4), 459–462. https://doi.org/10.23939/chcht11.04.459
dc.relation.references11. Symak, D. M., & Liuta, O. V. (2015). Nestatsionarnyi protses rozchynennia sharu zernystoho materialu. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, (812), 308–312.
dc.relation.references12. Symak, D., Gumnytsky, Y., Atamaniuk, V.,& Danyliuk, O. (2015). Kinetika rozchynnya polidyspersnoho kaliyu sulfatu za pereminnoyi rushiynoyi syly. Scientific Works, 80(1). https://doi.org/10.15673/swonaft.v80i1.193
dc.relation.references13. Aksielrud, G., & Lysiański, V. (1978). Solidliquid extraction. Warsaw: Wydaw, Nauk. Techn.
dc.relation.references14. Semenishin, Y. M., Trotskyi, V. I., & Fedorchuk-Moroz, V. I. (2004). Osoblyvosti ekstrahuvannia tsilovykh komponentiv z porystykh struktur. Naukovyi visnyk NLTU Ukrainy, 14(4), 317–321.
dc.relation.references15. Humnytskyi, Y. M., & Symak, D. M. (2017). Intensification of mass transfer processes in the solidliquid system by the introduction of the gas phase. Proceedings of the XVIII International Scientific and Practical Conference.
dc.relation.references16. Pangarkar, V. G.; Yawalkar, A. A.; Sharma, M. M.; Beenackers, A. A. C. M. (2002). Particle– Liquid Mass Transfer Coefficient in Two-/Three-Phase Stirred Tank Reactors. Ind. Eng. Chem. Res., 41, 4141–4167. DOI: 10.1021/ie010933j
dc.relation.references17. Meneses, J. P. C. H.; Calcada, L. A.; Scheid, C. M.; Magalhães, S. d. C. (2017). Determination of the Convective Mass Transfer Coefficient in the Dissolution of NaCl Particles in Non-Newtonian Fluids. J. Nat. Gas Sci. Eng., 45, 118– 126. DOI: 10.1016/j.jngse.2017.03.014
dc.relation.references18. Carletti, C.; Bikić, S.; Montante, G.; Paglianti, A. (2018). Mass Transfer in Dilute Solid-liquid Stirred Tanks. Ind. Eng. Chem. Res., 57, 6505–6515. DOI:10.1021/acs.iecr.7b04730
dc.relation.references19. Harriott, P. (1962). Mass Transfer to Particles: Part I. Suspended in Agitated Tanks. AIChE J., 8, 93–101. DOI: 10.1002/aic.690080122
dc.relation.references20. Guiza, S.; Hajji, H.; Bagane, M. (2019). External Mass Transport Process during the Adsorption of Fluoride from Aqueous Solution by Activated Clay. C. R. Chim., 22, 161–168. DOI: 10.1016/j.crci.2019.02.001
dc.relation.references21. Girish, C. R.; Murty, V. R. (2016). Mass Transfer Studies on Adsorption of Phenol from Wastewater Using Lantana Camara. Int. J. Chem. Eng., 1–11.DOI: 10.1155/2016/5809505
dc.relation.references22. Oriakhi, C. O. (2021). Chemistry in Quantitative Language: Fundamentals of General Chemistry Calculations. Oxford: Oxford University Press.
dc.relation.references23. Salmi, T. O., Mikkola, J., & Warna, J. P.(2019). Chemical Reaction Engineering and Reactor Technology (2nd ed.). Boca Raton: CRC Press.
dc.relation.references24. Sabadash, V., Mylanyk, O., Matsuska, O., & Gumnitsky, J. (2017). Kinetic regularities of copper ions adsorption by natural zeolite. Chemistry & Chemical Technology, 11, 459–462.https://doi.org/10.23939/chcht11.04.459
dc.relation.references25. Miyabe, K., & Isogai, R. (2011). Estimation of molecular diffusivity in liquid phase systems by the Wilke–Chang equation. Journal of Chromatography,1218(38), 6639–6645. https://doi.org/10.1016/j.chroma.2011.07.018
dc.relation.referencesen1. Wahl, M. (2005). Boric acid. In Encyclopedia of Toxicology (2nd ed., pp. 329–330). https://doi.org/10.1016/B0-12-369400-0/00142-3
dc.relation.referencesen2. Nahurskyi, O. A. (2012). Zakonomirnosti kapsuluvannia rechovyn u stani pseudoridzhennia ta yikh dyfuziinoho vivilnennia: monohrafiia. Lviv: Vydavnytstvo Lvivskoi politekhniky.
dc.relation.referencesen3. Liang H, Jahanmir S. (1995). Boric acid as an additive for core-drilling of alumina. J. Tribol., 117:65–73.
dc.relation.referencesen4. Wei J. J., Erdemir A., Fenske G. R. (2000). Dry lubricant films for aluminum forming. Tribol. Trans.,43(3):535–41.
dc.relation.referencesen5. Erdemir A. (1991). Tribological properties of boric acid and boric-acid-forming surfaces. Part I: crystal chemistry and mechanism of self- lubrication of boric acid. Lubr. Eng., 47:168–73.
dc.relation.referencesen6. Rao K. P., Wei J. J. (2001). Performance of a new dry lubricant in the forming of aluminum alloy sheets. Wear, 249, 86–93.
dc.relation.referencesen7. Lyuta, O. V., & Symak, D. M. (2018). Extraction of soluble solid phase from a layer of porous inert medium. Bulletin of Lviv Polytechnic National University. Chemistry, Technology of Substances and Their Applications, (886), 165–170.
dc.relation.referencesen8. Atamaniuk, V. M., Symak, D. M., & Danyliuk, O. M. (2016). Dissolution of the polydisperse solid phase in a gas-liquid flow. Bulletin of Lviv Polytechnic National University. Chemistry, Technology of Substances and Their Applications, (841), 271–277.
dc.relation.referencesen9. Symak, D., Atamaniuk, V., & Gumnitsky, Ya.(2015). Analysis of dissolution kinetics based on the local isotropic turbulence theory. Chemistry & Chemical Technology, 9(4), 493–497. https://doi.org/10.23939/chcht09.04.493
dc.relation.referencesen10. Sabadash, V., Mylanyk, O., Matsutska, O., & Gumnytsky, J. (2017). Kinetic regularities of copper ions adsorption by natural zeolite. Chemistry & Chemical Technology, 11(4), 459–462. https://doi.org/10.23939/chcht11.04.459
dc.relation.referencesen11. Symak, D. M., & Liuta, O. V. (2015). Nestatsionarnyi protses rozchynennia sharu zernystoho materialu. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, (812), 308–312.
dc.relation.referencesen12. Symak, D., Gumnytsky, Y., Atamaniuk, V.,& Danyliuk, O. (2015). Kinetika rozchynnya polidyspersnoho kaliyu sulfatu za pereminnoyi rushiynoyi syly. Scientific Works, 80(1). https://doi.org/10.15673/swonaft.v80i1.193
dc.relation.referencesen13. Aksielrud, G., & Lysiański, V. (1978). Solidliquid extraction. Warsaw: Wydaw, Nauk. Techn.
dc.relation.referencesen14. Semenishin, Y. M., Trotskyi, V. I., & Fedorchuk-Moroz, V. I. (2004). Osoblyvosti ekstrahuvannia tsilovykh komponentiv z porystykh struktur. Naukovyi visnyk NLTU Ukrainy, 14(4), 317–321.
dc.relation.referencesen15. Humnytskyi, Y. M., & Symak, D. M. (2017). Intensification of mass transfer processes in the solidliquid system by the introduction of the gas phase. Proceedings of the XVIII International Scientific and Practical Conference.
dc.relation.referencesen16. Pangarkar, V. G.; Yawalkar, A. A.; Sharma, M. M.; Beenackers, A. A. C. M. (2002). Particle– Liquid Mass Transfer Coefficient in Two-/Three-Phase Stirred Tank Reactors. Ind. Eng. Chem. Res., 41, 4141–4167. DOI: 10.1021/ie010933j
dc.relation.referencesen17. Meneses, J. P. C. H.; Calcada, L. A.; Scheid, C. M.; Magalhães, S. d. C. (2017). Determination of the Convective Mass Transfer Coefficient in the Dissolution of NaCl Particles in Non-Newtonian Fluids. J. Nat. Gas Sci. Eng., 45, 118– 126. DOI: 10.1016/j.jngse.2017.03.014
dc.relation.referencesen18. Carletti, C.; Bikić, S.; Montante, G.; Paglianti, A. (2018). Mass Transfer in Dilute Solid-liquid Stirred Tanks. Ind. Eng. Chem. Res., 57, 6505–6515. DOI:10.1021/acs.iecr.7b04730
dc.relation.referencesen19. Harriott, P. (1962). Mass Transfer to Particles: Part I. Suspended in Agitated Tanks. AIChE J., 8, 93–101. DOI: 10.1002/aic.690080122
dc.relation.referencesen20. Guiza, S.; Hajji, H.; Bagane, M. (2019). External Mass Transport Process during the Adsorption of Fluoride from Aqueous Solution by Activated Clay. C. R. Chim., 22, 161–168. DOI: 10.1016/j.crci.2019.02.001
dc.relation.referencesen21. Girish, C. R.; Murty, V. R. (2016). Mass Transfer Studies on Adsorption of Phenol from Wastewater Using Lantana Camara. Int. J. Chem. Eng., 1–11.DOI: 10.1155/2016/5809505
dc.relation.referencesen22. Oriakhi, C. O. (2021). Chemistry in Quantitative Language: Fundamentals of General Chemistry Calculations. Oxford: Oxford University Press.
dc.relation.referencesen23. Salmi, T. O., Mikkola, J., & Warna, J. P.(2019). Chemical Reaction Engineering and Reactor Technology (2nd ed.). Boca Raton: CRC Press.
dc.relation.referencesen24. Sabadash, V., Mylanyk, O., Matsuska, O., & Gumnitsky, J. (2017). Kinetic regularities of copper ions adsorption by natural zeolite. Chemistry & Chemical Technology, 11, 459–462.https://doi.org/10.23939/chcht11.04.459
dc.relation.referencesen25. Miyabe, K., & Isogai, R. (2011). Estimation of molecular diffusivity in liquid phase systems by the Wilke–Chang equation. Journal of Chromatography,1218(38), 6639–6645. https://doi.org/10.1016/j.chroma.2011.07.018
dc.relation.urihttps://doi.org/10.1016/B0-12-369400-0/00142-3
dc.relation.urihttps://doi.org/10.23939/chcht09.04.493
dc.relation.urihttps://doi.org/10.23939/chcht11.04.459
dc.relation.urihttps://doi.org/10.15673/swonaft.v80i1.193
dc.relation.urihttps://doi.org/10.1016/j.chroma.2011.07.018
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.subjectборна кислота
dc.subjectрозчинення
dc.subjectчастота обертання мішалки
dc.subjectкоефіцієнт масовіддачі
dc.subjectсистема тверде тіло – рідина
dc.subjectboric acid
dc.subjectdissolution
dc.subjectstirring frequency
dc.subjectmass transfer coefficient
dc.subjectsolidliquid system
dc.titleThe mass transfer during the dissolution of boric acid in water intensified by mechanical stirring
dc.title.alternativeМасообмін під час розчинення борної кислоти у воді, інтенсифікований механічним перемішуванням
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v7n2_Kuzyk_O_O-The_mass_transfer_during_153-160.pdf
Size:
2.8 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: