Водо-дисперсні флуоресцентні наноматеріали на основі боронітридних нанотрубок

dc.citation.epage173
dc.citation.issue2
dc.citation.spage169
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСтецишин, Ю. Б.
dc.contributor.authorШевцова, Т. В.
dc.contributor.authorКостенко, М. Б.
dc.contributor.authorStetsyshyn, Y. B.
dc.contributor.authorShevtsova, T. V.
dc.contributor.authorKostenko, M. B.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T07:35:31Z
dc.date.available2024-01-22T07:35:31Z
dc.date.created2020-03-16
dc.date.issued2020-03-16
dc.description.abstractВододисперсні флуоресцентні наноматеріали на основі боронітридних нанотрубок та прищеплених щіток полі(акрилової кислоти-ко-флуоресцеїн акрилату) були успішно синтезовані під час двостадійного процесу. Функціоналізація нанонотрубок підтверджена спектроскопічним та гравіметричним методами. Нанотрубки модифіковані полімерними щітками демонструють інтенсивну емісію зеленої флуоресценції при 520 нм. Розроблена гібридна структура потенційно може використовуватися для візуалізації клітин, як “розумна” поверхня, нанотрансдуктор та наноносій.
dc.description.abstractWater-dispersed fluorescence nanomaterials based on boron nitride nanotubes and grafted copolymer brushes (poly(acrylic acid-co-fluorescein acrylate) were successfully fabricated in a two-step process. The functionalization of BNNTs was confirmed by spectroscopic, gravimetric and imaging techniques. In contrast to “pure” BNNTs, functionalized BNNTs demonstrate intense green fluorescence emission at 520 nm. The developed hybrid structure can potentially be used for cellular imaging, as “smart” surfaces, nanotransducers and nanocarriers.
dc.format.extent169-173
dc.format.pages5
dc.identifier.citationСтецишин Ю. Б. Водо-дисперсні флуоресцентні наноматеріали на основі боронітридних нанотрубок / Ю. Б. Стецишин, Т. В. Шевцова, М. Б. Костенко // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2020. — Том 3. — № 2. — С. 169–173.
dc.identifier.citationenStetsyshyn Y. B. Water-dispersed fluorescence nanomaterials based on boron nitride nanotubes / Y. B. Stetsyshyn, T. V. Shevtsova, M. B. Kostenko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 2. — P. 169–173.
dc.identifier.doidoi.org/10.23939/ctas2020.02.169
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60824
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (3), 2020
dc.relation.references1. Cavallaro, G., Lazzara, G., Milioto, S., Parisi, F., Evtugyn, V., Rozhina, E., Fakhrullin, R. (2018). Nanohydrogel formation within the halloysite lumen for triggered and sustained release. ACS Appl. Mater. Interfaces, 10, 8265. https://doi.org/10.1021/acsami.7b19361
dc.relation.references2. Marchenko, I., Yashchenok, A., German, S., Inozemtseva, O., Gorin, D., Bukreeva, T., Mohwald, H., Skirtach, A. (2010). Polyelectrolytes: Influence on evaporative self-assembly of particles and assembly of multilayers with polymers, nanoparticles and carbon nanotubes. Polymers, 2, 690. https://doi.org/10.3390/polym2040690
dc.relation.references3. Lisuzzo, L., Cavallaro, G., Lazzara, G., Milioto, S., Parisi, F. (2018). Stability of halloysite, imogolite, and boron nitride nanotubes in solvent media. Appl. Sci. (Switzerland), 8, 1068. https://doi.org/10.3390/app8071068
dc.relation.references4. Ciofani, G., Genchi, G., Liakos, I., Athanassiou, A., Dinucci, D., Chiellini, F., Mattoli, V. (2012). A simple approach to covalent functionalization of boron nitride nanotubes. J. Colloid Interface Sci., 374, 308. https://doi.org/10.1016/j.jcis.2012.01.049
dc.relation.references5. Zhi, C., Bando, Y., Tang, C., Xie, R., Sekiguchi, T., Golberg, D. (2005). Perfectly dissolved boron nitride nanotubes due to polymer wrapping. J. Am. Chem. Soc., 127, 15996. https://doi.org/10.1021/ja053917c
dc.relation.references6. Terao, T., Zhi, C., Bando, Y., Mitome, M., Tang, C., Golberg, D. (2010). Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J. Phys. Chem. C, 114, 4340. https://doi.org/10.1021/jp911431f
dc.relation.references7. Gao, Z., Zhi, C., Bando, Y., Golberg, D., Serizawa, T. (2014). Noncovalent functionalization of boron nitride nanotubes in aqueousmedia opens application roads in nanobiomedicine. Nanobiomedicine, 1, 7. https://doi.org/10.5772/60000
dc.relation.references8. Ejaz, M., Rai, S. C., Wang, K., Zhang, K., Zhou, W., Grayson, S.M. (2014). Surface-initiated atom transfer radical polymerization of glycidyl methacrylate and styrene from boron nitride nanotubes, J. of Materials Chem. C, 2, 4073. https://doi.org/10.1039/c3tc32511c.
dc.relation.references9. Stetsyshyn, Y., Kostruba, A., Harhay, K., Donchak, V., Ohar, H., Savaryn, V., Kulyk, B., Ripak, L., Nastishin, Y. (2015). Multifunctional cholesterol-based peroxide for modification of amino-terminated surfaces: Synthesis, structure and characterization of grafted layer. Appl. Surf. Sci., 347, 299. https://doi.org/10.1016/j.apsusc.2015.04.110
dc.relation.references10. Stetsyshyn, Y., Awsiuk, K., Kusnezh, V., Raczkowska, J., Jany, B., Kostruba, A., Harhay, K., Ohar, H., Lishchynskyi, O., Shymborska, Y., Kryvenchuk, Y., Krok, F., Budkowski, A. (2019). Shape-Controlled synthesis of silver nanoparticles in temperature-responsive grafted polymer brushes for optical applications. Appl. Surf. Sci., 463, 1124. https://doi.org/10.1016/j.apsusc.2018.09.033
dc.relation.references11. Kalay, S., Stetsyshyn, Y., Lobaz, V., Harhay, K., Ohar, H., Çulha, M. (2015) Water-dispersed thermo-responsive boron nitride nanotubes: Synthesis and properties. Nanotechnology, 27, 035703. https://doi.org/10.1088/0957-4484/27/3/035703.
dc.relation.references12. Song, A., Zhang, J., Zhang, M., Shen, T., Tang, J. (2000). Spectral properties and structure of fluorescein and its alkyl derivatives in micelles. Colloids Surf. A, 167, 253. https://doi.org/10.1016/s0927-7757(99)00313-1
dc.relation.references13. Martin, M., Lindqvist, L. (1975). The pH dependence of fluorescein fluorescence. J. Lumin. 10, 381. https://doi.org/10.1016/0022-2313(75)90003-4
dc.relation.referencesen1. Cavallaro, G., Lazzara, G., Milioto, S., Parisi, F., Evtugyn, V., Rozhina, E., Fakhrullin, R. (2018). Nanohydrogel formation within the halloysite lumen for triggered and sustained release. ACS Appl. Mater. Interfaces, 10, 8265. https://doi.org/10.1021/acsami.7b19361
dc.relation.referencesen2. Marchenko, I., Yashchenok, A., German, S., Inozemtseva, O., Gorin, D., Bukreeva, T., Mohwald, H., Skirtach, A. (2010). Polyelectrolytes: Influence on evaporative self-assembly of particles and assembly of multilayers with polymers, nanoparticles and carbon nanotubes. Polymers, 2, 690. https://doi.org/10.3390/polym2040690
dc.relation.referencesen3. Lisuzzo, L., Cavallaro, G., Lazzara, G., Milioto, S., Parisi, F. (2018). Stability of halloysite, imogolite, and boron nitride nanotubes in solvent media. Appl. Sci. (Switzerland), 8, 1068. https://doi.org/10.3390/app8071068
dc.relation.referencesen4. Ciofani, G., Genchi, G., Liakos, I., Athanassiou, A., Dinucci, D., Chiellini, F., Mattoli, V. (2012). A simple approach to covalent functionalization of boron nitride nanotubes. J. Colloid Interface Sci., 374, 308. https://doi.org/10.1016/j.jcis.2012.01.049
dc.relation.referencesen5. Zhi, C., Bando, Y., Tang, C., Xie, R., Sekiguchi, T., Golberg, D. (2005). Perfectly dissolved boron nitride nanotubes due to polymer wrapping. J. Am. Chem. Soc., 127, 15996. https://doi.org/10.1021/ja053917c
dc.relation.referencesen6. Terao, T., Zhi, C., Bando, Y., Mitome, M., Tang, C., Golberg, D. (2010). Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J. Phys. Chem. C, 114, 4340. https://doi.org/10.1021/jp911431f
dc.relation.referencesen7. Gao, Z., Zhi, C., Bando, Y., Golberg, D., Serizawa, T. (2014). Noncovalent functionalization of boron nitride nanotubes in aqueousmedia opens application roads in nanobiomedicine. Nanobiomedicine, 1, 7. https://doi.org/10.5772/60000
dc.relation.referencesen8. Ejaz, M., Rai, S. C., Wang, K., Zhang, K., Zhou, W., Grayson, S.M. (2014). Surface-initiated atom transfer radical polymerization of glycidyl methacrylate and styrene from boron nitride nanotubes, J. of Materials Chem. C, 2, 4073. https://doi.org/10.1039/P.3tc32511c.
dc.relation.referencesen9. Stetsyshyn, Y., Kostruba, A., Harhay, K., Donchak, V., Ohar, H., Savaryn, V., Kulyk, B., Ripak, L., Nastishin, Y. (2015). Multifunctional cholesterol-based peroxide for modification of amino-terminated surfaces: Synthesis, structure and characterization of grafted layer. Appl. Surf. Sci., 347, 299. https://doi.org/10.1016/j.apsusc.2015.04.110
dc.relation.referencesen10. Stetsyshyn, Y., Awsiuk, K., Kusnezh, V., Raczkowska, J., Jany, B., Kostruba, A., Harhay, K., Ohar, H., Lishchynskyi, O., Shymborska, Y., Kryvenchuk, Y., Krok, F., Budkowski, A. (2019). Shape-Controlled synthesis of silver nanoparticles in temperature-responsive grafted polymer brushes for optical applications. Appl. Surf. Sci., 463, 1124. https://doi.org/10.1016/j.apsusc.2018.09.033
dc.relation.referencesen11. Kalay, S., Stetsyshyn, Y., Lobaz, V., Harhay, K., Ohar, H., Çulha, M. (2015) Water-dispersed thermo-responsive boron nitride nanotubes: Synthesis and properties. Nanotechnology, 27, 035703. https://doi.org/10.1088/0957-4484/27/3/035703.
dc.relation.referencesen12. Song, A., Zhang, J., Zhang, M., Shen, T., Tang, J. (2000). Spectral properties and structure of fluorescein and its alkyl derivatives in micelles. Colloids Surf. A, 167, 253. https://doi.org/10.1016/s0927-7757(99)00313-1
dc.relation.referencesen13. Martin, M., Lindqvist, L. (1975). The pH dependence of fluorescein fluorescence. J. Lumin. 10, 381. https://doi.org/10.1016/0022-2313(75)90003-4
dc.relation.urihttps://doi.org/10.1021/acsami.7b19361
dc.relation.urihttps://doi.org/10.3390/polym2040690
dc.relation.urihttps://doi.org/10.3390/app8071068
dc.relation.urihttps://doi.org/10.1016/j.jcis.2012.01.049
dc.relation.urihttps://doi.org/10.1021/ja053917c
dc.relation.urihttps://doi.org/10.1021/jp911431f
dc.relation.urihttps://doi.org/10.5772/60000
dc.relation.urihttps://doi.org/10.1039/c3tc32511c
dc.relation.urihttps://doi.org/10.1016/j.apsusc.2015.04.110
dc.relation.urihttps://doi.org/10.1016/j.apsusc.2018.09.033
dc.relation.urihttps://doi.org/10.1088/0957-4484/27/3/035703
dc.relation.urihttps://doi.org/10.1016/s0927-7757(99)00313-1
dc.relation.urihttps://doi.org/10.1016/0022-2313(75)90003-4
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subjectборонітридні нанотрубки
dc.subjectфлуоресценція
dc.subjectполімерні щітки
dc.subjectмодифікація поверхні
dc.subjectboron nitride nanotubes
dc.subjectfluorescence
dc.subjectpolymer brushes
dc.subjectsurface modification
dc.titleВодо-дисперсні флуоресцентні наноматеріали на основі боронітридних нанотрубок
dc.title.alternativeWater-dispersed fluorescence nanomaterials based on boron nitride nanotubes
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v3n2_Stetsyshyn_Y_B-Water_dispersed_fluorescence_169-173.pdf
Size:
685.89 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v3n2_Stetsyshyn_Y_B-Water_dispersed_fluorescence_169-173__COVER.png
Size:
475.48 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: