Водо-дисперсні флуоресцентні наноматеріали на основі боронітридних нанотрубок
dc.citation.epage | 173 | |
dc.citation.issue | 2 | |
dc.citation.spage | 169 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Стецишин, Ю. Б. | |
dc.contributor.author | Шевцова, Т. В. | |
dc.contributor.author | Костенко, М. Б. | |
dc.contributor.author | Stetsyshyn, Y. B. | |
dc.contributor.author | Shevtsova, T. V. | |
dc.contributor.author | Kostenko, M. B. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T07:35:31Z | |
dc.date.available | 2024-01-22T07:35:31Z | |
dc.date.created | 2020-03-16 | |
dc.date.issued | 2020-03-16 | |
dc.description.abstract | Вододисперсні флуоресцентні наноматеріали на основі боронітридних нанотрубок та прищеплених щіток полі(акрилової кислоти-ко-флуоресцеїн акрилату) були успішно синтезовані під час двостадійного процесу. Функціоналізація нанонотрубок підтверджена спектроскопічним та гравіметричним методами. Нанотрубки модифіковані полімерними щітками демонструють інтенсивну емісію зеленої флуоресценції при 520 нм. Розроблена гібридна структура потенційно може використовуватися для візуалізації клітин, як “розумна” поверхня, нанотрансдуктор та наноносій. | |
dc.description.abstract | Water-dispersed fluorescence nanomaterials based on boron nitride nanotubes and grafted copolymer brushes (poly(acrylic acid-co-fluorescein acrylate) were successfully fabricated in a two-step process. The functionalization of BNNTs was confirmed by spectroscopic, gravimetric and imaging techniques. In contrast to “pure” BNNTs, functionalized BNNTs demonstrate intense green fluorescence emission at 520 nm. The developed hybrid structure can potentially be used for cellular imaging, as “smart” surfaces, nanotransducers and nanocarriers. | |
dc.format.extent | 169-173 | |
dc.format.pages | 5 | |
dc.identifier.citation | Стецишин Ю. Б. Водо-дисперсні флуоресцентні наноматеріали на основі боронітридних нанотрубок / Ю. Б. Стецишин, Т. В. Шевцова, М. Б. Костенко // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2020. — Том 3. — № 2. — С. 169–173. | |
dc.identifier.citationen | Stetsyshyn Y. B. Water-dispersed fluorescence nanomaterials based on boron nitride nanotubes / Y. B. Stetsyshyn, T. V. Shevtsova, M. B. Kostenko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 2. — P. 169–173. | |
dc.identifier.doi | doi.org/10.23939/ctas2020.02.169 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60824 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (3), 2020 | |
dc.relation.references | 1. Cavallaro, G., Lazzara, G., Milioto, S., Parisi, F., Evtugyn, V., Rozhina, E., Fakhrullin, R. (2018). Nanohydrogel formation within the halloysite lumen for triggered and sustained release. ACS Appl. Mater. Interfaces, 10, 8265. https://doi.org/10.1021/acsami.7b19361 | |
dc.relation.references | 2. Marchenko, I., Yashchenok, A., German, S., Inozemtseva, O., Gorin, D., Bukreeva, T., Mohwald, H., Skirtach, A. (2010). Polyelectrolytes: Influence on evaporative self-assembly of particles and assembly of multilayers with polymers, nanoparticles and carbon nanotubes. Polymers, 2, 690. https://doi.org/10.3390/polym2040690 | |
dc.relation.references | 3. Lisuzzo, L., Cavallaro, G., Lazzara, G., Milioto, S., Parisi, F. (2018). Stability of halloysite, imogolite, and boron nitride nanotubes in solvent media. Appl. Sci. (Switzerland), 8, 1068. https://doi.org/10.3390/app8071068 | |
dc.relation.references | 4. Ciofani, G., Genchi, G., Liakos, I., Athanassiou, A., Dinucci, D., Chiellini, F., Mattoli, V. (2012). A simple approach to covalent functionalization of boron nitride nanotubes. J. Colloid Interface Sci., 374, 308. https://doi.org/10.1016/j.jcis.2012.01.049 | |
dc.relation.references | 5. Zhi, C., Bando, Y., Tang, C., Xie, R., Sekiguchi, T., Golberg, D. (2005). Perfectly dissolved boron nitride nanotubes due to polymer wrapping. J. Am. Chem. Soc., 127, 15996. https://doi.org/10.1021/ja053917c | |
dc.relation.references | 6. Terao, T., Zhi, C., Bando, Y., Mitome, M., Tang, C., Golberg, D. (2010). Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J. Phys. Chem. C, 114, 4340. https://doi.org/10.1021/jp911431f | |
dc.relation.references | 7. Gao, Z., Zhi, C., Bando, Y., Golberg, D., Serizawa, T. (2014). Noncovalent functionalization of boron nitride nanotubes in aqueousmedia opens application roads in nanobiomedicine. Nanobiomedicine, 1, 7. https://doi.org/10.5772/60000 | |
dc.relation.references | 8. Ejaz, M., Rai, S. C., Wang, K., Zhang, K., Zhou, W., Grayson, S.M. (2014). Surface-initiated atom transfer radical polymerization of glycidyl methacrylate and styrene from boron nitride nanotubes, J. of Materials Chem. C, 2, 4073. https://doi.org/10.1039/c3tc32511c. | |
dc.relation.references | 9. Stetsyshyn, Y., Kostruba, A., Harhay, K., Donchak, V., Ohar, H., Savaryn, V., Kulyk, B., Ripak, L., Nastishin, Y. (2015). Multifunctional cholesterol-based peroxide for modification of amino-terminated surfaces: Synthesis, structure and characterization of grafted layer. Appl. Surf. Sci., 347, 299. https://doi.org/10.1016/j.apsusc.2015.04.110 | |
dc.relation.references | 10. Stetsyshyn, Y., Awsiuk, K., Kusnezh, V., Raczkowska, J., Jany, B., Kostruba, A., Harhay, K., Ohar, H., Lishchynskyi, O., Shymborska, Y., Kryvenchuk, Y., Krok, F., Budkowski, A. (2019). Shape-Controlled synthesis of silver nanoparticles in temperature-responsive grafted polymer brushes for optical applications. Appl. Surf. Sci., 463, 1124. https://doi.org/10.1016/j.apsusc.2018.09.033 | |
dc.relation.references | 11. Kalay, S., Stetsyshyn, Y., Lobaz, V., Harhay, K., Ohar, H., Çulha, M. (2015) Water-dispersed thermo-responsive boron nitride nanotubes: Synthesis and properties. Nanotechnology, 27, 035703. https://doi.org/10.1088/0957-4484/27/3/035703. | |
dc.relation.references | 12. Song, A., Zhang, J., Zhang, M., Shen, T., Tang, J. (2000). Spectral properties and structure of fluorescein and its alkyl derivatives in micelles. Colloids Surf. A, 167, 253. https://doi.org/10.1016/s0927-7757(99)00313-1 | |
dc.relation.references | 13. Martin, M., Lindqvist, L. (1975). The pH dependence of fluorescein fluorescence. J. Lumin. 10, 381. https://doi.org/10.1016/0022-2313(75)90003-4 | |
dc.relation.referencesen | 1. Cavallaro, G., Lazzara, G., Milioto, S., Parisi, F., Evtugyn, V., Rozhina, E., Fakhrullin, R. (2018). Nanohydrogel formation within the halloysite lumen for triggered and sustained release. ACS Appl. Mater. Interfaces, 10, 8265. https://doi.org/10.1021/acsami.7b19361 | |
dc.relation.referencesen | 2. Marchenko, I., Yashchenok, A., German, S., Inozemtseva, O., Gorin, D., Bukreeva, T., Mohwald, H., Skirtach, A. (2010). Polyelectrolytes: Influence on evaporative self-assembly of particles and assembly of multilayers with polymers, nanoparticles and carbon nanotubes. Polymers, 2, 690. https://doi.org/10.3390/polym2040690 | |
dc.relation.referencesen | 3. Lisuzzo, L., Cavallaro, G., Lazzara, G., Milioto, S., Parisi, F. (2018). Stability of halloysite, imogolite, and boron nitride nanotubes in solvent media. Appl. Sci. (Switzerland), 8, 1068. https://doi.org/10.3390/app8071068 | |
dc.relation.referencesen | 4. Ciofani, G., Genchi, G., Liakos, I., Athanassiou, A., Dinucci, D., Chiellini, F., Mattoli, V. (2012). A simple approach to covalent functionalization of boron nitride nanotubes. J. Colloid Interface Sci., 374, 308. https://doi.org/10.1016/j.jcis.2012.01.049 | |
dc.relation.referencesen | 5. Zhi, C., Bando, Y., Tang, C., Xie, R., Sekiguchi, T., Golberg, D. (2005). Perfectly dissolved boron nitride nanotubes due to polymer wrapping. J. Am. Chem. Soc., 127, 15996. https://doi.org/10.1021/ja053917c | |
dc.relation.referencesen | 6. Terao, T., Zhi, C., Bando, Y., Mitome, M., Tang, C., Golberg, D. (2010). Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J. Phys. Chem. C, 114, 4340. https://doi.org/10.1021/jp911431f | |
dc.relation.referencesen | 7. Gao, Z., Zhi, C., Bando, Y., Golberg, D., Serizawa, T. (2014). Noncovalent functionalization of boron nitride nanotubes in aqueousmedia opens application roads in nanobiomedicine. Nanobiomedicine, 1, 7. https://doi.org/10.5772/60000 | |
dc.relation.referencesen | 8. Ejaz, M., Rai, S. C., Wang, K., Zhang, K., Zhou, W., Grayson, S.M. (2014). Surface-initiated atom transfer radical polymerization of glycidyl methacrylate and styrene from boron nitride nanotubes, J. of Materials Chem. C, 2, 4073. https://doi.org/10.1039/P.3tc32511c. | |
dc.relation.referencesen | 9. Stetsyshyn, Y., Kostruba, A., Harhay, K., Donchak, V., Ohar, H., Savaryn, V., Kulyk, B., Ripak, L., Nastishin, Y. (2015). Multifunctional cholesterol-based peroxide for modification of amino-terminated surfaces: Synthesis, structure and characterization of grafted layer. Appl. Surf. Sci., 347, 299. https://doi.org/10.1016/j.apsusc.2015.04.110 | |
dc.relation.referencesen | 10. Stetsyshyn, Y., Awsiuk, K., Kusnezh, V., Raczkowska, J., Jany, B., Kostruba, A., Harhay, K., Ohar, H., Lishchynskyi, O., Shymborska, Y., Kryvenchuk, Y., Krok, F., Budkowski, A. (2019). Shape-Controlled synthesis of silver nanoparticles in temperature-responsive grafted polymer brushes for optical applications. Appl. Surf. Sci., 463, 1124. https://doi.org/10.1016/j.apsusc.2018.09.033 | |
dc.relation.referencesen | 11. Kalay, S., Stetsyshyn, Y., Lobaz, V., Harhay, K., Ohar, H., Çulha, M. (2015) Water-dispersed thermo-responsive boron nitride nanotubes: Synthesis and properties. Nanotechnology, 27, 035703. https://doi.org/10.1088/0957-4484/27/3/035703. | |
dc.relation.referencesen | 12. Song, A., Zhang, J., Zhang, M., Shen, T., Tang, J. (2000). Spectral properties and structure of fluorescein and its alkyl derivatives in micelles. Colloids Surf. A, 167, 253. https://doi.org/10.1016/s0927-7757(99)00313-1 | |
dc.relation.referencesen | 13. Martin, M., Lindqvist, L. (1975). The pH dependence of fluorescein fluorescence. J. Lumin. 10, 381. https://doi.org/10.1016/0022-2313(75)90003-4 | |
dc.relation.uri | https://doi.org/10.1021/acsami.7b19361 | |
dc.relation.uri | https://doi.org/10.3390/polym2040690 | |
dc.relation.uri | https://doi.org/10.3390/app8071068 | |
dc.relation.uri | https://doi.org/10.1016/j.jcis.2012.01.049 | |
dc.relation.uri | https://doi.org/10.1021/ja053917c | |
dc.relation.uri | https://doi.org/10.1021/jp911431f | |
dc.relation.uri | https://doi.org/10.5772/60000 | |
dc.relation.uri | https://doi.org/10.1039/c3tc32511c | |
dc.relation.uri | https://doi.org/10.1016/j.apsusc.2015.04.110 | |
dc.relation.uri | https://doi.org/10.1016/j.apsusc.2018.09.033 | |
dc.relation.uri | https://doi.org/10.1088/0957-4484/27/3/035703 | |
dc.relation.uri | https://doi.org/10.1016/s0927-7757(99)00313-1 | |
dc.relation.uri | https://doi.org/10.1016/0022-2313(75)90003-4 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.subject | боронітридні нанотрубки | |
dc.subject | флуоресценція | |
dc.subject | полімерні щітки | |
dc.subject | модифікація поверхні | |
dc.subject | boron nitride nanotubes | |
dc.subject | fluorescence | |
dc.subject | polymer brushes | |
dc.subject | surface modification | |
dc.title | Водо-дисперсні флуоресцентні наноматеріали на основі боронітридних нанотрубок | |
dc.title.alternative | Water-dispersed fluorescence nanomaterials based on boron nitride nanotubes | |
dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1