Програмна аналітична стохастична модель експлуатаційної функційної поведінки радіоелектронного комплексу виявлення безпілотних літальних апаратів

dc.citation.epage149
dc.citation.issue2
dc.citation.journalTitleІнфокомунікаційні технології та електронна інженерія
dc.citation.spage126
dc.citation.volume3
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональна академія сухопутних військ імені Гетьмана Петра Сагайдачного
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationHetman Petro Sagaidachny National Academy of Land Forces
dc.contributor.authorВолочій, Б.
dc.contributor.authorОнищенко, В.
dc.contributor.authorОзірковський, Л.
dc.contributor.authorVolochiy, B.
dc.contributor.authorOnishchenko, V.
dc.contributor.authorOzirkovskyy, L.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-07-22T11:15:23Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractРозглянуто радіоелектронний комплекс виявлення безпілотних літальних апаратів, до складу якого входять: радіолокаційна система, оптико-електронна система, тепловізійна система і акустична система. В інформаційній технології розроблення програмної дискретно-неперервної стохастичної моделі експлуатаційної поведінки радіоелектронного комплексу важливим етапом є створення структурно-автоматної моделі. Створення структурно-автоматної моделі в статті описано в такій послідовності: вибраний алгоритм функціонування радіоелектронного комплексу; вербальна модель експлуатаційної функційної поведінки радіоелектронного комплексу; згідно із вербальною моделлю висвітлено розроблення опорного графа станів і переходів; на основі опорного графа станів і переходів сформовано структурно-автоматну модель експлуатаційної поведінки; вказано на необхідність верифікації розробленої структурно-автоматної моделі. Поєднання структурно-автоматної моделі експлуатаційної поведінки з програмним модулем АСНА-2 утворює програмну стохастичну модель. Програмна стохастична модель призначена для розв’язання задач системотехнічного проєктування (аналізу та синтезу) радіоелектронного комплексу. Структурно-автоматна модель дає змогу проєктанту задавати будь-які значення показників ефективності систем, які входять до складу радіоелектронного комплексу. Програмний модуль АСНА-2 автоматизує побудову графів станів на основі структурно-автоматної моделі; відповідно до графа станів здійснює формування і розв’язання системи диференціальних рівнянь Колмогорова – Чепмена. За допомогою валідації програмної стохастичної моделі здійснено перевірку достовірності результатів, які отримав проєктант.
dc.description.abstractThe article considers an electronic system for detecting unmanned aerial vehicles, which includes a radar system, an optoelectronic system, a thermal imaging system, and an acoustic system. In information technology, the development of a software discrete-continuous stochastic model of the operational behavior of an electronic complex is an important stage in the creation of a structural-automatic model. The creation of a structural-automatic model is described in the article in the following sequence: description of the selected algorithm for the functioning of the electronic complex; verbal model of the operational functional behavior of the electronic complex; according to the verbal model, the development of a reference graph of states and transitions is described; on the basis of the reference graph of states and transitions, a structural-automatic model of operational behavior is formed; the need to verify the developed structural-automatic model is indicated. The combination of the structural-automatic model of operational behavior with the ASNA-2 software module forms a software stochastic model. The software stochastic model is designed to solve the problems of system engineering design (analysis and synthesis) of an electronic complex. The structural-automatic model allows the Designer to set any values of the performance indicators of the systems that are included in the electronic complex. The ASNA-2 software module automates the construction of state graphs based on the structural automated model; according to the state graph, it generates and solves the Kolmogorov-Chopman system of differential equations. By validating the software stochastic model, the reliability of the results to be obtained by the Projector was verified.
dc.format.extent126-149
dc.format.pages24
dc.identifier.citationВолочій Б. Програмна аналітична стохастична модель експлуатаційної функційної поведінки радіоелектронного комплексу виявлення безпілотних літальних апаратів / Б. Волочій, В. Онищенко, Л. Озірковський // Інфокомунікаційні технології та електронна інженерія. — Львів : Видавництво Львівської політехніки, 2023. — Том 3. — № 2. — С. 126–149.
dc.identifier.citationenVolochiy B. Software analytical stochastic model of operational functional behavior of the electronic complex for detecting unmanned aerial vehicles / B. Volochiy, V. Onishchenko, L. Ozirkovskyy // Infocommunication Technologies and Electronic Engineering. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 3. — No 2. — P. 126–149.
dc.identifier.doidoi.org/10.23939/ictee2023.02.126
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111446
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofІнфокомунікаційні технології та електронна інженерія, 2 (3), 2023
dc.relation.ispartofInfocommunication Technologies and Electronic Engineering, 2 (3), 2023
dc.relation.references[1] “Сounter-drone systems”, 2nd Edition, Arthur Holland Michel, December 2019. Access mode: https://www.calameo.com/read/000009779458ad0134023, Date of access: 17.08.2023
dc.relation.references[2] С. D. Vyshnevsky, L. V. Beilis, & V. Y. Klimchenko, “Potential capabilities of radar systems of radio engineering troops to detect operational and tactical unmanned aerial vehicles”, Science and Technique of the Air Force of the Armed Forces of Ukraine, 2017, No. 2, pp. 92–98. Access mode: http://nbuv.gov.ua/UJRN/Nitps_2017_2_21
dc.relation.references[3] V. Kartashov, V. Pososhenko, V. Voronin, V. Kolesnik, A. Kapusta, N. Rybnikov & E. Pershin, (2021). Methods for detection-recognition of radar, acoustic, optical and infrared signals of unmanned aerial vehicles. Radiotekhnika, 2(205), рр. 138-153. DOI: 10.30837rt.2021.2.205.15
dc.relation.references[4] “Questions to Ask When Researching Counter Unmanned Aerial Systems”, U.S. Department of Homeland Security Science and Technology Directorate, 2019. Access mode: https://www.dhs.gov/sites/default/files/publications/c-uas-responder-qs-poster_20august2020_final.pdf
dc.relation.references[5] A. O. Herasymenko, S. Ya. Zhuk, “Analysis of the Efficiency of the Kalman-Type Correlation Algorithm for Tracking of a Small UAV in the Presence of Uncorrelated Interference”, National Technical University of Ukraine ”Igor Sikorsky Kyiv Polytechnic Institute”, visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia, (87), pp. 22-29. DOI: 10.20535/RADAP.2021.87.22-29. Access mode: https://ela.kpi.ua/bitstream/123456789/56163/1/1754-4994-1-10-20211230.pdf Date of access: 17.08.2023.
dc.relation.references[6] V. M. Sineglazov, “Complex structure of UAVs detection and identification”, Electronics and Control Systems, Kyiv, Aviation Computer-Integrated Complexes Department, National Aviation University, 2015, No. 3(45), pp. 28-32. DOI:10.1109/ICICSP.2018.8549736. ISSN 1990-5548. Access mode: svm@nau.edu.ua
dc.relation.references[7] V. I. Chyhin, M. М. Protsenko, Y. V. Shabatura, and M. V. Buhaiov, “Improvement of the method of detecting unmanned aerial vehicles based on the results of spectral analysis of acoustic signals”, Military Technical Digest, 2019, (20), pp. 58-63. DOI: 10.33577/2312-4458.20.2019.58-63
dc.relation.references[8] A. Saravanakumar, K. Senthilkumar, “Еxploitation of Acoustic signature of low flying Aircraft using Acoustic Vector sensor”, Defence Science Journal, March 2014, Vol. 64, No. 2, pp. 95-98. DOI: 10.14429/dsj.64.3924
dc.relation.references[9] S. Sadasivan, M. Gurubasavaraj, and S. Ravi Sekar, “Acoustic Signature of an Unmanned Air Vehicle – Exploitation for Aircraft Localisation and Parameter Estimation”, Еronautical DEF SCI J, 2001, Vol. 51, No. 3, pp. 279-283. DOI: 10.14429/dsj.51.2238
dc.relation.references[10] T. Pham, N. Srour, “TTCP AG-6: Acoustic detection and tracking of UAVs” U.S. Army Research Laboratory. Proc. of SPIE, 2004, Vol. 5417, pp. 24-29. DOI: 10.1117/12.548194
dc.relation.references[11] Y. G. Danik, I. V. Puleko, & M. V. Bugayev, “Detection of unmanned aerial vehicles based on the analysis of acoustic and radar signals”, Bulletin of Zhytomyr State Technological University. Series: Technical sciences, 2014, No. 4, pp. 71–80. Access mode: http://nbuv.gov.ua/UJRN/Vzhdtu_2014_4_13.
dc.relation.references[12] F. Svanström, C. Englund and F. Alonso-Fernandez, “Real-Time Drone Detection and Tracking With Visible, Thermal and Acoustic Sensorsˮ, 2020, 25th International Conference on Pattern Recognition (ICPR), 2021, pp. 7265-7272. DOI: 10.1109/ICPR48806.2021.9413241. Access mode: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9413241&isnumber=9411911
dc.relation.references[13] W. Shi, G. Arabadjis, B. Bishop, P. Hill, R. Plasse and J. Yoder, “Detecting, Tracking, and Identifying Airborne Threats with Netted Sensor Fence”, in book: Sensor Fusion – Foundation and Applications, 2011, pp. 139–158. DOI: 10.5772/17666
dc.relation.references[14] C. Kouhestani, B. Woo, and G. Birch, “Counter unmanned aerial system testing and evaluation methodology”, Proc. SPIE 10184, Sensors, and Command, Control, Communicatons, and Intelligtnce (C3I) Technologies for Homeland Security, Defence, and Law Enforcement Applications XVI, 1018408 (5 May 2017). DOI: 10.1117/12.2262538.
dc.relation.references[15] Y. G. Danik, M. V. Bugayev, “Analysis of the efficiency of detection of tactical unmanned aerial vehicles by passive and active surveillance means”, Problems of creation, testing, application and operation of complex information systems, 2015, Vol. 10, pp. 5-20. Access mode: http://nbuv.gov.ua/UJRN/Psvz_2015_10_3.
dc.relation.references[16] V. P. Belyaev, B. Yu. Volochiy, A. V. Grabchak, M. V. Miskiv, & L. D. Ozirkovsky, “Modeling and evaluation of the efficiency of a local radio-electronic complex”, Information Selection and Processing. National Academy of Sciences of Ukraine, Vol. 13 (89), Lviv, 1999, pp. 65-70.
dc.relation.references[17] O. Shkiliuk, B. Volochiy, and I. Petliuk, “Discrete-Continuous Stochastic Model of Behavior Algorithm of Surveillance and Target Acquisition System”, Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, Vol. II, Kherson, Ukraine, June 12–15, 2019, pp. 761-776.
dc.relation.references[18] Yu. Salnyk, B. Volochiy, and V. Onishchenko, “Stochastic model of the reaction the unattended ground sensor system based on {3+3} scheme”, Proceedings of 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET-2020), Lviv–Slavske, Ukraine, February 25–29.2020, pp. 496-501. DOI: 10.1109/TCSET49122.2020.235482
dc.relation.references[19] Yu. P. Salnyk, B. Yu. Volochiy, “Stochastic model of functional behavior of the security system of a critical infrastructure facility”, Modern Information Systems, Vol. 5, No. 1, Kharkiv, National Technical University “Kharkiv Polytechnic Institute”, 2021, pp. 18–33. DOI: 10.20998/2522-9052.2021.1.03 Режим доступу: https://is.lpnu.ua/ScienceLP/Research/ArticlesEdit.aspx?id=78535
dc.relation.references[20] B. Yu. Volochiy, “Technology of modeling algorithms of behavior of information systems”, Lviv, Lviv Polytechnic National University Press, 2004, 220 p.
dc.relation.references[21] D. V. Fedasyuk, S. B. Volochiy, “Methodology for developing structural-automatic models of fault-tolerant systems with alternative continuations of random processes after control, switching and recovery procedures”, Bulletin of the Lviv Polytechnic National University “Computer Science and Information Technology”, Lviv Polytechnic National University Press, 2017, No. 864, pp. 49-62.
dc.relation.references[22] B. Yu. Volochiy, L. D. Ozirkovsky, “System engineering design of telecommunication networks. A practical guide”, Lviv, Lviv Polytechnic National University Press, 2012, 128 p.
dc.relation.references[23] B. Volochiy, V. Yakubenko, Y. Salnyk & P. Chernyshuk, “Software stochastic model of operational behavior of fault-tolerant systems of majoritarian type with voting rule {3 out of 5}”, 2021, Infocommunication Technologies and Electronic Engineering, Vol. 1, No. 2, 2021, pp. 94-113. DOI: 23939/ictee2021.02.094
dc.relation.referencesen[1] "Sounter-drone systems", 2nd Edition, Arthur Holland Michel, December 2019. Access mode: https://www.calameo.com/read/000009779458ad0134023, Date of access: 17.08.2023
dc.relation.referencesen[2] S. D. Vyshnevsky, L. V. Beilis, & V. Y. Klimchenko, "Potential capabilities of radar systems of radio engineering troops to detect operational and tactical unmanned aerial vehicles", Science and Technique of the Air Force of the Armed Forces of Ukraine, 2017, No. 2, pp. 92–98. Access mode: http://nbuv.gov.ua/UJRN/Nitps_2017_2_21
dc.relation.referencesen[3] V. Kartashov, V. Pososhenko, V. Voronin, V. Kolesnik, A. Kapusta, N. Rybnikov & E. Pershin, (2021). Methods for detection-recognition of radar, acoustic, optical and infrared signals of unmanned aerial vehicles. Radiotekhnika, 2(205), rr. 138-153. DOI: 10.30837rt.2021.2.205.15
dc.relation.referencesen[4] "Questions to Ask When Researching Counter Unmanned Aerial Systems", U.S. Department of Homeland Security Science and Technology Directorate, 2019. Access mode: https://www.dhs.gov/sites/default/files/publications/c-uas-responder-qs-poster_20august2020_final.pdf
dc.relation.referencesen[5] A. O. Herasymenko, S. Ya. Zhuk, "Analysis of the Efficiency of the Kalman-Type Correlation Algorithm for Tracking of a Small UAV in the Presence of Uncorrelated Interference", National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia, (87), pp. 22-29. DOI: 10.20535/RADAP.2021.87.22-29. Access mode: https://ela.kpi.ua/bitstream/123456789/56163/1/1754-4994-1-10-20211230.pdf Date of access: 17.08.2023.
dc.relation.referencesen[6] V. M. Sineglazov, "Complex structure of UAVs detection and identification", Electronics and Control Systems, Kyiv, Aviation Computer-Integrated Complexes Department, National Aviation University, 2015, No. 3(45), pp. 28-32. DOI:10.1109/ICICSP.2018.8549736. ISSN 1990-5548. Access mode: svm@nau.edu.ua
dc.relation.referencesen[7] V. I. Chyhin, M. M. Protsenko, Y. V. Shabatura, and M. V. Buhaiov, "Improvement of the method of detecting unmanned aerial vehicles based on the results of spectral analysis of acoustic signals", Military Technical Digest, 2019, (20), pp. 58-63. DOI: 10.33577/2312-4458.20.2019.58-63
dc.relation.referencesen[8] A. Saravanakumar, K. Senthilkumar, "Exploitation of Acoustic signature of low flying Aircraft using Acoustic Vector sensor", Defence Science Journal, March 2014, Vol. 64, No. 2, pp. 95-98. DOI: 10.14429/dsj.64.3924
dc.relation.referencesen[9] S. Sadasivan, M. Gurubasavaraj, and S. Ravi Sekar, "Acoustic Signature of an Unmanned Air Vehicle – Exploitation for Aircraft Localisation and Parameter Estimation", Eronautical DEF SCI J, 2001, Vol. 51, No. 3, pp. 279-283. DOI: 10.14429/dsj.51.2238
dc.relation.referencesen[10] T. Pham, N. Srour, "TTCP AG-6: Acoustic detection and tracking of UAVs" U.S. Army Research Laboratory. Proc. of SPIE, 2004, Vol. 5417, pp. 24-29. DOI: 10.1117/12.548194
dc.relation.referencesen[11] Y. G. Danik, I. V. Puleko, & M. V. Bugayev, "Detection of unmanned aerial vehicles based on the analysis of acoustic and radar signals", Bulletin of Zhytomyr State Technological University. Series: Technical sciences, 2014, No. 4, pp. 71–80. Access mode: http://nbuv.gov.ua/UJRN/Vzhdtu_2014_4_13.
dc.relation.referencesen[12] F. Svanström, C. Englund and F. Alonso-Fernandez, "Real-Time Drone Detection and Tracking With Visible, Thermal and Acoustic Sensorsˮ, 2020, 25th International Conference on Pattern Recognition (ICPR), 2021, pp. 7265-7272. DOI: 10.1109/ICPR48806.2021.9413241. Access mode: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9413241&isnumber=9411911
dc.relation.referencesen[13] W. Shi, G. Arabadjis, B. Bishop, P. Hill, R. Plasse and J. Yoder, "Detecting, Tracking, and Identifying Airborne Threats with Netted Sensor Fence", in book: Sensor Fusion – Foundation and Applications, 2011, pp. 139–158. DOI: 10.5772/17666
dc.relation.referencesen[14] C. Kouhestani, B. Woo, and G. Birch, "Counter unmanned aerial system testing and evaluation methodology", Proc. SPIE 10184, Sensors, and Command, Control, Communicatons, and Intelligtnce (P.3I) Technologies for Homeland Security, Defence, and Law Enforcement Applications XVI, 1018408 (5 May 2017). DOI: 10.1117/12.2262538.
dc.relation.referencesen[15] Y. G. Danik, M. V. Bugayev, "Analysis of the efficiency of detection of tactical unmanned aerial vehicles by passive and active surveillance means", Problems of creation, testing, application and operation of complex information systems, 2015, Vol. 10, pp. 5-20. Access mode: http://nbuv.gov.ua/UJRN/Psvz_2015_10_3.
dc.relation.referencesen[16] V. P. Belyaev, B. Yu. Volochiy, A. V. Grabchak, M. V. Miskiv, & L. D. Ozirkovsky, "Modeling and evaluation of the efficiency of a local radio-electronic complex", Information Selection and Processing. National Academy of Sciences of Ukraine, Vol. 13 (89), Lviv, 1999, pp. 65-70.
dc.relation.referencesen[17] O. Shkiliuk, B. Volochiy, and I. Petliuk, "Discrete-Continuous Stochastic Model of Behavior Algorithm of Surveillance and Target Acquisition System", Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, Vol. II, Kherson, Ukraine, June 12–15, 2019, pp. 761-776.
dc.relation.referencesen[18] Yu. Salnyk, B. Volochiy, and V. Onishchenko, "Stochastic model of the reaction the unattended ground sensor system based on {3+3} scheme", Proceedings of 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET-2020), Lviv–Slavske, Ukraine, February 25–29.2020, pp. 496-501. DOI: 10.1109/TCSET49122.2020.235482
dc.relation.referencesen[19] Yu. P. Salnyk, B. Yu. Volochiy, "Stochastic model of functional behavior of the security system of a critical infrastructure facility", Modern Information Systems, Vol. 5, No. 1, Kharkiv, National Technical University "Kharkiv Polytechnic Institute", 2021, pp. 18–33. DOI: 10.20998/2522-9052.2021.1.03 Access mode: https://is.lpnu.ua/ScienceLP/Research/ArticlesEdit.aspx?id=78535
dc.relation.referencesen[20] B. Yu. Volochiy, "Technology of modeling algorithms of behavior of information systems", Lviv, Lviv Polytechnic National University Press, 2004, 220 p.
dc.relation.referencesen[21] D. V. Fedasyuk, S. B. Volochiy, "Methodology for developing structural-automatic models of fault-tolerant systems with alternative continuations of random processes after control, switching and recovery procedures", Bulletin of the Lviv Polytechnic National University "Computer Science and Information Technology", Lviv Polytechnic National University Press, 2017, No. 864, pp. 49-62.
dc.relation.referencesen[22] B. Yu. Volochiy, L. D. Ozirkovsky, "System engineering design of telecommunication networks. A practical guide", Lviv, Lviv Polytechnic National University Press, 2012, 128 p.
dc.relation.referencesen[23] B. Volochiy, V. Yakubenko, Y. Salnyk & P. Chernyshuk, "Software stochastic model of operational behavior of fault-tolerant systems of majoritarian type with voting rule {3 out of 5}", 2021, Infocommunication Technologies and Electronic Engineering, Vol. 1, No. 2, 2021, pp. 94-113. DOI: 23939/ictee2021.02.094
dc.relation.urihttps://www.calameo.com/read/000009779458ad0134023
dc.relation.urihttp://nbuv.gov.ua/UJRN/Nitps_2017_2_21
dc.relation.urihttps://www.dhs.gov/sites/default/files/publications/c-uas-responder-qs-poster_20august2020_final.pdf
dc.relation.urihttps://ela.kpi.ua/bitstream/123456789/56163/1/1754-4994-1-10-20211230.pdf
dc.relation.urihttp://nbuv.gov.ua/UJRN/Vzhdtu_2014_4_13
dc.relation.urihttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9413241&isnumber=9411911
dc.relation.urihttp://nbuv.gov.ua/UJRN/Psvz_2015_10_3
dc.relation.urihttps://is.lpnu.ua/ScienceLP/Research/ArticlesEdit.aspx?id=78535
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectбезпілотні літальні апарати
dc.subjectвиявлення повітряних цілей
dc.subjectрадіоелектронний комплекс виявлення БпЛА
dc.subjectексплуатаційна поведінка комплексу
dc.subjectструктурно-автоматна модель екплуатаційної поведінки
dc.subjectдискретно-неперервна стохастична модель екплуатаційної поведінки
dc.subjectвалідація стохастичної моделі
dc.subjectunmanned aerial vehicles
dc.subjectdetection of air targets
dc.subjectUAV detection electronic complex
dc.subjectoperational behavior of the complex
dc.subjectstructural-automatic model of operational behavior
dc.subjectdiscrete-continuous stochastic model of operational behavior
dc.subjectvalidation of the stochastic model
dc.subject.udc629.039.58
dc.subject.udc621.396.9
dc.titleПрограмна аналітична стохастична модель експлуатаційної функційної поведінки радіоелектронного комплексу виявлення безпілотних літальних апаратів
dc.title.alternativeSoftware analytical stochastic model of operational functional behavior of the electronic complex for detecting unmanned aerial vehicles
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v3n2_Volochiy_B-Software_analytical_stochastic_126-149.pdf
Size:
2.58 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v3n2_Volochiy_B-Software_analytical_stochastic_126-149__COVER.png
Size:
1.12 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: