Модифікування дорожнього бітуму гуміновими кислотами
| dc.citation.epage | 102 | |
| dc.citation.issue | 7 | |
| dc.citation.journalTitle | Хімія, технологія речовин та їх застосування | |
| dc.citation.spage | 95 | |
| dc.citation.volume | 1 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Національний технічний університет “Харківський політехнічний інститут” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | National Technical University “Kharkiv Polytechnic Institute” | |
| dc.contributor.author | Чіпко, Т. А. | |
| dc.contributor.author | Присяжний, Ю. В. | |
| dc.contributor.author | Мірошниченко, М. Д. | |
| dc.contributor.author | Chipko, T. A. | |
| dc.contributor.author | Prysiazhnyi, Yu. V. | |
| dc.contributor.author | Miroshnychenko, M. D. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-09-12T07:59:43Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | Здійснено модифікування дорожнього бітуму марки БНД 70/100 гуміновими кислотами, зокрема, вивчено вплив тривалості процесу і кількості додатку на якісні характеристики в’яжучого. Встановлено, що гумінові кислоти негативно впливають на пластичні властивості бітуму (погіршують температуру розм’якшення, пенетрацію і дуктильність), позитивно на його еластичність і практично не впливають на здатність в’яжучого зчіплюватись із поверхнею мінерального матеріалу. Основний модифікувальний ефект гумінових кислот полягає у позитивному впливі на процеси технологічного старіння дорожнього бітуму (сповільнюється старіння бітуму), зокрема, зростає залишкова пенетрація, зменшується ΔТ (зміна температури розм’якшення), а Δm (маса бітуму) практично не змінюється. З огляду на забезпечення максимально позитивного впливу встановлено оптимальну тривалість модифікування і кількість гумінових кислот у суміші з бітумом. | |
| dc.description.abstract | Modifying road bitumen of the BND 70/100 brand with humic acids was carried out. In particular, the influence of the duration of the process and the amount of addition on the quality characteristics of the binder was studied. It was established that humic acids negatively affect the plastic properties of bitumen (deteriorate the softening temperature, penetration, and ductility), positively affect its elasticity, and have practically no effect on the ability of the binder to adhere to the surface of the mineral material. The main modifying effect of humic acids is a positive effect on the processes of technological aging of road bitumen (the ability of bitumen to age is slowed down). In particular, residual penetration increases, ΔT (change in softening temperature) decreases, and Δm (bitumen mass) practically does not change. To ensure the maximum positive impact, the optimal duration of modification and the amount of humic acids in the mixture with bitumen were determined. | |
| dc.format.extent | 95-102 | |
| dc.format.pages | 8 | |
| dc.identifier.citation | Чіпко Т. А. Модифікування дорожнього бітуму гуміновими кислотами / Т. А. Чіпко, Ю. В. Присяжний, М. Д. Мірошниченко // Хімія, технологія речовин та їх застосування. — Львів : Видавництво Львівської політехніки, 2024. — Том 1. — № 7. — С. 95–102. | |
| dc.identifier.citationen | Chipko T. A. Modification of road bitumen with humic acids / T. A. Chipko, Yu. V. Prysiazhnyi, M. D. Miroshnychenko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 95–102. | |
| dc.identifier.doi | doi.org/10.23939/ctas2024.01.095 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111732 | |
| dc.language.iso | uk | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Хімія, технологія речовин та їх застосування, 7 (1), 2024 | |
| dc.relation.ispartof | Chemistry, Technology and Application of Substances, 7 (1), 2024 | |
| dc.relation.references | 1. Lebedev, V., Miroshnichenko, D., Xiaobin, Z., Pyshyev, S., & Dmytro, S. (2021). Technological Properties of Polymers Obtained from Humic Acids of Ukrainian Lignite. Petroleum & Coal, 63(3). | |
| dc.relation.references | 2. Gunka, V., & Pyshyev, S. (2014). Lignite oxidative desulphurization: notice 1. Process condition selection. International Journal of Coal Science & Technology, 1, 62-69. https://doi.org/10.1007/s40789-014-0009-2 | |
| dc.relation.references | 3. Gunka, V., & Pyshyev, S. (2015). Lignite oxidative desulphurization. Notice 2: effects of process parameters. International Journal of Coal Science & Technology, 2, 196-201. https://doi.org/10.1007/s40789-015-0056-3 | |
| dc.relation.references | 4. Pysh'yev, S., Gunka, V., Bratychak, M., & Grytsenko, Y. (2011). Kinetic regularities of high-sulphuric brown coal oxidative desulphurization.. Chem. Chem. Technol, 1, 107-113. https://doi.org/10.23939/chcht05.01.107 | |
| dc.relation.references | 5. Bilets, D., Miroshnichenko, D., Ryshchenko, I., & Rudniev, V. (2020). Determination of material balance gasification of heavy coal tars with lignite and walnut shell. Petroleum and coal, 63(1), 85-90. | |
| dc.relation.references | 6. Miroshnichenko, D. V., Pyshyev, S. V., Lebedev, V. V., & Bilets, D. Y. (2022). Deposits and quality indicators of brown coal in ukraine. Scientific Bulletin of National Mining University, (3). https://doi.org/10.33271/nvngu/2022-3/005 | |
| dc.relation.references | 7. Sinitsyna, A. O., Karnozhitskiy, P. V., Miroshnichenko, D. V., & Bilets, D. Y. (2022). The use of brown coal in ukraine to obtain water-soluble sorbents. Scientific Bulletin of National Mining University, (4). https://doi.org/10.33271/nvngu/2022-4/005 | |
| dc.relation.references | 8. Zakon.rada.gov.ua. Available online: URL https://zakon.rada.gov.ua/laws/show/373-2023-%D1%80#n6 (accessed on 03 September 2023). | |
| dc.relation.references | 9. Sposito, G., & Weber, J. H. (1986). Sorption of trace metals by humic materials in soils and natural waters. Critical Reviews in Environmental Science and Technology, 16(2), 193-229. https://doi.org/10.1080/10643388609381745 | |
| dc.relation.references | 10. Perdue, E. M. (1985). Acidic functional groups of humic substances. Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation, and Characterization. John Wiley and Sons, New York NY. 1985. p 493-526, 8 fig, 1 tab. | |
| dc.relation.references | 11. Zinkevych, A. (2016). Development of Humic Acid Extraction Technology from Peat and Brown Coal. Bulletin National University of Water and Environmental Eng, 1(6), 108-111. | |
| dc.relation.references | 12. Esfandiar, N., Suri, R., & McKenzie, E. R. (2022). Competitive sorption of Cd, Cr, Cu, Ni, Pb and Zn from stormwater runoff by five low-cost sorbents; Effects of co-contaminants, humic acid, salinity and pH. Journal of Hazardous Materials, 423, 126938. https://doi.org/10.1016/j.jhazmat.2021.126938 | |
| dc.relation.references | 13. Faisal, A. A., Abdul-Kareem, M. B., Mohammed, A. K., Naushad, M., Ghfar, A. A., & Ahamad, T. (2020). Humic acid coated sand as a novel sorbent in permeable reactive barrier for environmental remediation of groundwater polluted with copper and cadmium ions. Journal of Water Process Engineering, 36, 101373. https://doi.org/10.1016/j.jwpe.2020.101373 | |
| dc.relation.references | 14. de Melo, B. A. G., Motta, F. L., & Santana, M. H. A. (2016). Humic acids: Structural properties and multiple functionalities for novel technological developments. Materials Science and Engineering: C, 62, 967-974. https://doi.org/10.1016/j.msec.2015.12.001 | |
| dc.relation.references | 15. Donchenko, M.; Grynyshyn, O.; Demchuk, Yu.; Topilnytskyy, P.; Turba, Yu. (2023). Influence of Potassium Humate on the Technological Aging Processes of Oxidized Petroleum Bitumen. Chem. Chem. Technol., 17(3), 681-687. https://doi.org/10.23939/chcht17.03.681 | |
| dc.relation.references | 16. 16.Donchenko M. I., Hrynyshyn O. B., Khlibyshyn YU. YA. (2022). Doslidzhennya humatu kaliyu v yakosti inhibitoru starinnya naftovykh bitumiv. Suchasni tekhnolohiyi pererobky palʹnykh kopalyn: V Mizhnar. nauk.-tekhn. konf., 14-15 kvitnya 2022 r.: materialy konf., S. 64-66. | |
| dc.relation.references | 17. 17.Donchenko M. I., Hrynyshyn O. B., Polyak O. YE., Khlibyshyn YU. YA. (2022). Doslidzhennya modyfikatoriv riznykh klasiv yak inhibitoriv starinnya naftovykh bitumiv. Postup v naftohazopererobniy ta naftokhimichniy promyslovosti: XI Mizhnar. nauk.-tekhn. konf., 16-20 travnya 2022 r.: materialy konf., S. 39-40. | |
| dc.relation.references | 18. Grynyshyn, O., Donchenko, M., Khlibyshyn, Y., & Poliak, O. (2021). Investigation of Petroleum Bitumen Resistance to Aging. Chemistry & Chemical Technology, 15 (3), 438-442. https://doi.org/10.23939/chcht15.03.438 | |
| dc.relation.references | 19. HOST 9517-94 Palyvo tverde. Metody vyznachennya vykhodu huminovykh kyslot (YSO 5073-85). - [Chynnyy vid 1998-07-01]. | |
| dc.relation.references | 20. DSTU EN 1426:2018 (EN 1426:2015, IDT) Bitum ta bitumni v'yazhuchi. Vyznachennya hlybyny pronyknosti holky (penetratsiyi). - [Chynnyy vid 2019-06-01]. | |
| dc.relation.references | 21. DSTU EN 1427:2018 (EN 1427:2015, IDT) Bitum ta bitumni vʺyazhuchi. Vyznachennya temperatury rozmʺyakshenosti za metodom kilʹtsya i kuli. - [Chynnyy vid 2019-06-01]. | |
| dc.relation.references | 22. DSTU 8825:2019 Bitum ta bitumni vʺyazhuchi. Metod vyznachennya roztyazhnosti. - [Chynnyy vid 2020-01-01]. | |
| dc.relation.references | 23. DSTU 9169:2021 Bitum ta bitumni vʺyazhuchi. Vyznachennya zcheplyuvanosti z mineralʹnym materialom. - [Chynnyy vid 2022-08-01]. | |
| dc.relation.references | 24. DSTU EN 13398:2018 Bitum ta bitumni vʺyazhuchi. Metod vyznachennya elastychnosti (EN 13398:2017, IDT). - [Chynnyy vid 2019-12-01]. | |
| dc.relation.references | 25. DSTU B EN 12607-1:2015 Bitum ta bitumni v'yazhuchi. Vyznachennya oporu do tverdinnya pid vplyvom teploty ta povitrya. Chastyna 1. Metod RTFOT (EN 12607-1:2014, IDT). - [Chynnyy vid 2016-07-01]. | |
| dc.relation.referencesen | 1. Lebedev, V., Miroshnichenko, D., Xiaobin, Z., Pyshyev, S., & Dmytro, S. (2021). Technological Properties of Polymers Obtained from Humic Acids of Ukrainian Lignite. Petroleum & Coal, 63(3). | |
| dc.relation.referencesen | 2. Gunka, V., & Pyshyev, S. (2014). Lignite oxidative desulphurization: notice 1. Process condition selection. International Journal of Coal Science & Technology, 1, 62-69. https://doi.org/10.1007/s40789-014-0009-2 | |
| dc.relation.referencesen | 3. Gunka, V., & Pyshyev, S. (2015). Lignite oxidative desulphurization. Notice 2: effects of process parameters. International Journal of Coal Science & Technology, 2, 196-201. https://doi.org/10.1007/s40789-015-0056-3 | |
| dc.relation.referencesen | 4. Pysh'yev, S., Gunka, V., Bratychak, M., & Grytsenko, Y. (2011). Kinetic regularities of high-sulphuric brown coal oxidative desulphurization.. Chem. Chem. Technol, 1, 107-113. https://doi.org/10.23939/chcht05.01.107 | |
| dc.relation.referencesen | 5. Bilets, D., Miroshnichenko, D., Ryshchenko, I., & Rudniev, V. (2020). Determination of material balance gasification of heavy coal tars with lignite and walnut shell. Petroleum and coal, 63(1), 85-90. | |
| dc.relation.referencesen | 6. Miroshnichenko, D. V., Pyshyev, S. V., Lebedev, V. V., & Bilets, D. Y. (2022). Deposits and quality indicators of brown coal in ukraine. Scientific Bulletin of National Mining University, (3). https://doi.org/10.33271/nvngu/2022-3/005 | |
| dc.relation.referencesen | 7. Sinitsyna, A. O., Karnozhitskiy, P. V., Miroshnichenko, D. V., & Bilets, D. Y. (2022). The use of brown coal in ukraine to obtain water-soluble sorbents. Scientific Bulletin of National Mining University, (4). https://doi.org/10.33271/nvngu/2022-4/005 | |
| dc.relation.referencesen | 8. Zakon.rada.gov.ua. Available online: URL https://zakon.rada.gov.ua/laws/show/373-2023-%D1%80#n6 (accessed on 03 September 2023). | |
| dc.relation.referencesen | 9. Sposito, G., & Weber, J. H. (1986). Sorption of trace metals by humic materials in soils and natural waters. Critical Reviews in Environmental Science and Technology, 16(2), 193-229. https://doi.org/10.1080/10643388609381745 | |
| dc.relation.referencesen | 10. Perdue, E. M. (1985). Acidic functional groups of humic substances. Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation, and Characterization. John Wiley and Sons, New York NY. 1985. p 493-526, 8 fig, 1 tab. | |
| dc.relation.referencesen | 11. Zinkevych, A. (2016). Development of Humic Acid Extraction Technology from Peat and Brown Coal. Bulletin National University of Water and Environmental Eng, 1(6), 108-111. | |
| dc.relation.referencesen | 12. Esfandiar, N., Suri, R., & McKenzie, E. R. (2022). Competitive sorption of Cd, Cr, Cu, Ni, Pb and Zn from stormwater runoff by five low-cost sorbents; Effects of co-contaminants, humic acid, salinity and pH. Journal of Hazardous Materials, 423, 126938. https://doi.org/10.1016/j.jhazmat.2021.126938 | |
| dc.relation.referencesen | 13. Faisal, A. A., Abdul-Kareem, M. B., Mohammed, A. K., Naushad, M., Ghfar, A. A., & Ahamad, T. (2020). Humic acid coated sand as a novel sorbent in permeable reactive barrier for environmental remediation of groundwater polluted with copper and cadmium ions. Journal of Water Process Engineering, 36, 101373. https://doi.org/10.1016/j.jwpe.2020.101373 | |
| dc.relation.referencesen | 14. de Melo, B. A. G., Motta, F. L., & Santana, M. H. A. (2016). Humic acids: Structural properties and multiple functionalities for novel technological developments. Materials Science and Engineering: C, 62, 967-974. https://doi.org/10.1016/j.msec.2015.12.001 | |
| dc.relation.referencesen | 15. Donchenko, M.; Grynyshyn, O.; Demchuk, Yu.; Topilnytskyy, P.; Turba, Yu. (2023). Influence of Potassium Humate on the Technological Aging Processes of Oxidized Petroleum Bitumen. Chem. Chem. Technol., 17(3), 681-687. https://doi.org/10.23939/chcht17.03.681 | |
| dc.relation.referencesen | 16. 16.Donchenko M. I., Hrynyshyn O. B., Khlibyshyn YU. YA. (2022). Doslidzhennya humatu kaliyu v yakosti inhibitoru starinnya naftovykh bitumiv. Suchasni tekhnolohiyi pererobky palʹnykh kopalyn: V Mizhnar. nauk.-tekhn. konf., 14-15 kvitnya 2022 r., materialy konf., S. 64-66. | |
| dc.relation.referencesen | 17. 17.Donchenko M. I., Hrynyshyn O. B., Polyak O. YE., Khlibyshyn YU. YA. (2022). Doslidzhennya modyfikatoriv riznykh klasiv yak inhibitoriv starinnya naftovykh bitumiv. Postup v naftohazopererobniy ta naftokhimichniy promyslovosti: XI Mizhnar. nauk.-tekhn. konf., 16-20 travnya 2022 r., materialy konf., S. 39-40. | |
| dc.relation.referencesen | 18. Grynyshyn, O., Donchenko, M., Khlibyshyn, Y., & Poliak, O. (2021). Investigation of Petroleum Bitumen Resistance to Aging. Chemistry & Chemical Technology, 15 (3), 438-442. https://doi.org/10.23939/chcht15.03.438 | |
| dc.relation.referencesen | 19. HOST 9517-94 Palyvo tverde. Metody vyznachennya vykhodu huminovykh kyslot (YSO 5073-85), [Chynnyy vid 1998-07-01]. | |
| dc.relation.referencesen | 20. DSTU EN 1426:2018 (EN 1426:2015, IDT) Bitum ta bitumni v'yazhuchi. Vyznachennya hlybyny pronyknosti holky (penetratsiyi), [Chynnyy vid 2019-06-01]. | |
| dc.relation.referencesen | 21. DSTU EN 1427:2018 (EN 1427:2015, IDT) Bitum ta bitumni vʺyazhuchi. Vyznachennya temperatury rozmʺyakshenosti za metodom kilʹtsya i kuli, [Chynnyy vid 2019-06-01]. | |
| dc.relation.referencesen | 22. DSTU 8825:2019 Bitum ta bitumni vʺyazhuchi. Metod vyznachennya roztyazhnosti, [Chynnyy vid 2020-01-01]. | |
| dc.relation.referencesen | 23. DSTU 9169:2021 Bitum ta bitumni vʺyazhuchi. Vyznachennya zcheplyuvanosti z mineralʹnym materialom, [Chynnyy vid 2022-08-01]. | |
| dc.relation.referencesen | 24. DSTU EN 13398:2018 Bitum ta bitumni vʺyazhuchi. Metod vyznachennya elastychnosti (EN 13398:2017, IDT), [Chynnyy vid 2019-12-01]. | |
| dc.relation.referencesen | 25. DSTU B EN 12607-1:2015 Bitum ta bitumni v'yazhuchi. Vyznachennya oporu do tverdinnya pid vplyvom teploty ta povitrya. Chastyna 1. Metod RTFOT (EN 12607-1:2014, IDT), [Chynnyy vid 2016-07-01]. | |
| dc.relation.uri | https://doi.org/10.1007/s40789-014-0009-2 | |
| dc.relation.uri | https://doi.org/10.1007/s40789-015-0056-3 | |
| dc.relation.uri | https://doi.org/10.23939/chcht05.01.107 | |
| dc.relation.uri | https://doi.org/10.33271/nvngu/2022-3/005 | |
| dc.relation.uri | https://doi.org/10.33271/nvngu/2022-4/005 | |
| dc.relation.uri | https://zakon.rada.gov.ua/laws/show/373-2023-%D1%80#n6 | |
| dc.relation.uri | https://doi.org/10.1080/10643388609381745 | |
| dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2021.126938 | |
| dc.relation.uri | https://doi.org/10.1016/j.jwpe.2020.101373 | |
| dc.relation.uri | https://doi.org/10.1016/j.msec.2015.12.001 | |
| dc.relation.uri | https://doi.org/10.23939/chcht17.03.681 | |
| dc.relation.uri | https://doi.org/10.23939/chcht15.03.438 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.subject | вуглецеві матеріали | |
| dc.subject | буре вугілля | |
| dc.subject | гумінові кислоти | |
| dc.subject | модифікатор | |
| dc.subject | бітум | |
| dc.subject | будівництво автомобільних доріг | |
| dc.subject | carbon materials | |
| dc.subject | lignite | |
| dc.subject | humic acids | |
| dc.subject | modifier | |
| dc.subject | bitumen | |
| dc.subject | road construction | |
| dc.title | Модифікування дорожнього бітуму гуміновими кислотами | |
| dc.title.alternative | Modification of road bitumen with humic acids | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1