Combining RapidEye satellite images and forest inventory data for assesment of forest biomass

dc.citation.conferenceLitteris et Artibus
dc.contributor.affiliationNational University of Life and Environmental Sciences of Ukraineuk_UA
dc.contributor.authorMyroniuk, Viktor
dc.contributor.authorBilous, Andrii
dc.coverage.countryUAuk_UA
dc.coverage.placenameLvivuk_UA
dc.date.accessioned2018-05-15T14:01:06Z
dc.date.available2018-05-15T14:01:06Z
dc.date.issued2016
dc.description.abstractThe paper presents the results of estimation of growing stock volume and live biomass in forest stands using combination of forest inventory measurements, multispectral satellite images RapidEye and digital elevation model (DEM). In a context of classification of remote sensing data we considered two nonparametric methods – k-Nearest Neighbors (k-NN) and Random Forest (RF). We concluded that RF outperforms kNN method nevertheless both of them provide quite accurate estimation of mean value of growing volume in a range of ±5 m3·ha-1, different components of aboveground biomass - ±1–2 t·ha-1.uk_UA
dc.format.pages488-489
dc.identifier.citationMyroniuk V. Combining RapidEye satellite images and forest inventory data for assesment of forest biomass / Viktor Myroniuk, Andrii Bilous // Litteris et Artibus : proceedings of the 6th International youth science forum, November 24–26, 2016, Lviv, Ukraine / Lviv Polytechnic National University. – Lviv : Lviv Polytechnic Publishing House, 2016. – P. 488–489. – Bibliography: 7 titles.uk_UA
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/41164
dc.language.isoenuk_UA
dc.publisherLviv Polytechnic Publishing Houseuk_UA
dc.relation.referencesen[1] Bilous А. М. Biological productivity and ecosystem functions of softwood deciduous forests in the Ukrainian Polissya : The Manuscript : 06.03.02 , 06.03.03 / Bilous Andrii – Kyiv, 2016. – 423 p. [2] Breiman L. Random Forest / L. Breiman // Machine Learning. – 2001. – Vol. 45. – № 1. – P. 5–32. [3] Crookston N. L. yaImpute: An R Package for ¬kNN Imputation / N. L. Crookston, A. O. Finley // Journal of Statistical Software. – 2008. – Vol. 23. – Issue 10. – 1–16. [4] Imputing forest structure attributes from stand inventory and remote sensed data in Western Oregon, USA / A. T. Hudak, A. T. Haren, N. L. Crookston et al. // Forest Science. – 2014. – Vol. 60. – Issue. 2.– P. 253–269. [5] McRoberts R. E. Estimation forest attribute parameters for small areas using nearest neighbors techniques / R. E. McRoberts // Forest Ecology and Management. – 2012. – Vol. 272. – P. 3–12. [6] Tables and models of growth and productivity of forest of forming species of Northern Eurasia (standard and reference materials) – М.: 2006. – 803 p. [7] Tomppo E. Satellite image-based National Forest Inventory of Finland / E. Tompo // International Archives of Photogrammetry and Remote Sensing. – 1991. – Vol. 28: 1–7. – P. 419–424.uk_UA
dc.subjectforestuk_UA
dc.subjectbiomassuk_UA
dc.subjectRapidEyeuk_UA
dc.subjectk-NN imputationuk_UA
dc.subjectrandom forestuk_UA
dc.titleCombining RapidEye satellite images and forest inventory data for assesment of forest biomassuk_UA
dc.typeConference Abstractuk_UA

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
LEA-2016-488-489.pdf
Size:
471.34 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.99 KB
Format:
Item-specific license agreed upon to submission
Description: