The influence of degree of loading and load placing on steerability of vehicles

dc.citation.epage74
dc.citation.issue1
dc.citation.spage60
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorKuzio, Igor
dc.contributor.authorSokil, Mariia
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2021-12-21T11:11:52Z
dc.date.available2021-12-21T11:11:52Z
dc.date.created2021-03-10
dc.date.issued2021-03-10
dc.description.abstractДля колісних транспортних засобів з нелінійною силовою характеристикою пружинних амортизаторів та демпферних пристроїв розроблено методику оцінювання впливу ступеня завантаженості, кінематичних параметрів руху на їх керованість вздовж криволінійних ділянок шляху. В основу досліджень покладено рівняння кінетостатики системи підресорена–непідресорена частини та диференціальні рівняння відносного руху підресореної частини транспортних засобів. Щодо останніх, то вони враховують як завантаженість транспортного засобу, так і нелінійно-пружні характеристики амортизаторів. Для випадку, коли пружні характеристики амортизаторів описуються степеневою або близькою до неї залежністю, вдалось аналітично описати коливання підресореної частини. Їх особливістю є те, що частота, а отже, динамічна сила тиску коліс на опорну поверхню (дорогу) залежить від амплітуди коливань. Остання та характеристики дорожнього покриття визначають основні параметри керованості та стійкості руху транспортних засобів вздовж криволінійних ділянок шляху. Все в сукупності дало змогу отримати залежність критичного значення динамічного кута повороту керованих коліс як функцію амплітуди поздовжньо-кутових коливань, кінематичних параметрів руху, ступеня завантаженості транспортного засобу. В результаті встановлено: а) коливання підресореної частини значною мірою зменшують граничний кут повороту керованих коліс вздовж криволінійних ділянок шляху; б) для періоду розганяння транспортного засобу і ближчого розташування центра ваги вантажу, який транспортується, до заднього борта граничний динамічний кут повороту керованих коліс є меншим; в) система підвіски з прогресивним законом зміни відновлювальної сили пружинних амортизаторів у ширшому діапазоні зміни амплітуди коливань підресореної частини задовольняє ергономічні умови перевезення. Отримані розрахункові залежності можуть бути базовими під час модернізації наявних чи створення нових систем підресорювання з метою покращення основних експлуатаційних характеристик колісних транспортних засобів
dc.description.abstractThe methodology of research of the influence of the degree of loading, kinematic parameters of movement, and nonlinear power characteristics of elastic elements and shock absorbers of the suspension system on their steerability on curved sections of the road is developed. The research is based on the equation of kinetostatics of the system of sprung-unsprung part and differential equations that relate the motion of the sprung part of vehicles. Concerning the last, they take into account both loading of a vehicle and nonlinear-elastic characteristics of shock-absorbers. For the case when elastic characteristics of shock-absorbers are described by degree or close to it dependence, the fluctuation of sprung part is described analytically. Their peculiarity is that the frequency and therefore dynamic force of wheels pressure on the bearing surface (road) depends on the amplitude. It is the last value and characteristics of the road surface that determine the main parameters of steerability and stability of the movement of wheeled vehicles along curved sections of the road. Taken together, the mentioned above allowed to obtain the dependence of the critical value of the dynamic angle of rotation of the steered wheels, as a function of the amplitude of longitudinal angular oscillations, kinematic motion parameters, and the level of loading of a vehicle. It is established: − fluctuation of the sprung part significantly reduce the value of the limiting angle of rotation of the steered wheels along the curved sections of the road; − for the period of acceleration of the vehicle and the closer location of the center of gravity of the cargo transported to the tailgate, the limit value of the dynamic angle of rotation of the steered wheels is less; − the suspension system with the progressive law of change of regenerative force of elastic shock-absorbers in a wider range of change fluctuations amplitude of the suspended part satisfies ergonomic conditions of transportation. The obtained calculated dependencies can simultaneously be basic during the modernization of existing or the creation of new suspension systems in order to improve the main operation characteristics of wheeled vehicles.
dc.format.extent60-74
dc.format.pages15
dc.identifier.citationKuzio I. The influence of degree of loading and load placing on steerability of vehicles / Igor Kuzio, Mariia Sokil // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 2. — No 1. — P. 60–74.
dc.identifier.citationenKuzio I. The influence of degree of loading and load placing on steerability of vehicles / Igor Kuzio, Mariia Sokil // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 2. — No 1. — P. 60–74.
dc.identifier.doidoi.org/10.23939/tt2021.01.060
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56540
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTransport Technologies, 1 (2), 2021
dc.relation.references1. Hu, L., Fang, S., & Yang, J. (2014). Study of the Vehicle Controllability and Stability Based on Multi-body System Dynamics. The Open Mechanical Engineering Journal, 8(1), 865–871. doi: 10.2174/1874155X01408010865 (in English)
dc.relation.references2. Ulsoy, A., Peng, H., & Çakmakci, M. (2012). Vehicle Stability Control. Automotive Control Systems (pp. 257–271). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511844577.018 (in English)
dc.relation.references3. Zhao, W., Qin, X., & Wang, C. (2018). Yaw and lateral stability control for four-wheel steer-by-wire system. IEEE/ASME transactions on mechatronics, Volume 23 (6), 2628–2637. doi: 10.1109/TMECH.2018.2812220 (in English)
dc.relation.references4. Pukach, P. Y., Kuzio, I. V., Nytrebych, Z. M., & Il'Kiv, V. S. (2018). Asymptotic method for investigating resonant regimes of nonlinear bending vibrations of elastic shaft. Scientific Bulletin of National Mining University, Volume 1, 68–73. doi:10.29202/nvngu/2018-1/9 (in English)
dc.relation.references5. Calvo, J. A., San Román, J. L., & Álvarez-Caldas, C. (2013). Procedure to verify the suspension system on periodical motor vehicle inspection. International journal of vehicle design, 63(1), 1-17. doi: 10.1504/IJVD.2013.055497 (in English)
dc.relation.references6. Sakhno, V. P., Yashchenko, D. M., Marchuk, R. M., Marchuk, N. M., & Lyashuk, O. L. (2020). Research of a Truck Train Movement when Driving Semitrailer by Slowdowning of Wheels of One Axis Pin on the Model. International Journal of Automotive and Mechanical Engineering, 17(1), 7749–7757. doi: 10.15282/ijame.17.1.2020.21.0576 (in English)
dc.relation.references7. Ahmad, I., & Khan, A. (2018). A comparative analysis of linear and nonlinear semi-active suspension system. Mehran University Research Journal of Engineering and Technology, Volume 37(2), 233–240. (in English)
dc.relation.references8. Hrubel M., Nanivskyy R., & Sokil M. (2014). Kolyvannya pidresorenoyi chastyny kolisnoho transportnoho zasobu ta yikh vplyv na stiykist rukhu vzdovzh kryvoliniynoyi dilyanky shlyakhu [Oscillations of the sprung part of wheeled vehicles and its influence on road holding along the curvilinear stretch of a track]. Naukovyy visnyk NLTU Ukrayiny [Scientific Bulletin of UNFU], Volume 24.1, 155–162. (in Ukrainian)
dc.relation.references9. Georgiev, Z., & Kunchev, L. (2018). Study of the vibrational behaviour of the components of a car suspension. In MATEC Web of Conferences (Vol. 234, p. 02005). EDP Sciences. doi: 10.1051/matecconf/201823402005 (in English)
dc.relation.references10. Hrubel M. Nanivskyi R. & Sokil M. (2015). Rezonansni kolyvannia pidresorenoi chastyny kolisnykh transportnykh zasobiv pid chas rukhu vzdovzh vporiadkovanoi systemy nerivnostei [Resonant oscillations of the sprung part of wheeled vehicles when moving along the ordered system of inequalities], Visnyk Vinnytsʹkoho politekhnichnoho instytutu [The journal “Visnyk of Vinnytsia Polytechnical Institute”], Volume 1, 155-161 (in Ukrainian)
dc.relation.references11. Bozhkova L. V. Riabov V. H. & Norytsyna H. Y. (2009). Vlyianye poperechnykh vynuzhdennykh kolebanyi kuzova na oprokydyvanye avtomobylia pry obezde prepiatstvyiaia [Influence of the cross-section forced fkuctuations of a body on car overturning at an obstacle detour], Transportne dilo Rosiyi, [Transport business in russian], Volume 3, 141–151 (in Russian)
dc.relation.references12. Andruhiv, A., Sokil, B., Sokil, M., Vovk, Y., & Levkovych, M. (2019). The influence of the cinematic parameters of movement and sprung mass vibrations of wheeled vehicles on the move along the curvedlinear sections of the way. Materialy Mizhnarodnoi naukovo-tekhnichnoi konferentsii „Aktualni problemy transportu“ [Proceedings of the International Scientific and Technical Conference "Actual Problems of Transport"], 259-264. (in English)
dc.relation.references13. Sokil, B., Lyashuk, O. L., Sokil, M., Popovich, P. V., Vovk, Y. Y., & Perenchuk, O. Z. (2018). Dynamic Effect of Cushion Part of Wheeled Vehicles on Their Steerability. International Journal of Automotive and Mechanical Engineering, Volume 15, Issue 1, 4880-4892. doi: 10.15282/ijame.15.1.2018.1.0380 (in English)
dc.relation.references14. Pavlovskyy M.A., Putyata T.V. (1985). Teoretycheskaya mekhanyka: dlya stud. Vuzov [Theoretical mechanics for university students] Vyshcha shkola. (in Russian)
dc.relation.references15. Koul Dzh. (1972). Metody vozmushcheniy v prikladnoy matematike [Compensation methods in applied mechanics]. Mir (in Russian)
dc.relation.references16. Senyk P. M. (1969). Obernennya nepovnoyi Veta-funktsiyi [Inversion of an incomplete Veta function]. Ukr. mat. Zhurnal [Ukr. mat. Journal], 21(3), 325–333. (in Ukrainian)
dc.relation.references17. Nazarkevych, M. (2012). Doslidzhennya zalezhnostey Beta- ta Ateb-funktsiy [Investigation of dependences of beta and ateb functions]. Kompyuterni nauky ta informatsiyni tekhnolohiyi [Computer science and information technology]. 732, 207–216 (in Ukrainian)
dc.relation.references18. Silveira, M., Wahi, P., & Fernandes, J. C. M. (2017). Effects of asymmetrical damping on a 2 DOF quarter-car model under harmonic excitation. Communications in Nonlinear Science and Numerical Simulation, 43, 14–24. doi: 10.1016/j.cnsns.2016.06.029 (in English)
dc.relation.references19. Pavlenko, V. M., & Kryvoruchko, O. O. (2014). Suchasnyy stan rozvytku aktyvnykh pidvisok dlya lehkovykh avtomobiliv [Modern state of development of active suspensions of motor cars]. Visnyk NTU KhPI [Bulletin NTU KhPI], Automobile and tractor manufacture, 1052, 54–60. (in Ukrainian)
dc.relation.references20. Sert, E., & Boyraz, P. (2017). Optimization of suspension system and sensitivity analysis for improvement of stability in a midsize heavy vehicle. Engineering science and technology, an international journal, 20(3), 997-1012. doi: 10.1016/j.jestch.2017.03.007 (in English)
dc.relation.references21. Artyushenko, A., & Suyarkov, O. (2013). Vyvchennia vplyvu kharakterystyk pidvisky malohabarytnoho avtomobilia na yakist yizdy ta yoho modernizatsiia [Study of influence of suspension characteristics of small size car on ride quality and its modernization]. Visnyk NTU KhPI [Bulletin NTU KhPI], 1004, 21-27. (in Ukrainian)
dc.relation.references22. Podryhalo, M. A., Volkov, V. P., Boboshko, A. A., Pavlenko, V. A., Baitsur, M. V., Nazarov, A. I., & Aleksev, V. O. (2006). Стійкість колісних транспортних засобів до заносу при гальмуванні та шляхи його підйому [Wheeled vehicles resistance to skidding whilst breaking and ways of its rising]. Kharkiv: KNARU. (in Ukrainian)
dc.relation.referencesen1. Hu, L., Fang, S., & Yang, J. (2014). Study of the Vehicle Controllability and Stability Based on Multi-body System Dynamics. The Open Mechanical Engineering Journal, 8(1), 865–871. doi: 10.2174/1874155X01408010865 (in English)
dc.relation.referencesen2. Ulsoy, A., Peng, H., & Çakmakci, M. (2012). Vehicle Stability Control. Automotive Control Systems (pp. 257–271). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511844577.018 (in English)
dc.relation.referencesen3. Zhao, W., Qin, X., & Wang, C. (2018). Yaw and lateral stability control for four-wheel steer-by-wire system. IEEE/ASME transactions on mechatronics, Volume 23 (6), 2628–2637. doi: 10.1109/TMECH.2018.2812220 (in English)
dc.relation.referencesen4. Pukach, P. Y., Kuzio, I. V., Nytrebych, Z. M., & Il'Kiv, V. S. (2018). Asymptotic method for investigating resonant regimes of nonlinear bending vibrations of elastic shaft. Scientific Bulletin of National Mining University, Volume 1, 68–73. doi:10.29202/nvngu/2018-1/9 (in English)
dc.relation.referencesen5. Calvo, J. A., San Román, J. L., & Álvarez-Caldas, C. (2013). Procedure to verify the suspension system on periodical motor vehicle inspection. International journal of vehicle design, 63(1), 1-17. doi: 10.1504/IJVD.2013.055497 (in English)
dc.relation.referencesen6. Sakhno, V. P., Yashchenko, D. M., Marchuk, R. M., Marchuk, N. M., & Lyashuk, O. L. (2020). Research of a Truck Train Movement when Driving Semitrailer by Slowdowning of Wheels of One Axis Pin on the Model. International Journal of Automotive and Mechanical Engineering, 17(1), 7749–7757. doi: 10.15282/ijame.17.1.2020.21.0576 (in English)
dc.relation.referencesen7. Ahmad, I., & Khan, A. (2018). A comparative analysis of linear and nonlinear semi-active suspension system. Mehran University Research Journal of Engineering and Technology, Volume 37(2), 233–240. (in English)
dc.relation.referencesen8. Hrubel M., Nanivskyy R., & Sokil M. (2014). Kolyvannya pidresorenoyi chastyny kolisnoho transportnoho zasobu ta yikh vplyv na stiykist rukhu vzdovzh kryvoliniynoyi dilyanky shlyakhu [Oscillations of the sprung part of wheeled vehicles and its influence on road holding along the curvilinear stretch of a track]. Naukovyy visnyk NLTU Ukrayiny [Scientific Bulletin of UNFU], Volume 24.1, 155–162. (in Ukrainian)
dc.relation.referencesen9. Georgiev, Z., & Kunchev, L. (2018). Study of the vibrational behaviour of the components of a car suspension. In MATEC Web of Conferences (Vol. 234, p. 02005). EDP Sciences. doi: 10.1051/matecconf/201823402005 (in English)
dc.relation.referencesen10. Hrubel M. Nanivskyi R. & Sokil M. (2015). Rezonansni kolyvannia pidresorenoi chastyny kolisnykh transportnykh zasobiv pid chas rukhu vzdovzh vporiadkovanoi systemy nerivnostei [Resonant oscillations of the sprung part of wheeled vehicles when moving along the ordered system of inequalities], Visnyk Vinnytsʹkoho politekhnichnoho instytutu [The journal "Visnyk of Vinnytsia Polytechnical Institute"], Volume 1, 155-161 (in Ukrainian)
dc.relation.referencesen11. Bozhkova L. V. Riabov V. H. & Norytsyna H. Y. (2009). Vlyianye poperechnykh vynuzhdennykh kolebanyi kuzova na oprokydyvanye avtomobylia pry obezde prepiatstvyiaia [Influence of the cross-section forced fkuctuations of a body on car overturning at an obstacle detour], Transportne dilo Rosiyi, [Transport business in russian], Volume 3, 141–151 (in Russian)
dc.relation.referencesen12. Andruhiv, A., Sokil, B., Sokil, M., Vovk, Y., & Levkovych, M. (2019). The influence of the cinematic parameters of movement and sprung mass vibrations of wheeled vehicles on the move along the curvedlinear sections of the way. Materialy Mizhnarodnoi naukovo-tekhnichnoi konferentsii "Aktualni problemy transportu" [Proceedings of the International Scientific and Technical Conference "Actual Problems of Transport"], 259-264. (in English)
dc.relation.referencesen13. Sokil, B., Lyashuk, O. L., Sokil, M., Popovich, P. V., Vovk, Y. Y., & Perenchuk, O. Z. (2018). Dynamic Effect of Cushion Part of Wheeled Vehicles on Their Steerability. International Journal of Automotive and Mechanical Engineering, Volume 15, Issue 1, 4880-4892. doi: 10.15282/ijame.15.1.2018.1.0380 (in English)
dc.relation.referencesen14. Pavlovskyy M.A., Putyata T.V. (1985). Teoretycheskaya mekhanyka: dlya stud. Vuzov [Theoretical mechanics for university students] Vyshcha shkola. (in Russian)
dc.relation.referencesen15. Koul Dzh. (1972). Metody vozmushcheniy v prikladnoy matematike [Compensation methods in applied mechanics]. Mir (in Russian)
dc.relation.referencesen16. Senyk P. M. (1969). Obernennya nepovnoyi Veta-funktsiyi [Inversion of an incomplete Veta function]. Ukr. mat. Zhurnal [Ukr. mat. Journal], 21(3), 325–333. (in Ukrainian)
dc.relation.referencesen17. Nazarkevych, M. (2012). Doslidzhennya zalezhnostey Beta- ta Ateb-funktsiy [Investigation of dependences of beta and ateb functions]. Kompyuterni nauky ta informatsiyni tekhnolohiyi [Computer science and information technology]. 732, 207–216 (in Ukrainian)
dc.relation.referencesen18. Silveira, M., Wahi, P., & Fernandes, J. C. M. (2017). Effects of asymmetrical damping on a 2 DOF quarter-car model under harmonic excitation. Communications in Nonlinear Science and Numerical Simulation, 43, 14–24. doi: 10.1016/j.cnsns.2016.06.029 (in English)
dc.relation.referencesen19. Pavlenko, V. M., & Kryvoruchko, O. O. (2014). Suchasnyy stan rozvytku aktyvnykh pidvisok dlya lehkovykh avtomobiliv [Modern state of development of active suspensions of motor cars]. Visnyk NTU KhPI [Bulletin NTU KhPI], Automobile and tractor manufacture, 1052, 54–60. (in Ukrainian)
dc.relation.referencesen20. Sert, E., & Boyraz, P. (2017). Optimization of suspension system and sensitivity analysis for improvement of stability in a midsize heavy vehicle. Engineering science and technology, an international journal, 20(3), 997-1012. doi: 10.1016/j.jestch.2017.03.007 (in English)
dc.relation.referencesen21. Artyushenko, A., & Suyarkov, O. (2013). Vyvchennia vplyvu kharakterystyk pidvisky malohabarytnoho avtomobilia na yakist yizdy ta yoho modernizatsiia [Study of influence of suspension characteristics of small size car on ride quality and its modernization]. Visnyk NTU KhPI [Bulletin NTU KhPI], 1004, 21-27. (in Ukrainian)
dc.relation.referencesen22. Podryhalo, M. A., Volkov, V. P., Boboshko, A. A., Pavlenko, V. A., Baitsur, M. V., Nazarov, A. I., & Aleksev, V. O. (2006). Stiikist kolisnykh transportnykh zasobiv do zanosu pry halmuvanni ta shliakhy yoho pidiomu [Wheeled vehicles resistance to skidding whilst breaking and ways of its rising]. Kharkiv: KNARU. (in Ukrainian)
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Kuzio I., Sokil M., 2021
dc.subjectтранспортні засоби
dc.subjectкерованість
dc.subjectстійкість руху
dc.subjectсистема підресорювання
dc.subjectпідресорена частина
dc.subjectкритична швидкість руху
dc.subjectколивання
dc.subjectнавантаження
dc.subjectvehicles
dc.subjectsteerability
dc.subjectstability of motion
dc.subjectsuspension system
dc.subjectsprung part
dc.subjectcritical speed
dc.subjectoscillations
dc.subjectload
dc.titleThe influence of degree of loading and load placing on steerability of vehicles
dc.title.alternativeВплив ступеня завантаженості та розміщення вантажу на керованість вантажних транспортних засобів
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2021v2n1_Kuzio_I-The_influence_of_degree_of_60-74.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2021v2n1_Kuzio_I-The_influence_of_degree_of_60-74__COVER.png
Size:
403.93 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.95 KB
Format:
Plain Text
Description: