Modelling local geoid undulations using unmanned aerial vehicles (UAVS): a case study of the Federal University of Technology, Akure, Nigeria

dc.citation.epage75
dc.citation.issue98
dc.citation.journalTitleГеодезія, картографія і аерофотознімання
dc.citation.spage63
dc.contributor.affiliationФедеральний технологічний університет, Акуре, Нігерія
dc.contributor.affiliationФедеральна школа геодезії Ойо, Нігерія
dc.contributor.affiliationFederal University of Technology, Akure, Nigeria
dc.contributor.affiliationFederal School of Surveying Oyo, Nigeria
dc.contributor.authorРауфу, Ібрагім Олатунджі
dc.contributor.authorТата, Герберт
dc.contributor.authorОлаосегба, Соліху
dc.contributor.authorRaufu, Ibrahim Olatunji
dc.contributor.authorTata, Herbert
dc.contributor.authorOlaosegba, Solihu
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-17T09:36:15Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractДослідження було спрямоване на розробку моделі геоїда з використанням технології безпілотних літальних апаратів (БПЛА). Для цього використано БПЛА для отримання зображень досліджуваної території з висоти 150 м із роздільною здатністю на Землі 4,19 см. Всього отримано 3737 зображень, які охоплюють площу 725,804 га. Існуючі еліпсоїдні та ортометричні висоти були використані для географічної прив’язки отриманих зображень. Для аналізу використано 35 точок, з яких 20 точок визначено як наземні контрольні точки (GCP), а решта 15 точок – контрольні точки (CPs). Використовуючи отримані з БПЛА цифрові моделі рельєфу (DTMs), створено набір даних, що містить 18 492 точки як для еліпсоїдальної (h), так і для ортометричної (H) висот. Різниці між цими висотами, які називаються висотами геоїда (N), були розраховані як N = h - H для всіх 18 492 точок. Ці висоти геоїда згодом використані для створення моделі геоїда, включаючи контурні карти та 3D-карти досліджуваної території. Щоб оцінити точність висот геоїда, отриманих за допомогою БПЛА, виконано аналіз середньоквадратичної помилки (RMSE) шляхом порівняння їх з існуючими висотами геоїда, і встановлено, що вона становить 0,113 м. Наукова новизна та практична значущість полягає в розробці локальної моделі геоїда досліджуваної території з точністю до сантиметра. Таким чином, результати цього дослідження можуть бути використані для широкого спектру застосувань, включаючи землеустрій, будівництво та оцінку впливу на навколишнє середовище на території дослідження.
dc.description.abstractThe study was aimed at developing a geoid model using Unmanned Aerial Vehicle (UAV) technology. To accomplish this, a UAV was deployed to capture imagery of the study area from a height of 150m, with a ground resolution of 4.19cm. A total of 3737 images were obtained, covering an area of 725.804 hectares. The existing ellipsoidal and orthometric heights were used to georeferenced the acquired images. For the analysis, 35 points were utilized, with 20 points designated as ground control points (GCPs) and the remaining 15 points as check points (CPs). Using the UAV-derived Digital Terrain Models (DTMs), a dataset comprising 18,492 points was generated for both ellipsoidal (h) and orthometric (H) heights. The differences between these heights, referred to as geoid heights (N), were calculated as N = h - H for all 18,492 points. These geoid heights were subsequently employed to generate a geoid model, including contour maps and 3D maps, of the study area. To assess the accuracy of the UAV-derived geoid heights, a root mean square error (RMSE) analysis was performed by comparing them with the existing geoid heights and was found to be 0.113 m. The scientific novelty and practical significance are in the development of a local geoid model of the study area with centimetre-level precision. Thus, the output of this study can be used for a wide range of applications, including land management, construction, and environmental impact assessments in the study area.
dc.format.extent63-75
dc.format.pages13
dc.identifier.citationRaufu I. O. Modelling local geoid undulations using unmanned aerial vehicles (UAVS): a case study of the Federal University of Technology, Akure, Nigeria / Raufu Ibrahim Olatunji, Tata Herbert, Olaosegba Solihu // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2023. — No 98. — P. 63–75.
dc.identifier.citationenRaufu I. O. Modelling local geoid undulations using unmanned aerial vehicles (UAVS): a case study of the Federal University of Technology, Akure, Nigeria / Raufu Ibrahim Olatunji, Tata Herbert, Olaosegba Solihu // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2023. — No 98. — P. 63–75.
dc.identifier.doidoi.org/10.23939/istcgcap2023.98.063
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64178
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодезія, картографія і аерофотознімання, 98, 2023
dc.relation.ispartofGeodesy, cartography and aerial photography, 98, 2023
dc.relation.referencesAgajelu, S.I. (2018). Geodesy: The Basic Theories - Classical & Contemporary. Enugu, El 'Demak Publishers, ISBN 978-978-8436-99-0, pp. 4, 5, 9, 11 - 21
dc.relation.referencesAlbayrak, M., Ozlüdemir, M.T., Aref, M.M., & Halicioglu, K. (2020). Determination of Istanbul geoid using GNSS/levelling and valley cross levelling data. Geodesy and Geodynamics, 11(3), 163-173. https://doi.org/10.1016/j.geog.2020.01.003
dc.relation.referencesAl-Krargy, E. M., Doma, M. I., & Dawod, G. M. (2014). Towards an Accurate Definition of the Local Geoid Model in Egypt using GPS / Levelling Data: A Case Study at Rosetta Zone. International Journal of Innovative Science and Modern Engineering (IJISME), 2(11).
dc.relation.referencesBelay, E. Y., Godah, W., Szelachowska, M., & Tenzer, R. (2021). ETH-GM21: A new gravimetric geoid model of Ethiopia developed using the least-squares collocation method. Journal of African Earth Sciences, 183,104313. https://doi.org/10.1016/j.jafrearsci.2021.104313
dc.relation.referencesChi, Y.Y., Lee, Y.F., & Tsai, S.E. (2016). Study on High Accuracy Topographic Mapping via UAV-based Images. IOP Conference Series: Earth and Environmental Science, 44, 032006. https://doi.org/10.1088/1755-1315/44/3/032006
dc.relation.referencesChristiansen, M. P., Laursen, M. S., Jørgensen, R. N., Skovsen, S., & Gislum, R. (2017). Designing and testing a UAV mapping system for agricultural field surveying. Sensors, 17(12), 2703. https://doi.org/10.3390/s17122703
dc.relation.referencesErol, S., Özögel, E., Kuçak, R. A., & Erol, B. (2020). Utilizing Airborne LiDAR and UAV Photogrammetry Techniques in Local Geoid Model Determination and Validation. ISPRS International Journal of Geo-Information, 9(9), 528. https://doi.org/10.3390/ijgi9090528
dc.relation.referencesErol, S., & Erol, B. (2020). A comparative assessment of different interpolation algorithms for prediction of GNSS/levelling geoid surface using scattered control data. Measurement, 173, 108623. https://doi.org/10.1016/j.measurement.2020.108623
dc.relation.referencesGonzalez, L. F., Montes, G. A., Puig, E., Johnson, S., Mengersen, K., & Gaston, K. J. (2016). Unmanned aerial vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors, 16(1), 97. https://doi.org/10.3390/s16010097
dc.relation.referencesHerbert, T. & Olatunji, R.I. (2021). Determination of orthometric height using GNSS and EGM Data: A scenario of the Federal University of Technology Akure. International Journal of Environment and Geoinformatics (IJEGEO), 8(1):100-105. https://doi.org/10.30897/ijegeo.754808
dc.relation.referencesJekeli, C., Yang, H. J., & Kwon, J. H. (2012). The offset of the South Korean vertical datum from a global geoid. KSCE Journal of Civil Engineering, 16(5), 816-821. https://doi.org/10.1007/s12205-012-1320-3
dc.relation.referencesMaglione, P., Parente, C., & Vallario, A. (2018). Accuracy of global geoid height models in local area: Tests on Campania region (Italy). International Journal of Civil Engineering and Technology, 9, 1049-1057.
dc.relation.referencesNational Oceanic and Atmospheric Administration, NOAA. (2021). Is the Earth round? retrieved from National Ocean Service website, 2021, https://oceanservice.noaa.gov/facts/eutrophication.html,
dc.relation.referencesOdera, P. A., & Fukuda, Y. (2015). Recovery of orthometric heights from ellipsoidal heights using offsets method over Japan. Earth, Planets and Space, 67(1). https://doi.org/10.1186/s40623-015-0306-z
dc.relation.referencesOluyori, P. D., Ono, M. N., & Eteje, S. O. (2018). Comparison of Two Polynomial Geoid Models of GNSS/Leveling Geoid Development for Orthometric Heights in FCT, Abuja. International Journal of Engineering Research and Advanced Technology (IJERAT), 4(10), 1-9. https://doi.org/10.31695/IJERAT.2018.3330
dc.relation.referencesPolat, N., & Uysal, M. (2017). DTM generation with UAV based photogrammetric point cloud. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII-4/W6, 77-79. https://doi.org/10.5194/isprs-archives-XLII-4-W6-77-2017
dc.relation.referencesPrasad, S. (2015). Basic Geodesy Unit: II Semester: I Paper Code: GIS 05: Name of Paper: Earth Positioning System, PG Diploma in RS & GIS.
dc.relation.referencesQuaye-Ballard, N.L., Asenso-Gyambibi, D., & Quaye-Ballard, J. (2020). Unmanned Aerial Vehicle for Topographical Mapping of Inaccessible Land Areas in Ghana: A Cost-Effective Approach. Presented at the 2020 FIG Working Week, Amsterdam, Netherlands, May 10- 14.
dc.relation.referencesRaufu, I. O., & Tata, H. (2021). Accuracy Assessment of Different Polynomial Geoid Models in Orthometric Height Determination for Akure, Nigeria. Geodetski glasnik, 52, 61-73.
dc.relation.referencesSansò, F., Reguzzoni, M., & Barzaghi, R. (2019). Geodetic Heights. Springer Nature, Switzerland, https://doi.org/10.1007/978-3-030-10454-2
dc.relation.referencesTurner, I. L., Harley, M. D., & Drummond, C. D. (2016). UAVs for coastal surveying. Coastal Engineering, 114, 19-24 https://doi.org/10.1016/j.coastaleng.2016.03.011
dc.relation.referencesYeh, F.H., Huang, C.J., Han, J.Y., & Ge, L. (2018). Modeling Slope Topography Using Unmanned Aerial Vehicle Image Technique. MATEC Web of Conferences, 147, 07002. https://doi.org/10.1051/matecconf/201814707002
dc.relation.referencesenAgajelu, S.I. (2018). Geodesy: The Basic Theories - Classical & Contemporary. Enugu, El 'Demak Publishers, ISBN 978-978-8436-99-0, pp. 4, 5, 9, 11 - 21
dc.relation.referencesenAlbayrak, M., Ozlüdemir, M.T., Aref, M.M., & Halicioglu, K. (2020). Determination of Istanbul geoid using GNSS/levelling and valley cross levelling data. Geodesy and Geodynamics, 11(3), 163-173. https://doi.org/10.1016/j.geog.2020.01.003
dc.relation.referencesenAl-Krargy, E. M., Doma, M. I., & Dawod, G. M. (2014). Towards an Accurate Definition of the Local Geoid Model in Egypt using GPS, Levelling Data: A Case Study at Rosetta Zone. International Journal of Innovative Science and Modern Engineering (IJISME), 2(11).
dc.relation.referencesenBelay, E. Y., Godah, W., Szelachowska, M., & Tenzer, R. (2021). ETH-GM21: A new gravimetric geoid model of Ethiopia developed using the least-squares collocation method. Journal of African Earth Sciences, 183,104313. https://doi.org/10.1016/j.jafrearsci.2021.104313
dc.relation.referencesenChi, Y.Y., Lee, Y.F., & Tsai, S.E. (2016). Study on High Accuracy Topographic Mapping via UAV-based Images. IOP Conference Series: Earth and Environmental Science, 44, 032006. https://doi.org/10.1088/1755-1315/44/3/032006
dc.relation.referencesenChristiansen, M. P., Laursen, M. S., Jørgensen, R. N., Skovsen, S., & Gislum, R. (2017). Designing and testing a UAV mapping system for agricultural field surveying. Sensors, 17(12), 2703. https://doi.org/10.3390/s17122703
dc.relation.referencesenErol, S., Özögel, E., Kuçak, R. A., & Erol, B. (2020). Utilizing Airborne LiDAR and UAV Photogrammetry Techniques in Local Geoid Model Determination and Validation. ISPRS International Journal of Geo-Information, 9(9), 528. https://doi.org/10.3390/ijgi9090528
dc.relation.referencesenErol, S., & Erol, B. (2020). A comparative assessment of different interpolation algorithms for prediction of GNSS/levelling geoid surface using scattered control data. Measurement, 173, 108623. https://doi.org/10.1016/j.measurement.2020.108623
dc.relation.referencesenGonzalez, L. F., Montes, G. A., Puig, E., Johnson, S., Mengersen, K., & Gaston, K. J. (2016). Unmanned aerial vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors, 16(1), 97. https://doi.org/10.3390/s16010097
dc.relation.referencesenHerbert, T. & Olatunji, R.I. (2021). Determination of orthometric height using GNSS and EGM Data: A scenario of the Federal University of Technology Akure. International Journal of Environment and Geoinformatics (IJEGEO), 8(1):100-105. https://doi.org/10.30897/ijegeo.754808
dc.relation.referencesenJekeli, C., Yang, H. J., & Kwon, J. H. (2012). The offset of the South Korean vertical datum from a global geoid. KSCE Journal of Civil Engineering, 16(5), 816-821. https://doi.org/10.1007/s12205-012-1320-3
dc.relation.referencesenMaglione, P., Parente, C., & Vallario, A. (2018). Accuracy of global geoid height models in local area: Tests on Campania region (Italy). International Journal of Civil Engineering and Technology, 9, 1049-1057.
dc.relation.referencesenNational Oceanic and Atmospheric Administration, NOAA. (2021). Is the Earth round? retrieved from National Ocean Service website, 2021, https://oceanservice.noaa.gov/facts/eutrophication.html,
dc.relation.referencesenOdera, P. A., & Fukuda, Y. (2015). Recovery of orthometric heights from ellipsoidal heights using offsets method over Japan. Earth, Planets and Space, 67(1). https://doi.org/10.1186/s40623-015-0306-z
dc.relation.referencesenOluyori, P. D., Ono, M. N., & Eteje, S. O. (2018). Comparison of Two Polynomial Geoid Models of GNSS/Leveling Geoid Development for Orthometric Heights in FCT, Abuja. International Journal of Engineering Research and Advanced Technology (IJERAT), 4(10), 1-9. https://doi.org/10.31695/IJERAT.2018.3330
dc.relation.referencesenPolat, N., & Uysal, M. (2017). DTM generation with UAV based photogrammetric point cloud. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII-4/W6, 77-79. https://doi.org/10.5194/isprs-archives-XLII-4-W6-77-2017
dc.relation.referencesenPrasad, S. (2015). Basic Geodesy Unit: II Semester: I Paper Code: GIS 05: Name of Paper: Earth Positioning System, PG Diploma in RS & GIS.
dc.relation.referencesenQuaye-Ballard, N.L., Asenso-Gyambibi, D., & Quaye-Ballard, J. (2020). Unmanned Aerial Vehicle for Topographical Mapping of Inaccessible Land Areas in Ghana: A Cost-Effective Approach. Presented at the 2020 FIG Working Week, Amsterdam, Netherlands, May 10- 14.
dc.relation.referencesenRaufu, I. O., & Tata, H. (2021). Accuracy Assessment of Different Polynomial Geoid Models in Orthometric Height Determination for Akure, Nigeria. Geodetski glasnik, 52, 61-73.
dc.relation.referencesenSansò, F., Reguzzoni, M., & Barzaghi, R. (2019). Geodetic Heights. Springer Nature, Switzerland, https://doi.org/10.1007/978-3-030-10454-2
dc.relation.referencesenTurner, I. L., Harley, M. D., & Drummond, C. D. (2016). UAVs for coastal surveying. Coastal Engineering, 114, 19-24 https://doi.org/10.1016/j.coastaleng.2016.03.011
dc.relation.referencesenYeh, F.H., Huang, C.J., Han, J.Y., & Ge, L. (2018). Modeling Slope Topography Using Unmanned Aerial Vehicle Image Technique. MATEC Web of Conferences, 147, 07002. https://doi.org/10.1051/matecconf/201814707002
dc.relation.urihttps://doi.org/10.1016/j.geog.2020.01.003
dc.relation.urihttps://doi.org/10.1016/j.jafrearsci.2021.104313
dc.relation.urihttps://doi.org/10.1088/1755-1315/44/3/032006
dc.relation.urihttps://doi.org/10.3390/s17122703
dc.relation.urihttps://doi.org/10.3390/ijgi9090528
dc.relation.urihttps://doi.org/10.1016/j.measurement.2020.108623
dc.relation.urihttps://doi.org/10.3390/s16010097
dc.relation.urihttps://doi.org/10.30897/ijegeo.754808
dc.relation.urihttps://doi.org/10.1007/s12205-012-1320-3
dc.relation.urihttps://oceanservice.noaa.gov/facts/eutrophication.html
dc.relation.urihttps://doi.org/10.1186/s40623-015-0306-z
dc.relation.urihttps://doi.org/10.31695/IJERAT.2018.3330
dc.relation.urihttps://doi.org/10.5194/isprs-archives-XLII-4-W6-77-2017
dc.relation.urihttps://doi.org/10.1007/978-3-030-10454-2
dc.relation.urihttps://doi.org/10.1016/j.coastaleng.2016.03.011
dc.relation.urihttps://doi.org/10.1051/matecconf/201814707002
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectгеоїд
dc.subjectБПЛА
dc.subjectцифрові моделі рельєфу
dc.subjectеліпсоїдальна висота
dc.subjectортометрична висота
dc.subjectgeoid
dc.subjectUAV
dc.subjectDTM
dc.subjectellipsoidal height
dc.subjectorthometric height
dc.titleModelling local geoid undulations using unmanned aerial vehicles (UAVS): a case study of the Federal University of Technology, Akure, Nigeria
dc.title.alternativeМоделювання локальних геоїдних ундуляцій за допомогою безпілотних літальних апаратів (БПЛА): приклад федерального технологічного університету, Акуре, Нігерія
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023n98_Raufu_I_O-Modelling_local_geoid_undulations_63-75.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023n98_Raufu_I_O-Modelling_local_geoid_undulations_63-75__COVER.png
Size:
548.58 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: