Epoxidation of 1-octene by tert-butyl hydroperoxide in the presence of titanium compounds
dc.citation.epage | 15 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Chemistry, Technology and Application of Substances | |
dc.citation.spage | 9 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Макота, О. І. | |
dc.contributor.author | Комаренська, З. М. | |
dc.contributor.author | Олійник, Л. П. | |
dc.contributor.author | Makota, O. I. | |
dc.contributor.author | Komarenska, Z. M. | |
dc.contributor.author | Oliynyk, L. P. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-05T08:12:28Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Досліджено реакцію епоксидування октену-1 гідропероксидом трет-бутилу в присутності TiB2, TiC і ТiSi2. Показано, що сполуки титану каталізують реакцію і проявляють різну активність. Встановлено, що TiSi2 є найкращим каталізатором для реакції епоксидування: забезпечує конверсію гідропероксиду 73% і селективність утворення епоксиду 75%. Показано можливість повторного використання ТiSi2 протягом трьох циклів. | |
dc.description.abstract | The epoxidation reaction of 1-octene by tert-butyl hydroperoxide in the presence of TiB2, TiC and TiSi2 was investigated. It is shown that the titanium compounds catalyzed the reaction and exhibited different activity. It is established that TiSi2 is the best choice for theepoxidation reaction which provided 73% of hydroperoxide conversion and 75% of selectivity of epoxide formation. The performance of TiSi2 after three runs indicated it’s excellent reusability. | |
dc.format.extent | 9-15 | |
dc.format.pages | 7 | |
dc.identifier.citation | Makota O. I. Epoxidation of 1-octene by tert-butyl hydroperoxide in the presence of titanium compounds / O. I. Makota, Z. M. Komarenska, L. P. Oliynyk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 9–15. | |
dc.identifier.citationen | Makota O. I. Epoxidation of 1-octene by tert-butyl hydroperoxide in the presence of titanium compounds / O. I. Makota, Z. M. Komarenska, L. P. Oliynyk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 9–15. | |
dc.identifier.doi | doi.org/10.23939/ctas2023.02.009 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63678 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (6), 2023 | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (6), 2023 | |
dc.relation.references | 1. Yao Y.-X., Zhang H.-W., Lu C.-B, Shang H.-Y., Tian Y.-Y. (2023) Highly selective and practical iron-catalyzed formal hydrogenation of epoxides to primary alcohols using formic acid. Eur. J. Org. Chem., 26, e202300111. doi: 10.1002/ejoc.202300111 https://doi.org/10.1002/ejoc.202300111 | |
dc.relation.references | 2. Qiang S., Hu R.-B., Yeung Y.-Y. (2023) Zwitterion-Catalyzed Ring-Opening of Epoxides with Carboxylic Acids. Asian J. Org. Chem., 12, e202200673. doi: 10.1002/ajoc.202200673 https://doi.org/10.1002/ajoc.202200673 | |
dc.relation.references | 3. Gilreath L.D., Melendez D.R., McGlade C.A., Shoemaker J.E.,. Mullinax D.W, Hartel A.M. (2023) Preparation of b-hydroxyketones (aldols) from the alkylation of O-silyl aryl cyanohydrins with epoxides. Tetrahedron Letters, 116, 154334. doi: 10.1016/j.tetlet.2022.154334 https://doi.org/10.1016/j.tetlet.2022.154334 | |
dc.relation.references | 4. Contento I., Lamparelli D.H., Buonerba A., Grassi A., Capacchione C. (2022) New dinuclear chromium complexes supported by thioether-triphenolate ligands as active catalysts for the cycloaddition of CO2 to epoxides. Journal of CO2 Utilization, 66, 102276 doi: 10.1016/j.jcou.2022.102276 https://doi.org/10.1016/j.jcou.2022.102276 | |
dc.relation.references | 5. Liu B., Duan T., Li Z., He J., Huang W., Li J., Zhu T., Ma C., Sun J., Guo K. (2023) Rigid tertiary amine/saccharin adduct as halide-free organocatalyst for the cycloaddition of CO2 into epoxides. Fuel, 348 128478. doi: 10.1016/j.fuel.2023.128478 https://doi.org/10.1016/j.fuel.2023.128478 | |
dc.relation.references | 6. Li J., Tao S., Chen F., Li M., Liu N. N-heterocyclic carbene-pyridine ligand coordinated Mo(II) complexes catalyzed synthesis of cyclic carbonates from carbon dioxide and epoxides. Journal of CO2 Utilization, 69, 102384. doi: 10.1016/j.jcou.2022.102384 https://doi.org/10.1016/j.jcou.2022.102384 | |
dc.relation.references | 7. Yue T.-J., Wang L.-Y., Ren W.-M., Lu X.-B. (2023) Regioselective copolymerization of epoxides and phthalic thioanhydride to produce isotacticity-rich semiaromatic polythioesters. European Polymer Journal, 190, 111985. doi: 10.1016/j.eurpolymj.2023.111985 https://doi.org/10.1016/j.eurpolymj.2023.111985 | |
dc.relation.references | 8. Kabasakal Y., Baysal E., Babahan-Bircan I., Altay Ç., Toker H. (2023) Investigation of some physical and mechanical properties of wood coated with plant-oil based epoxide nanocomposite materials. Progress in Organic Coatings, 176, 107383. doi: 10.1016/j.porgcoat.2022.107383 https://doi.org/10.1016/j.porgcoat.2022.107383 | |
dc.relation.references | 9. Nuinu P., Sirisinha C., Suchiva K., Daniel P., Phinyocheep P. (2023) Improvement of mechanical and dynamic properties of high silica filled epoxide functionalized natural rubber. J. materials research and technology, 24, 2155-2168. doi: 10.1016/j.jmrt.2023.03.101 https://doi.org/10.1016/j.jmrt.2023.03.101 | |
dc.relation.references | 10. Ayla E.Z., Patel D., Harris A., Flaherty D.W. (2022) Identity of the metal oxide support controls outer sphere interactions that change rates and barriers for alkene epoxidations at isolated Ti atoms. Journal of Catalysis, 411, 167-176. doi: 10.1016/j.jcat.2022.05.013 https://doi.org/10.1016/j.jcat.2022.05.013 | |
dc.relation.references | 11. Y. Guo, S.-J. Hwang, Katz A. (2019) Hydrothermally robust Ti/SiO2 epoxidation catalysts via surface modification with oligomeric PMHS. Molecular Catalysis, 477, 110509. doi: 10.1016/j.mcat.2019.110509 https://doi.org/10.1016/j.mcat.2019.110509 | |
dc.relation.references | 12. Wei Y., Li G., Liu J., Yi Y., Guo H. (2021) Organic groups-regulated high-efficiency catalysis of hybrid Ti-Containing mesoporous silicates for Bi-Phase interfacial epoxidation. Microporous and Mesoporous Materials, 310, 110668, doi: 10.1016/j.micromeso.2020.110668 https://doi.org/10.1016/j.micromeso.2020.110668 | |
dc.relation.references | 13. Li M., Zhai Y., Zhang X., Wang F., Lv G., Rosine A., Li M., Zhang Q., Liu Y. (2022) (NH4)2SO4-assisted synthesis of thin-walled Ti-rich hollow titanium silicalite-1 zeolite for 1-hexene epoxidation. Microporous and Mesoporous Materials, 331, 111655. doi: 10.1016/j.micromeso.2021.111655 https://doi.org/10.1016/j.micromeso.2021.111655 | |
dc.relation.references | 14. Awoke Y., Chebude Y., Díaz I. (2021) Ti-PMO materials as selective catalysts for the epoxidation of cyclohexene and vernonia oil. Catalysis Today, 390-391, 246-257. doi: 10.1016/j.cattod.2021.10.010 https://doi.org/10.1016/j.cattod.2021.10.010 | |
dc.relation.references | 15. Fadhli M., Khedher I., Fraile J.M. (2017) Comparison of TaeMCM-41 and TieMCM-41 as catalysts for the enantioselective epoxidation of styrene with TBHP. C. R. Chimie, 827-832. doi: 10.1016/j.crci.2017.02.008 https://doi.org/10.1016/j.crci.2017.02.008 | |
dc.relation.references | 16. Yang Y., Zhang T., Zhou D., Liu X., Yang S., Lu X., Xia Q. (2019) Hierarchical Ti-containing hollownest-structured zeolite synthesized by seed-assisted method for catalytic epoxidation of alkenes efficiently. Materials Chemistry and Physics, 236, 121754. doi: 10.1016/j.matchemphys.2019.121754 https://doi.org/10.1016/j.matchemphys.2019.121754 | |
dc.relation.references | 17. Kujbida M., Wróblewska A., Lewandowski G., Bosacka M., Koren Z.C., Michalkiewicz B. (2023) Effect of surface hydrophobization on the 1,5,9-cyclododecatriene epoxidation process with hydrogen peroxide on silanized Ti-SBA-15 catalyst. Journal of Industrial and Engineering Chemistry, 121, 472-479. doi: 10.1016/j.jiec.2023.02.002 https://doi.org/10.1016/j.jiec.2023.02.002 | |
dc.relation.references | 18. Liang X., Peng X., Liu D., Xia C., Luo Y., Shu X. (2021) Understanding the mechanism of N coordination on framework Ti of Ti-BEA zeolite and its promoting effect on alkene epoxidation reaction. Molecular Catalysis, 511, 111750. doi: 10.1016/j.mcat.2021.111750 https://doi.org/10.1016/j.mcat.2021.111750 | |
dc.relation.references | 19. He Z., Lei Q., Dai W., Zhang H. (2023) Solvent tunes the selectivity of alkenes epoxidation over Ti-Beta Zeolite: A systematic kinetic assessment on elementary steps, kinetically relevant and reaction barriers. Journal of Catalysis, 421, 172-184. doi.: 10.1016/j.jcat.2023.03.012 https://doi.org/10.1016/j.jcat.2023.03.012 | |
dc.relation.references | 20. Ma T., Xu C., Liu F., Feng Y., Zhang W.,. Tang W, Zhang H., Li X., Nie Y., Zhao S., Li Y., Ji D., Fang Z., He W., Guo K. (2023) Selective epoxidation and allylic oxidation of olefins catalyzed by BEA-Ti and porphyrin catalysts. Molecular Catalysis, 541, 113074. doi.: 10.1016/j.mcat.2023.113074 https:/doi.org/10.1016/j.mcat.2023.113074 | |
dc.relation.references | 21. Trach Y.B., Makota O.I.,Bulgakova L.V., Sviridova T.V., Sviridov D.V. (2015) Catalytic activity of hexagonal MoO3 modified with silver, palladium and copper. Open Chemistry, 13, 287-291. doi.: 10.1515/chem-2015-0036 https://doi.org/10.1515/chem-2015-0036 | |
dc.relation.referencesen | 1. Yao Y.-X., Zhang H.-W., Lu C.-B, Shang H.-Y., Tian Y.-Y. (2023) Highly selective and practical iron-catalyzed formal hydrogenation of epoxides to primary alcohols using formic acid. Eur. J. Org. Chem., 26, e202300111. doi: 10.1002/ejoc.202300111 https://doi.org/10.1002/ejoc.202300111 | |
dc.relation.referencesen | 2. Qiang S., Hu R.-B., Yeung Y.-Y. (2023) Zwitterion-Catalyzed Ring-Opening of Epoxides with Carboxylic Acids. Asian J. Org. Chem., 12, e202200673. doi: 10.1002/ajoc.202200673 https://doi.org/10.1002/ajoc.202200673 | |
dc.relation.referencesen | 3. Gilreath L.D., Melendez D.R., McGlade C.A., Shoemaker J.E.,. Mullinax D.W, Hartel A.M. (2023) Preparation of b-hydroxyketones (aldols) from the alkylation of O-silyl aryl cyanohydrins with epoxides. Tetrahedron Letters, 116, 154334. doi: 10.1016/j.tetlet.2022.154334 https://doi.org/10.1016/j.tetlet.2022.154334 | |
dc.relation.referencesen | 4. Contento I., Lamparelli D.H., Buonerba A., Grassi A., Capacchione C. (2022) New dinuclear chromium complexes supported by thioether-triphenolate ligands as active catalysts for the cycloaddition of CO2 to epoxides. Journal of CO2 Utilization, 66, 102276 doi: 10.1016/j.jcou.2022.102276 https://doi.org/10.1016/j.jcou.2022.102276 | |
dc.relation.referencesen | 5. Liu B., Duan T., Li Z., He J., Huang W., Li J., Zhu T., Ma C., Sun J., Guo K. (2023) Rigid tertiary amine/saccharin adduct as halide-free organocatalyst for the cycloaddition of CO2 into epoxides. Fuel, 348 128478. doi: 10.1016/j.fuel.2023.128478 https://doi.org/10.1016/j.fuel.2023.128478 | |
dc.relation.referencesen | 6. Li J., Tao S., Chen F., Li M., Liu N. N-heterocyclic carbene-pyridine ligand coordinated Mo(II) complexes catalyzed synthesis of cyclic carbonates from carbon dioxide and epoxides. Journal of CO2 Utilization, 69, 102384. doi: 10.1016/j.jcou.2022.102384 https://doi.org/10.1016/j.jcou.2022.102384 | |
dc.relation.referencesen | 7. Yue T.-J., Wang L.-Y., Ren W.-M., Lu X.-B. (2023) Regioselective copolymerization of epoxides and phthalic thioanhydride to produce isotacticity-rich semiaromatic polythioesters. European Polymer Journal, 190, 111985. doi: 10.1016/j.eurpolymj.2023.111985 https://doi.org/10.1016/j.eurpolymj.2023.111985 | |
dc.relation.referencesen | 8. Kabasakal Y., Baysal E., Babahan-Bircan I., Altay Ç., Toker H. (2023) Investigation of some physical and mechanical properties of wood coated with plant-oil based epoxide nanocomposite materials. Progress in Organic Coatings, 176, 107383. doi: 10.1016/j.porgcoat.2022.107383 https://doi.org/10.1016/j.porgcoat.2022.107383 | |
dc.relation.referencesen | 9. Nuinu P., Sirisinha C., Suchiva K., Daniel P., Phinyocheep P. (2023) Improvement of mechanical and dynamic properties of high silica filled epoxide functionalized natural rubber. J. materials research and technology, 24, 2155-2168. doi: 10.1016/j.jmrt.2023.03.101 https://doi.org/10.1016/j.jmrt.2023.03.101 | |
dc.relation.referencesen | 10. Ayla E.Z., Patel D., Harris A., Flaherty D.W. (2022) Identity of the metal oxide support controls outer sphere interactions that change rates and barriers for alkene epoxidations at isolated Ti atoms. Journal of Catalysis, 411, 167-176. doi: 10.1016/j.jcat.2022.05.013 https://doi.org/10.1016/j.jcat.2022.05.013 | |
dc.relation.referencesen | 11. Y. Guo, S.-J. Hwang, Katz A. (2019) Hydrothermally robust Ti/SiO2 epoxidation catalysts via surface modification with oligomeric PMHS. Molecular Catalysis, 477, 110509. doi: 10.1016/j.mcat.2019.110509 https://doi.org/10.1016/j.mcat.2019.110509 | |
dc.relation.referencesen | 12. Wei Y., Li G., Liu J., Yi Y., Guo H. (2021) Organic groups-regulated high-efficiency catalysis of hybrid Ti-Containing mesoporous silicates for Bi-Phase interfacial epoxidation. Microporous and Mesoporous Materials, 310, 110668, doi: 10.1016/j.micromeso.2020.110668 https://doi.org/10.1016/j.micromeso.2020.110668 | |
dc.relation.referencesen | 13. Li M., Zhai Y., Zhang X., Wang F., Lv G., Rosine A., Li M., Zhang Q., Liu Y. (2022) (NH4)2SO4-assisted synthesis of thin-walled Ti-rich hollow titanium silicalite-1 zeolite for 1-hexene epoxidation. Microporous and Mesoporous Materials, 331, 111655. doi: 10.1016/j.micromeso.2021.111655 https://doi.org/10.1016/j.micromeso.2021.111655 | |
dc.relation.referencesen | 14. Awoke Y., Chebude Y., Díaz I. (2021) Ti-PMO materials as selective catalysts for the epoxidation of cyclohexene and vernonia oil. Catalysis Today, 390-391, 246-257. doi: 10.1016/j.cattod.2021.10.010 https://doi.org/10.1016/j.cattod.2021.10.010 | |
dc.relation.referencesen | 15. Fadhli M., Khedher I., Fraile J.M. (2017) Comparison of TaeMCM-41 and TieMCM-41 as catalysts for the enantioselective epoxidation of styrene with TBHP. C. R. Chimie, 827-832. doi: 10.1016/j.crci.2017.02.008 https://doi.org/10.1016/j.crci.2017.02.008 | |
dc.relation.referencesen | 16. Yang Y., Zhang T., Zhou D., Liu X., Yang S., Lu X., Xia Q. (2019) Hierarchical Ti-containing hollownest-structured zeolite synthesized by seed-assisted method for catalytic epoxidation of alkenes efficiently. Materials Chemistry and Physics, 236, 121754. doi: 10.1016/j.matchemphys.2019.121754 https://doi.org/10.1016/j.matchemphys.2019.121754 | |
dc.relation.referencesen | 17. Kujbida M., Wróblewska A., Lewandowski G., Bosacka M., Koren Z.C., Michalkiewicz B. (2023) Effect of surface hydrophobization on the 1,5,9-cyclododecatriene epoxidation process with hydrogen peroxide on silanized Ti-SBA-15 catalyst. Journal of Industrial and Engineering Chemistry, 121, 472-479. doi: 10.1016/j.jiec.2023.02.002 https://doi.org/10.1016/j.jiec.2023.02.002 | |
dc.relation.referencesen | 18. Liang X., Peng X., Liu D., Xia C., Luo Y., Shu X. (2021) Understanding the mechanism of N coordination on framework Ti of Ti-BEA zeolite and its promoting effect on alkene epoxidation reaction. Molecular Catalysis, 511, 111750. doi: 10.1016/j.mcat.2021.111750 https://doi.org/10.1016/j.mcat.2021.111750 | |
dc.relation.referencesen | 19. He Z., Lei Q., Dai W., Zhang H. (2023) Solvent tunes the selectivity of alkenes epoxidation over Ti-Beta Zeolite: A systematic kinetic assessment on elementary steps, kinetically relevant and reaction barriers. Journal of Catalysis, 421, 172-184. doi., 10.1016/j.jcat.2023.03.012 https://doi.org/10.1016/j.jcat.2023.03.012 | |
dc.relation.referencesen | 20. Ma T., Xu C., Liu F., Feng Y., Zhang W.,. Tang W, Zhang H., Li X., Nie Y., Zhao S., Li Y., Ji D., Fang Z., He W., Guo K. (2023) Selective epoxidation and allylic oxidation of olefins catalyzed by BEA-Ti and porphyrin catalysts. Molecular Catalysis, 541, 113074. doi., 10.1016/j.mcat.2023.113074 https:/doi.org/10.1016/j.mcat.2023.113074 | |
dc.relation.referencesen | 21. Trach Y.B., Makota O.I.,Bulgakova L.V., Sviridova T.V., Sviridov D.V. (2015) Catalytic activity of hexagonal MoO3 modified with silver, palladium and copper. Open Chemistry, 13, 287-291. doi., 10.1515/chem-2015-0036 https://doi.org/10.1515/chem-2015-0036 | |
dc.relation.uri | https://doi.org/10.1002/ejoc.202300111 | |
dc.relation.uri | https://doi.org/10.1002/ajoc.202200673 | |
dc.relation.uri | https://doi.org/10.1016/j.tetlet.2022.154334 | |
dc.relation.uri | https://doi.org/10.1016/j.jcou.2022.102276 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2023.128478 | |
dc.relation.uri | https://doi.org/10.1016/j.jcou.2022.102384 | |
dc.relation.uri | https://doi.org/10.1016/j.eurpolymj.2023.111985 | |
dc.relation.uri | https://doi.org/10.1016/j.porgcoat.2022.107383 | |
dc.relation.uri | https://doi.org/10.1016/j.jmrt.2023.03.101 | |
dc.relation.uri | https://doi.org/10.1016/j.jcat.2022.05.013 | |
dc.relation.uri | https://doi.org/10.1016/j.mcat.2019.110509 | |
dc.relation.uri | https://doi.org/10.1016/j.micromeso.2020.110668 | |
dc.relation.uri | https://doi.org/10.1016/j.micromeso.2021.111655 | |
dc.relation.uri | https://doi.org/10.1016/j.cattod.2021.10.010 | |
dc.relation.uri | https://doi.org/10.1016/j.crci.2017.02.008 | |
dc.relation.uri | https://doi.org/10.1016/j.matchemphys.2019.121754 | |
dc.relation.uri | https://doi.org/10.1016/j.jiec.2023.02.002 | |
dc.relation.uri | https://doi.org/10.1016/j.mcat.2021.111750 | |
dc.relation.uri | https://doi.org/10.1016/j.jcat.2023.03.012 | |
dc.relation.uri | https://doi.org/10.1515/chem-2015-0036 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | епоксидування | |
dc.subject | каталізатори | |
dc.subject | титан | |
dc.subject | октен-1 | |
dc.subject | гідропероксид трет-бутилу | |
dc.subject | epoxidation | |
dc.subject | catalyst | |
dc.subject | titanium | |
dc.subject | 1-octene | |
dc.subject | tert-butyl hydroperoxide | |
dc.title | Epoxidation of 1-octene by tert-butyl hydroperoxide in the presence of titanium compounds | |
dc.title.alternative | Епоксидування октену-1 трет-бутилгідропероксидом у присутності сполук титану | |
dc.type | Article |
Files
License bundle
1 - 1 of 1