Epoxidation of 1-octene by tert-butyl hydroperoxide in the presence of titanium compounds

dc.citation.epage15
dc.citation.issue2
dc.citation.journalTitleChemistry, Technology and Application of Substances
dc.citation.spage9
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМакота, О. І.
dc.contributor.authorКомаренська, З. М.
dc.contributor.authorОлійник, Л. П.
dc.contributor.authorMakota, O. I.
dc.contributor.authorKomarenska, Z. M.
dc.contributor.authorOliynyk, L. P.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:12:28Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractДосліджено реакцію епоксидування октену-1 гідропероксидом трет-бутилу в присутності TiB2, TiC і ТiSi2. Показано, що сполуки титану каталізують реакцію і проявляють різну активність. Встановлено, що TiSi2 є найкращим каталізатором для реакції епоксидування: забезпечує конверсію гідропероксиду 73% і селективність утворення епоксиду 75%. Показано можливість повторного використання ТiSi2 протягом трьох циклів.
dc.description.abstractThe epoxidation reaction of 1-octene by tert-butyl hydroperoxide in the presence of TiB2, TiC and TiSi2 was investigated. It is shown that the titanium compounds catalyzed the reaction and exhibited different activity. It is established that TiSi2 is the best choice for theepoxidation reaction which provided 73% of hydroperoxide conversion and 75% of selectivity of epoxide formation. The performance of TiSi2 after three runs indicated it’s excellent reusability.
dc.format.extent9-15
dc.format.pages7
dc.identifier.citationMakota O. I. Epoxidation of 1-octene by tert-butyl hydroperoxide in the presence of titanium compounds / O. I. Makota, Z. M. Komarenska, L. P. Oliynyk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 9–15.
dc.identifier.citationenMakota O. I. Epoxidation of 1-octene by tert-butyl hydroperoxide in the presence of titanium compounds / O. I. Makota, Z. M. Komarenska, L. P. Oliynyk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 9–15.
dc.identifier.doidoi.org/10.23939/ctas2023.02.009
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63678
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (6), 2023
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (6), 2023
dc.relation.references1. Yao Y.-X., Zhang H.-W., Lu C.-B, Shang H.-Y., Tian Y.-Y. (2023) Highly selective and practical iron-catalyzed formal hydrogenation of epoxides to primary alcohols using formic acid. Eur. J. Org. Chem., 26, e202300111. doi: 10.1002/ejoc.202300111 https://doi.org/10.1002/ejoc.202300111
dc.relation.references2. Qiang S., Hu R.-B., Yeung Y.-Y. (2023) Zwitterion-Catalyzed Ring-Opening of Epoxides with Carboxylic Acids. Asian J. Org. Chem., 12, e202200673. doi: 10.1002/ajoc.202200673 https://doi.org/10.1002/ajoc.202200673
dc.relation.references3. Gilreath L.D., Melendez D.R., McGlade C.A., Shoemaker J.E.,. Mullinax D.W, Hartel A.M. (2023) Preparation of b-hydroxyketones (aldols) from the alkylation of O-silyl aryl cyanohydrins with epoxides. Tetrahedron Letters, 116, 154334. doi: 10.1016/j.tetlet.2022.154334 https://doi.org/10.1016/j.tetlet.2022.154334
dc.relation.references4. Contento I., Lamparelli D.H., Buonerba A., Grassi A., Capacchione C. (2022) New dinuclear chromium complexes supported by thioether-triphenolate ligands as active catalysts for the cycloaddition of CO2 to epoxides. Journal of CO2 Utilization, 66, 102276 doi: 10.1016/j.jcou.2022.102276 https://doi.org/10.1016/j.jcou.2022.102276
dc.relation.references5. Liu B., Duan T., Li Z., He J., Huang W., Li J., Zhu T., Ma C., Sun J., Guo K. (2023) Rigid tertiary amine/saccharin adduct as halide-free organocatalyst for the cycloaddition of CO2 into epoxides. Fuel, 348 128478. doi: 10.1016/j.fuel.2023.128478 https://doi.org/10.1016/j.fuel.2023.128478
dc.relation.references6. Li J., Tao S., Chen F., Li M., Liu N. N-heterocyclic carbene-pyridine ligand coordinated Mo(II) complexes catalyzed synthesis of cyclic carbonates from carbon dioxide and epoxides. Journal of CO2 Utilization, 69, 102384. doi: 10.1016/j.jcou.2022.102384 https://doi.org/10.1016/j.jcou.2022.102384
dc.relation.references7. Yue T.-J., Wang L.-Y., Ren W.-M., Lu X.-B. (2023) Regioselective copolymerization of epoxides and phthalic thioanhydride to produce isotacticity-rich semiaromatic polythioesters. European Polymer Journal, 190, 111985. doi: 10.1016/j.eurpolymj.2023.111985 https://doi.org/10.1016/j.eurpolymj.2023.111985
dc.relation.references8. Kabasakal Y., Baysal E., Babahan-Bircan I., Altay Ç., Toker H. (2023) Investigation of some physical and mechanical properties of wood coated with plant-oil based epoxide nanocomposite materials. Progress in Organic Coatings, 176, 107383. doi: 10.1016/j.porgcoat.2022.107383 https://doi.org/10.1016/j.porgcoat.2022.107383
dc.relation.references9. Nuinu P., Sirisinha C., Suchiva K., Daniel P., Phinyocheep P. (2023) Improvement of mechanical and dynamic properties of high silica filled epoxide functionalized natural rubber. J. materials research and technology, 24, 2155-2168. doi: 10.1016/j.jmrt.2023.03.101 https://doi.org/10.1016/j.jmrt.2023.03.101
dc.relation.references10. Ayla E.Z., Patel D., Harris A., Flaherty D.W. (2022) Identity of the metal oxide support controls outer sphere interactions that change rates and barriers for alkene epoxidations at isolated Ti atoms. Journal of Catalysis, 411, 167-176. doi: 10.1016/j.jcat.2022.05.013 https://doi.org/10.1016/j.jcat.2022.05.013
dc.relation.references11. Y. Guo, S.-J. Hwang, Katz A. (2019) Hydrothermally robust Ti/SiO2 epoxidation catalysts via surface modification with oligomeric PMHS. Molecular Catalysis, 477, 110509. doi: 10.1016/j.mcat.2019.110509 https://doi.org/10.1016/j.mcat.2019.110509
dc.relation.references12. Wei Y., Li G., Liu J., Yi Y., Guo H. (2021) Organic groups-regulated high-efficiency catalysis of hybrid Ti-Containing mesoporous silicates for Bi-Phase interfacial epoxidation. Microporous and Mesoporous Materials, 310, 110668, doi: 10.1016/j.micromeso.2020.110668 https://doi.org/10.1016/j.micromeso.2020.110668
dc.relation.references13. Li M., Zhai Y., Zhang X., Wang F., Lv G., Rosine A., Li M., Zhang Q., Liu Y. (2022) (NH4)2SO4-assisted synthesis of thin-walled Ti-rich hollow titanium silicalite-1 zeolite for 1-hexene epoxidation. Microporous and Mesoporous Materials, 331, 111655. doi: 10.1016/j.micromeso.2021.111655 https://doi.org/10.1016/j.micromeso.2021.111655
dc.relation.references14. Awoke Y., Chebude Y., Díaz I. (2021) Ti-PMO materials as selective catalysts for the epoxidation of cyclohexene and vernonia oil. Catalysis Today, 390-391, 246-257. doi: 10.1016/j.cattod.2021.10.010 https://doi.org/10.1016/j.cattod.2021.10.010
dc.relation.references15. Fadhli M., Khedher I., Fraile J.M. (2017) Comparison of TaeMCM-41 and TieMCM-41 as catalysts for the enantioselective epoxidation of styrene with TBHP. C. R. Chimie, 827-832. doi: 10.1016/j.crci.2017.02.008 https://doi.org/10.1016/j.crci.2017.02.008
dc.relation.references16. Yang Y., Zhang T., Zhou D., Liu X., Yang S., Lu X., Xia Q. (2019) Hierarchical Ti-containing hollownest-structured zeolite synthesized by seed-assisted method for catalytic epoxidation of alkenes efficiently. Materials Chemistry and Physics, 236, 121754. doi: 10.1016/j.matchemphys.2019.121754 https://doi.org/10.1016/j.matchemphys.2019.121754
dc.relation.references17. Kujbida M., Wróblewska A., Lewandowski G., Bosacka M., Koren Z.C., Michalkiewicz B. (2023) Effect of surface hydrophobization on the 1,5,9-cyclododecatriene epoxidation process with hydrogen peroxide on silanized Ti-SBA-15 catalyst. Journal of Industrial and Engineering Chemistry, 121, 472-479. doi: 10.1016/j.jiec.2023.02.002 https://doi.org/10.1016/j.jiec.2023.02.002
dc.relation.references18. Liang X., Peng X., Liu D., Xia C., Luo Y., Shu X. (2021) Understanding the mechanism of N coordination on framework Ti of Ti-BEA zeolite and its promoting effect on alkene epoxidation reaction. Molecular Catalysis, 511, 111750. doi: 10.1016/j.mcat.2021.111750 https://doi.org/10.1016/j.mcat.2021.111750
dc.relation.references19. He Z., Lei Q., Dai W., Zhang H. (2023) Solvent tunes the selectivity of alkenes epoxidation over Ti-Beta Zeolite: A systematic kinetic assessment on elementary steps, kinetically relevant and reaction barriers. Journal of Catalysis, 421, 172-184. doi.: 10.1016/j.jcat.2023.03.012 https://doi.org/10.1016/j.jcat.2023.03.012
dc.relation.references20. Ma T., Xu C., Liu F., Feng Y., Zhang W.,. Tang W, Zhang H., Li X., Nie Y., Zhao S., Li Y., Ji D., Fang Z., He W., Guo K. (2023) Selective epoxidation and allylic oxidation of olefins catalyzed by BEA-Ti and porphyrin catalysts. Molecular Catalysis, 541, 113074. doi.: 10.1016/j.mcat.2023.113074 https:/doi.org/10.1016/j.mcat.2023.113074
dc.relation.references21. Trach Y.B., Makota O.I.,Bulgakova L.V., Sviridova T.V., Sviridov D.V. (2015) Catalytic activity of hexagonal MoO3 modified with silver, palladium and copper. Open Chemistry, 13, 287-291. doi.: 10.1515/chem-2015-0036 https://doi.org/10.1515/chem-2015-0036
dc.relation.referencesen1. Yao Y.-X., Zhang H.-W., Lu C.-B, Shang H.-Y., Tian Y.-Y. (2023) Highly selective and practical iron-catalyzed formal hydrogenation of epoxides to primary alcohols using formic acid. Eur. J. Org. Chem., 26, e202300111. doi: 10.1002/ejoc.202300111 https://doi.org/10.1002/ejoc.202300111
dc.relation.referencesen2. Qiang S., Hu R.-B., Yeung Y.-Y. (2023) Zwitterion-Catalyzed Ring-Opening of Epoxides with Carboxylic Acids. Asian J. Org. Chem., 12, e202200673. doi: 10.1002/ajoc.202200673 https://doi.org/10.1002/ajoc.202200673
dc.relation.referencesen3. Gilreath L.D., Melendez D.R., McGlade C.A., Shoemaker J.E.,. Mullinax D.W, Hartel A.M. (2023) Preparation of b-hydroxyketones (aldols) from the alkylation of O-silyl aryl cyanohydrins with epoxides. Tetrahedron Letters, 116, 154334. doi: 10.1016/j.tetlet.2022.154334 https://doi.org/10.1016/j.tetlet.2022.154334
dc.relation.referencesen4. Contento I., Lamparelli D.H., Buonerba A., Grassi A., Capacchione C. (2022) New dinuclear chromium complexes supported by thioether-triphenolate ligands as active catalysts for the cycloaddition of CO2 to epoxides. Journal of CO2 Utilization, 66, 102276 doi: 10.1016/j.jcou.2022.102276 https://doi.org/10.1016/j.jcou.2022.102276
dc.relation.referencesen5. Liu B., Duan T., Li Z., He J., Huang W., Li J., Zhu T., Ma C., Sun J., Guo K. (2023) Rigid tertiary amine/saccharin adduct as halide-free organocatalyst for the cycloaddition of CO2 into epoxides. Fuel, 348 128478. doi: 10.1016/j.fuel.2023.128478 https://doi.org/10.1016/j.fuel.2023.128478
dc.relation.referencesen6. Li J., Tao S., Chen F., Li M., Liu N. N-heterocyclic carbene-pyridine ligand coordinated Mo(II) complexes catalyzed synthesis of cyclic carbonates from carbon dioxide and epoxides. Journal of CO2 Utilization, 69, 102384. doi: 10.1016/j.jcou.2022.102384 https://doi.org/10.1016/j.jcou.2022.102384
dc.relation.referencesen7. Yue T.-J., Wang L.-Y., Ren W.-M., Lu X.-B. (2023) Regioselective copolymerization of epoxides and phthalic thioanhydride to produce isotacticity-rich semiaromatic polythioesters. European Polymer Journal, 190, 111985. doi: 10.1016/j.eurpolymj.2023.111985 https://doi.org/10.1016/j.eurpolymj.2023.111985
dc.relation.referencesen8. Kabasakal Y., Baysal E., Babahan-Bircan I., Altay Ç., Toker H. (2023) Investigation of some physical and mechanical properties of wood coated with plant-oil based epoxide nanocomposite materials. Progress in Organic Coatings, 176, 107383. doi: 10.1016/j.porgcoat.2022.107383 https://doi.org/10.1016/j.porgcoat.2022.107383
dc.relation.referencesen9. Nuinu P., Sirisinha C., Suchiva K., Daniel P., Phinyocheep P. (2023) Improvement of mechanical and dynamic properties of high silica filled epoxide functionalized natural rubber. J. materials research and technology, 24, 2155-2168. doi: 10.1016/j.jmrt.2023.03.101 https://doi.org/10.1016/j.jmrt.2023.03.101
dc.relation.referencesen10. Ayla E.Z., Patel D., Harris A., Flaherty D.W. (2022) Identity of the metal oxide support controls outer sphere interactions that change rates and barriers for alkene epoxidations at isolated Ti atoms. Journal of Catalysis, 411, 167-176. doi: 10.1016/j.jcat.2022.05.013 https://doi.org/10.1016/j.jcat.2022.05.013
dc.relation.referencesen11. Y. Guo, S.-J. Hwang, Katz A. (2019) Hydrothermally robust Ti/SiO2 epoxidation catalysts via surface modification with oligomeric PMHS. Molecular Catalysis, 477, 110509. doi: 10.1016/j.mcat.2019.110509 https://doi.org/10.1016/j.mcat.2019.110509
dc.relation.referencesen12. Wei Y., Li G., Liu J., Yi Y., Guo H. (2021) Organic groups-regulated high-efficiency catalysis of hybrid Ti-Containing mesoporous silicates for Bi-Phase interfacial epoxidation. Microporous and Mesoporous Materials, 310, 110668, doi: 10.1016/j.micromeso.2020.110668 https://doi.org/10.1016/j.micromeso.2020.110668
dc.relation.referencesen13. Li M., Zhai Y., Zhang X., Wang F., Lv G., Rosine A., Li M., Zhang Q., Liu Y. (2022) (NH4)2SO4-assisted synthesis of thin-walled Ti-rich hollow titanium silicalite-1 zeolite for 1-hexene epoxidation. Microporous and Mesoporous Materials, 331, 111655. doi: 10.1016/j.micromeso.2021.111655 https://doi.org/10.1016/j.micromeso.2021.111655
dc.relation.referencesen14. Awoke Y., Chebude Y., Díaz I. (2021) Ti-PMO materials as selective catalysts for the epoxidation of cyclohexene and vernonia oil. Catalysis Today, 390-391, 246-257. doi: 10.1016/j.cattod.2021.10.010 https://doi.org/10.1016/j.cattod.2021.10.010
dc.relation.referencesen15. Fadhli M., Khedher I., Fraile J.M. (2017) Comparison of TaeMCM-41 and TieMCM-41 as catalysts for the enantioselective epoxidation of styrene with TBHP. C. R. Chimie, 827-832. doi: 10.1016/j.crci.2017.02.008 https://doi.org/10.1016/j.crci.2017.02.008
dc.relation.referencesen16. Yang Y., Zhang T., Zhou D., Liu X., Yang S., Lu X., Xia Q. (2019) Hierarchical Ti-containing hollownest-structured zeolite synthesized by seed-assisted method for catalytic epoxidation of alkenes efficiently. Materials Chemistry and Physics, 236, 121754. doi: 10.1016/j.matchemphys.2019.121754 https://doi.org/10.1016/j.matchemphys.2019.121754
dc.relation.referencesen17. Kujbida M., Wróblewska A., Lewandowski G., Bosacka M., Koren Z.C., Michalkiewicz B. (2023) Effect of surface hydrophobization on the 1,5,9-cyclododecatriene epoxidation process with hydrogen peroxide on silanized Ti-SBA-15 catalyst. Journal of Industrial and Engineering Chemistry, 121, 472-479. doi: 10.1016/j.jiec.2023.02.002 https://doi.org/10.1016/j.jiec.2023.02.002
dc.relation.referencesen18. Liang X., Peng X., Liu D., Xia C., Luo Y., Shu X. (2021) Understanding the mechanism of N coordination on framework Ti of Ti-BEA zeolite and its promoting effect on alkene epoxidation reaction. Molecular Catalysis, 511, 111750. doi: 10.1016/j.mcat.2021.111750 https://doi.org/10.1016/j.mcat.2021.111750
dc.relation.referencesen19. He Z., Lei Q., Dai W., Zhang H. (2023) Solvent tunes the selectivity of alkenes epoxidation over Ti-Beta Zeolite: A systematic kinetic assessment on elementary steps, kinetically relevant and reaction barriers. Journal of Catalysis, 421, 172-184. doi., 10.1016/j.jcat.2023.03.012 https://doi.org/10.1016/j.jcat.2023.03.012
dc.relation.referencesen20. Ma T., Xu C., Liu F., Feng Y., Zhang W.,. Tang W, Zhang H., Li X., Nie Y., Zhao S., Li Y., Ji D., Fang Z., He W., Guo K. (2023) Selective epoxidation and allylic oxidation of olefins catalyzed by BEA-Ti and porphyrin catalysts. Molecular Catalysis, 541, 113074. doi., 10.1016/j.mcat.2023.113074 https:/doi.org/10.1016/j.mcat.2023.113074
dc.relation.referencesen21. Trach Y.B., Makota O.I.,Bulgakova L.V., Sviridova T.V., Sviridov D.V. (2015) Catalytic activity of hexagonal MoO3 modified with silver, palladium and copper. Open Chemistry, 13, 287-291. doi., 10.1515/chem-2015-0036 https://doi.org/10.1515/chem-2015-0036
dc.relation.urihttps://doi.org/10.1002/ejoc.202300111
dc.relation.urihttps://doi.org/10.1002/ajoc.202200673
dc.relation.urihttps://doi.org/10.1016/j.tetlet.2022.154334
dc.relation.urihttps://doi.org/10.1016/j.jcou.2022.102276
dc.relation.urihttps://doi.org/10.1016/j.fuel.2023.128478
dc.relation.urihttps://doi.org/10.1016/j.jcou.2022.102384
dc.relation.urihttps://doi.org/10.1016/j.eurpolymj.2023.111985
dc.relation.urihttps://doi.org/10.1016/j.porgcoat.2022.107383
dc.relation.urihttps://doi.org/10.1016/j.jmrt.2023.03.101
dc.relation.urihttps://doi.org/10.1016/j.jcat.2022.05.013
dc.relation.urihttps://doi.org/10.1016/j.mcat.2019.110509
dc.relation.urihttps://doi.org/10.1016/j.micromeso.2020.110668
dc.relation.urihttps://doi.org/10.1016/j.micromeso.2021.111655
dc.relation.urihttps://doi.org/10.1016/j.cattod.2021.10.010
dc.relation.urihttps://doi.org/10.1016/j.crci.2017.02.008
dc.relation.urihttps://doi.org/10.1016/j.matchemphys.2019.121754
dc.relation.urihttps://doi.org/10.1016/j.jiec.2023.02.002
dc.relation.urihttps://doi.org/10.1016/j.mcat.2021.111750
dc.relation.urihttps://doi.org/10.1016/j.jcat.2023.03.012
dc.relation.urihttps://doi.org/10.1515/chem-2015-0036
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectепоксидування
dc.subjectкаталізатори
dc.subjectтитан
dc.subjectоктен-1
dc.subjectгідропероксид трет-бутилу
dc.subjectepoxidation
dc.subjectcatalyst
dc.subjecttitanium
dc.subject1-octene
dc.subjecttert-butyl hydroperoxide
dc.titleEpoxidation of 1-octene by tert-butyl hydroperoxide in the presence of titanium compounds
dc.title.alternativeЕпоксидування октену-1 трет-бутилгідропероксидом у присутності сполук титану
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v6n2_Makota_O_I-Epoxidation_of_1_octene_by_9-15.pdf
Size:
624.18 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v6n2_Makota_O_I-Epoxidation_of_1_octene_by_9-15__COVER.png
Size:
479.05 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: