Three-dimentional model of the deformation of structural Merian basin by standing waves

dc.citation.epage53
dc.citation.issue2(27)
dc.citation.journalTitleГеодинаміка : науковий журнал
dc.citation.spage48
dc.contributor.affiliationДП “Національна енергетична компанія ”Укренерго”
dc.contributor.affiliationNational power company “Ukrenergo”
dc.contributor.authorАнахов, П. В.
dc.contributor.authorAnakhov, P. V.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-06-14T20:25:25Z
dc.date.available2020-06-14T20:25:25Z
dc.date.created2019-02-26
dc.date.issued2019-02-26
dc.description.abstractМета. Аналіз дії стоячих хвиль на ложе водного басейну. Методика. Під час “стояння” хвилі водні маси здійснюють обертально-поступальні переміщення, за яких у вертикальному розрізі басейну відбуваються синхронні реверсивні рухи води, з найбільшими значеннями у вертикальному, в пучностях, і горизонтальному, у вузлах, напрямках. Мікросейсми сейшового походження створюють поле деформацій у вертикальному розрізі басейну, з максимумами на лініях проєкцій пучностей на дні водойми, а також на боковій грані. Результати. Оскільки характерною особливістю коливань є обумовленість їх періоду лінійними розмірами характерної сторони і співіснування вертикальних стоячих хвиль із горизонтальними рухами течій, під час розрахунків розглядаються усі три сторони модельного прямокутного басейну постійної глибини. Показано, що за наявності “вертикальних” сейш створюється загроза резонансного збудження сейш внутрішньою збуджувальною силою – іншими сейшами цього ж басейну. За мокрої ліквідації шахт, яка супроводжується заповненням виробленого простору водою, замість пошарово розташованих водоносних горизонтів, розділених водоупорами, утворюється тріщино-колекторний масив, який працює як єдина тріщинувата зона. Власні коливання водних мас здатні сприяти підвищенню сейсмічності створеної депресійної зони. Але, з іншого боку – у гірничих виробках можливе розміщення підземних басейнів ГАЕС. Привабливість використання відпрацьованих гірничих виробок полягає у скороченні або непотрібності прохідницьких робіт під час зведення підземних енергетичних об’єктів. Наукова новизна. Розроблена модифікована формула Меріана розрахунку періоду сейш у прямокутному басейні постійної глибини, яка враховує наявність двох горизонтальних і однієї вертикальної мод. Показано, що за наявності “вертикальних” сейш створюється загроза резонансного збудження сейш внутрішньою збуджувальною силою – іншими сейшами цього ж басейну. Визначено небезпеку резонансної взаємодії однонаправлених із горизонтальними пар “хвиля горизонтальної моди – течія вертикальної моди” і “хвиля вертикальної моди – течія горизонтальної моди”. Виявлено гідрологічну небезпеку, спричинену можливим резонансом власних коливань, а також їх резонансом із зовнішньою збуджувальною силою. Практична значущість. Виявлено водні об'єкти, аналіз яких потребує урахування вертикальної моди власних коливань. Це – ліквідовані гірничі виробки, вертикальний розмір яких порівнянний із горизонтальними або перевищує їх.
dc.description.abstractPurpose of the study. Analysis of the effect of standing waves on the bed of the water basin. The research methodology. When “standing” wave, the water masses carry out rotary-translational displacement. In the vertical cross section of the basin there are synchronous reversible water movements. Their greatest values are in the antinodes, in the vertical direction, and in the nodes, in the horizontal direction. Microseisms of seiche origin create a field of deformation in a vertical section of the basin, with maxima on the lines of projections of the antinodes at the bottom of the reservoir, and also on the lateral face. Results. Proceeding from the fact that the characteristic feature of oscillations is the conditionality of their period, with the linear dimensions of the characteristic side and the coexistence of vertical standing waves with horizontal flow of currents, in the calculations all three dimensions of the model rectangular basin with constant depth are considered. It is shown that in the presence of a “vertical” seiches, the threat of resonance excitation of the seiches is caused by the internal excitatory force – other seiches of the same basin. In the wet liquidation of mines, which are accompanied by the filling of the produced space with water, instead of layered aquifers, separated by water supply, a crack-collecting array is formed, which acts as the only cracked zone. Normal fluctuations of water masses can contribute to increasing the seismicity of the created depression zone. But, on the other hand – in mines it is possible to accommodate the underground pools of the pumped-storage power stations. The attractiveness of exhausted mines is to reduce or exclude excavation works when erecting underground energy objects. Scientific novelty. A modified Merian formula for calculating the seiche period in a rectangular basin of constant depth takes into account the presence of two horizontal and one vertical modes. It is shown that in the presence of a “vertical” seiches, the threat of resonance stimulation of the seiches is caused by the internal excitatory force – other seiches of the same water body. The danger of the resonance interaction of the unidirectional horizontal pairs of the “wave of horizontal mode – the current of the vertical mode” and “the wave of the vertical mode – the current of the horizontal mode” is determined. The hydrological danger, which is caused by possible resonance of the proper oscillations, as well as their resonance with the external excitatory force, is revealed. Practical value. Water objects have been discovered, the analysis of which requires taking into account the vertical mode of its normal oscillations. These are – mines with a vertical dimension, which are comparable to the horizontal ones.
dc.format.extent48-53
dc.format.pages6
dc.identifier.citationAnakhov P. V. Three-dimentional model of the deformation of structural Merian basin by standing waves / P. V. Anakhov // Geodynamics : SCIENTIFIC JOURNAL. — Lviv : Lviv Politechnic Publishing House, 2019. — No 2(27). — P. 48–53.
dc.identifier.citationenAnakhov P. V. Three-dimentional model of the deformation of structural Merian basin by standing waves / P. V. Anakhov // Geodynamics : SCIENTIFIC JOURNAL. — Lviv : Lviv Politechnic Publishing House, 2019. — No 2(27). — P. 48–53.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52222
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка : науковий журнал, 2(27), 2019
dc.relation.ispartofGeodynamics : SCIENTIFIC JOURNAL, 2(27), 2019
dc.relation.referencesAnakhov, P. V. (2016). Triggering of earthquakes of
dc.relation.referencesAzov-Black Sea basin by seiche deformation of
dc.relation.referencesthe ground. Geodynamics, 1, 155–161, https://doi.org/10.23939/jgd2016.01.155 (in Ukrainian).
dc.relation.referencesAnakhov, P. V. (2018). Integrated use of standing
dc.relation.referenceswaves of reservoirs. Hydropower of Ukraine, 1–2, 49–51 (in Ukrainian).
dc.relation.referencesBowers, D. G., Macdonald, R. G., McKee, D.,
dc.relation.referencesNimmo-Smith, W. A. M., Graham, G. W. (2013).
dc.relation.referencesOn the formation of tide-produced seiches and
dc.relation.referencesdouble high waters in coastal seas. Estuarine,
dc.relation.referencesCoastal and Shelf Science, 134, 108–116,
dc.relation.referenceshttp://dx.doi.org/10.1016/j.ecss.2013.09.014.
dc.relation.referencesChekhov, V. N., Nesterov, V. V., Ivanov, Ju. B., and
dc.relation.referencesNasonkin, V. A. (1994). Excessive long-period
dc.relation.referenceslithospheric deformations excited by seiche
dc.relation.referencesoscillations. Proceedings of the RAS, 336 (3), 391–393 (in Russian).
dc.relation.referencesGerman, V. H. (1970). Spectral analysis of
dc.relation.referencesfluctuations of the level of the Azov, Black and
dc.relation.referencesCaspian seas in the frequency range from one
dc.relation.referencescycle for several hours to one cycle for several
dc.relation.referencesdays. Proceedings of the State Oceanographic
dc.relation.referencesInstitute, 103, 52–73 (in Russian).
dc.relation.referencesHieblot, J., & Rocard, Y. (1959). Contribution à la
dc.relation.referencesthéorie des microséismes. In Annales de
dc.relation.referencesGéophysique, 15, p. 539.
dc.relation.referencesKnudsen, V. O. (1934). Absorption of the sound.
dc.relation.referencesAdvances in physical sciences, 14 (3), 298–301 (in
dc.relation.referencesRussian).
dc.relation.referencesKodomari, S. (1982). On the Studies of the Periodic
dc.relation.referencesMotions in a Lake (2): Effect of the Lake Basin
dc.relation.referencesShape on the Periodic Motion. Journal of the
dc.relation.referencesFaculty of Science, Hokkaido University, Series 7
dc.relation.references(Geophysics), 7 (2), 185–226.
dc.relation.referencesKokosadze, A. E. (2017). Lithosphere for nuclear and
dc.relation.referenceshydro power engineering. Mining Information and
dc.relation.referencesAnalytical Bulletin, 4, 200–204 (in Russian).
dc.relation.referencesKovalev, D. P. (2015). Field experiments and
dc.relation.referencesmonitoring of infragravity waves for the diagnosis
dc.relation.referencesof dangerous marine phenomena in the coastal
dc.relation.referenceszone on the example of the waters of the SakhalinKuril region: (Doctoral dissertation) (in Russian).
dc.relation.referencesKurchatov, I. V. (1982). Seiches in the Black and
dc.relation.referencesAzov Seas. In Selected Works (Vol. 1, pp. 382–391). Moscow: Nauka (in Russian).
dc.relation.referencesLonguet-Higgins, M. S. (1950). A theory of the origin
dc.relation.referencesof microseisms. Philosophical Transactions of the
dc.relation.referencesRoyal Society of London. Series A, Mathematical
dc.relation.referencesand Physical Sciences, 243(857), 1–35.
dc.relation.referencesMiche, M. (1944). Mouvements ondulatoires de la
dc.relation.referencesmer en profondeur constante ou décroissante.
dc.relation.referencesAnnales de Ponts et Chaussées, pp (1) 26–78,(2) 270–292,(3) 369–406.
dc.relation.referencesNesterov, V. V. (1996). Studies of lithospheric deformations by devices of large-base laser interferometry: (Doctoral dissertation) (in Russian).
dc.relation.referencesRabinovich, A. B. (1993). Long gravitational waves
dc.relation.referencesin the ocean: capture, resonance, radiation. Saint
dc.relation.referencesPetersburg: Gidrometeoizdat (in Russian).
dc.relation.referencesRabinovich, A. B. (2009). Seiches and Harbor
dc.relation.referencesOscillations. In C. Kim (Ed.), Handbook of
dc.relation.referencesCoastal and Ocean Engineering (pp. 193–236).
dc.relation.referencesSingapoure: World Scientific Publ.
dc.relation.referencesRoeloffs, E. A. (1988). Fault stability changes
dc.relation.referencesinduced beneath a reservoir with cyclic variations
dc.relation.referencesin water level. Journal of Geophysical Research:
dc.relation.referencesSolid Earth, 93 (B3), 2107–2124, doi: 10.1029/JB093iB03p02107.
dc.relation.referencesShevchenko, G. V. (2006). Dynamic processes on the
dc.relation.referencesshelf and the forecast of marine hazards (by the
dc.relation.referencesexample of Sakhalin): (Doctoral dissertation) (in
dc.relation.referencesRussian).
dc.relation.referencesShevchenko, G. V., Chernov, A. G., Kovalev, P. D.,
dc.relation.referencesand Gorin I. I. (2010). Resonance oscillations in
dc.relation.referencesbays and coves: field experiments and numerical
dc.relation.referencessimulation. Works of Nizhny Novgorod State
dc.relation.referencesTechnical University, 1, 52–62 (in Russian).
dc.relation.referencesShulejkin, V. V. (1968). Physics of the sea. 4th ed.,
dc.relation.referencesrev. and en. Moscow: Nauka (in Russian).
dc.relation.referencesSmirnov, S. V., Kucher, К. M., Granin, N. G., and
dc.relation.referencesSturova, I. V. (2014). Seichelike Oscillations in
dc.relation.referencesLake Baikal. Proceedings of the RAS. Atmosphere
dc.relation.referencesand Ocean Physics, 50 (1), 105–116, doi: 10.7868/S0002351513050040 (in Russian).
dc.relation.referencesTabulevich, V. N. (1986). Comprehensive studies of microseismic vibrations. Novosibirsk: Nauka (in Russian).
dc.relation.referencesTalwani, P., Chen L., & Gahalaut K. (2007).
dc.relation.referencesSeismogenic permeability, ks. Journal of
dc.relation.referencesGeophysical Research: Solid Earth, 112 (B7), doi: 10.1029/2006JB004665.
dc.relation.referencesTCP 45-3.04-170-2009 (02250). Technical codes of
dc.relation.referencespractice. Hydrotechnical structures. Rules for
dc.relation.referencesdetermining loads and impacts (wave, ice and
dc.relation.referencesfrom ships). (2011) (in Russian).
dc.relation.referencesThe largest mines in the world. Retrieved from
dc.relation.referenceshttps://bestfacts.com.ua/najtsikavishe/najbilshishahti-v-sviti.html (in Ukrainian).
dc.relation.referencesUdalov, I. V. (2006). Activation of gas migration at
dc.relation.referencesthe closure of coal mines (on the example of the
dc.relation.referencesProletarskaya mine of the Luhansk region).
dc.relation.referencesCollection of scientific works “Bulletin of NTU
dc.relation.references“KhPI”: Chemistry, chemical technology and
dc.relation.referencesecology, 12, 156–161 (in Russian).
dc.relation.referencesenAnakhov, P. V. (2016). Triggering of earthquakes of
dc.relation.referencesenAzov-Black Sea basin by seiche deformation of
dc.relation.referencesenthe ground. Geodynamics, 1, 155–161, https://doi.org/10.23939/jgd2016.01.155 (in Ukrainian).
dc.relation.referencesenAnakhov, P. V. (2018). Integrated use of standing
dc.relation.referencesenwaves of reservoirs. Hydropower of Ukraine, 1–2, 49–51 (in Ukrainian).
dc.relation.referencesenBowers, D. G., Macdonald, R. G., McKee, D.,
dc.relation.referencesenNimmo-Smith, W. A. M., Graham, G. W. (2013).
dc.relation.referencesenOn the formation of tide-produced seiches and
dc.relation.referencesendouble high waters in coastal seas. Estuarine,
dc.relation.referencesenCoastal and Shelf Science, 134, 108–116,
dc.relation.referencesenhttp://dx.doi.org/10.1016/j.ecss.2013.09.014.
dc.relation.referencesenChekhov, V. N., Nesterov, V. V., Ivanov, Ju. B., and
dc.relation.referencesenNasonkin, V. A. (1994). Excessive long-period
dc.relation.referencesenlithospheric deformations excited by seiche
dc.relation.referencesenoscillations. Proceedings of the RAS, 336 (3), 391–393 (in Russian).
dc.relation.referencesenGerman, V. H. (1970). Spectral analysis of
dc.relation.referencesenfluctuations of the level of the Azov, Black and
dc.relation.referencesenCaspian seas in the frequency range from one
dc.relation.referencesencycle for several hours to one cycle for several
dc.relation.referencesendays. Proceedings of the State Oceanographic
dc.relation.referencesenInstitute, 103, 52–73 (in Russian).
dc.relation.referencesenHieblot, J., & Rocard, Y. (1959). Contribution à la
dc.relation.referencesenthéorie des microséismes. In Annales de
dc.relation.referencesenGéophysique, 15, p. 539.
dc.relation.referencesenKnudsen, V. O. (1934). Absorption of the sound.
dc.relation.referencesenAdvances in physical sciences, 14 (3), 298–301 (in
dc.relation.referencesenRussian).
dc.relation.referencesenKodomari, S. (1982). On the Studies of the Periodic
dc.relation.referencesenMotions in a Lake (2): Effect of the Lake Basin
dc.relation.referencesenShape on the Periodic Motion. Journal of the
dc.relation.referencesenFaculty of Science, Hokkaido University, Series 7
dc.relation.referencesen(Geophysics), 7 (2), 185–226.
dc.relation.referencesenKokosadze, A. E. (2017). Lithosphere for nuclear and
dc.relation.referencesenhydro power engineering. Mining Information and
dc.relation.referencesenAnalytical Bulletin, 4, 200–204 (in Russian).
dc.relation.referencesenKovalev, D. P. (2015). Field experiments and
dc.relation.referencesenmonitoring of infragravity waves for the diagnosis
dc.relation.referencesenof dangerous marine phenomena in the coastal
dc.relation.referencesenzone on the example of the waters of the SakhalinKuril region: (Doctoral dissertation) (in Russian).
dc.relation.referencesenKurchatov, I. V. (1982). Seiches in the Black and
dc.relation.referencesenAzov Seas. In Selected Works (Vol. 1, pp. 382–391). Moscow: Nauka (in Russian).
dc.relation.referencesenLonguet-Higgins, M. S. (1950). A theory of the origin
dc.relation.referencesenof microseisms. Philosophical Transactions of the
dc.relation.referencesenRoyal Society of London. Series A, Mathematical
dc.relation.referencesenand Physical Sciences, 243(857), 1–35.
dc.relation.referencesenMiche, M. (1944). Mouvements ondulatoires de la
dc.relation.referencesenmer en profondeur constante ou décroissante.
dc.relation.referencesenAnnales de Ponts et Chaussées, pp (1) 26–78,(2) 270–292,(3) 369–406.
dc.relation.referencesenNesterov, V. V. (1996). Studies of lithospheric deformations by devices of large-base laser interferometry: (Doctoral dissertation) (in Russian).
dc.relation.referencesenRabinovich, A. B. (1993). Long gravitational waves
dc.relation.referencesenin the ocean: capture, resonance, radiation. Saint
dc.relation.referencesenPetersburg: Gidrometeoizdat (in Russian).
dc.relation.referencesenRabinovich, A. B. (2009). Seiches and Harbor
dc.relation.referencesenOscillations. In C. Kim (Ed.), Handbook of
dc.relation.referencesenCoastal and Ocean Engineering (pp. 193–236).
dc.relation.referencesenSingapoure: World Scientific Publ.
dc.relation.referencesenRoeloffs, E. A. (1988). Fault stability changes
dc.relation.referenceseninduced beneath a reservoir with cyclic variations
dc.relation.referencesenin water level. Journal of Geophysical Research:
dc.relation.referencesenSolid Earth, 93 (B3), 2107–2124, doi: 10.1029/JB093iB03p02107.
dc.relation.referencesenShevchenko, G. V. (2006). Dynamic processes on the
dc.relation.referencesenshelf and the forecast of marine hazards (by the
dc.relation.referencesenexample of Sakhalin): (Doctoral dissertation) (in
dc.relation.referencesenRussian).
dc.relation.referencesenShevchenko, G. V., Chernov, A. G., Kovalev, P. D.,
dc.relation.referencesenand Gorin I. I. (2010). Resonance oscillations in
dc.relation.referencesenbays and coves: field experiments and numerical
dc.relation.referencesensimulation. Works of Nizhny Novgorod State
dc.relation.referencesenTechnical University, 1, 52–62 (in Russian).
dc.relation.referencesenShulejkin, V. V. (1968). Physics of the sea. 4th ed.,
dc.relation.referencesenrev. and en. Moscow: Nauka (in Russian).
dc.relation.referencesenSmirnov, S. V., Kucher, K. M., Granin, N. G., and
dc.relation.referencesenSturova, I. V. (2014). Seichelike Oscillations in
dc.relation.referencesenLake Baikal. Proceedings of the RAS. Atmosphere
dc.relation.referencesenand Ocean Physics, 50 (1), 105–116, doi: 10.7868/S0002351513050040 (in Russian).
dc.relation.referencesenTabulevich, V. N. (1986). Comprehensive studies of microseismic vibrations. Novosibirsk: Nauka (in Russian).
dc.relation.referencesenTalwani, P., Chen L., & Gahalaut K. (2007).
dc.relation.referencesenSeismogenic permeability, ks. Journal of
dc.relation.referencesenGeophysical Research: Solid Earth, 112 (B7), doi: 10.1029/2006JB004665.
dc.relation.referencesenTCP 45-3.04-170-2009 (02250). Technical codes of
dc.relation.referencesenpractice. Hydrotechnical structures. Rules for
dc.relation.referencesendetermining loads and impacts (wave, ice and
dc.relation.referencesenfrom ships). (2011) (in Russian).
dc.relation.referencesenThe largest mines in the world. Retrieved from
dc.relation.referencesenhttps://bestfacts.com.ua/najtsikavishe/najbilshishahti-v-sviti.html (in Ukrainian).
dc.relation.referencesenUdalov, I. V. (2006). Activation of gas migration at
dc.relation.referencesenthe closure of coal mines (on the example of the
dc.relation.referencesenProletarskaya mine of the Luhansk region).
dc.relation.referencesenCollection of scientific works "Bulletin of NTU
dc.relation.referencesen"KhPI": Chemistry, chemical technology and
dc.relation.referencesenecology, 12, 156–161 (in Russian).
dc.relation.urihttps://doi.org/10.23939/jgd2016.01.155
dc.relation.urihttp://dx.doi.org/10.1016/j.ecss.2013.09.014
dc.relation.urihttps://bestfacts.com.ua/najtsikavishe/najbilshishahti-v-sviti.html
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2019
dc.rights.holder© Національний університет “Львівська політехніка”, 2019
dc.rights.holder© Anakhov P. V.
dc.subjectгідроакумулююча електростанція
dc.subjectвертикальна мода сейш
dc.subjectмікросейсми
dc.subjectмокра ліквідація шахти
dc.subjectсейші
dc.subjectсейшова течія
dc.subjectсейшова хвиля
dc.subjectтягун
dc.subjecthydroelectric pump storage power station
dc.subjectvertical mode of seiches
dc.subjectmicroseisms
dc.subjectwet liquidation of mine
dc.subjectseiches
dc.subjectseiche current
dc.subjectseiche wave
dc.subjectsurf beat
dc.subject.udc551.466.66
dc.subject.udc550.348.432
dc.titleThree-dimentional model of the deformation of structural Merian basin by standing waves
dc.title.alternativeТривимірна модель деформацій котловини басейну Меріана стоячими хвилями
dc.typeArticle

Files

License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.96 KB
Format:
Plain Text
Description: