Особливості рекомендаційного алгоритму на основі аналізу методів добування даних з соціальних мереж
dc.citation.epage | 125 | |
dc.citation.issue | 14 | |
dc.citation.journalTitle | Вісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі | |
dc.citation.spage | 114 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Смачило, Петро | |
dc.contributor.author | Журавчак, Любов | |
dc.contributor.author | Smachylo, Petro | |
dc.contributor.author | Zhuravchak, Liubov | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-09-12T07:22:10Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | В останні роки платформи соціальних мереж стали потужними інструментами зі збирання даних для покращення досвіду користувачів. Величезна кількість даних, отриманих через соціальні медіа, надає унікальну можливість для розроблення інноваційних систем рекомендацій. У статті проаналізовано застосування методів інтелектуального аналізу даних щодо соціальних мереж у контексті ефективних систем рекомендацій, зосереджено увагу на трьох ключових методологіях: аналіз тональності тексту (АТТ), тематичному моделюванні (ТМ) й аналізі соціальних мереж (АСМ), виокремлено їхні позитивні риси. ATT дає змогу системі адаптувати рекомендації на основі аналізу настроїв, пропонуючи користувачам предмети, які відповідають їхнім вираженим емоціям. Експерименти показують істотні підвищення точності рекомендацій, коли дані настрою інтегровані. TM дає змогу системі зрозуміти основні проблеми користувачів, визначаючи провідні теми, надаючи індивідуальні рекомендації та залишаючись у курсі тенденцій, що розвиваються. Водночас АСМ визначає впливових користувачів і спільноти, підвищуючи релевантність і обізнаність про елементи системи. У статті підкреслено величезний потенціал соціальних мереж для розроблення ефективних, персоналізованих систем рекомендацій. Використовуючи аналіз настроїв та тематичне моделювання, ці системи можуть надавати персоналізовані та релевантні рекомендації на основі суспільних настроїв, популярних тем і динаміки соціальних мереж. | |
dc.description.abstract | In recent years, social media platforms have become powerful data collection tools to improve user experience. The vast amount of data generated through social media provides a unique opportunity to develop innovative recommendation systems. This article analyzes the application of data mining methods for social networks in the context of effective recommendation systems, focusing on three key methodologies: sentiment analysis (SA), topic modeling (TM) and social network analysis (SNA), highlighting their positive features. SA allows the system to tailor recommendations based on sentiment analysis, offering users items that match their expressed emotions. Experiments show significant improvements in recommendation accuracy when sentiment data is integrated. TM allows the system to understand the main concerns of users by identifying dominant themes, thereby providing personalized recommendations and staying abreast of evolving trends. At the same time, AFM identifies influential users and communities, increasing relevance and awareness of system elements. The article highlights the enormous potential of social networks for the development of effective, personalized recommendation systems. Using sentiment analysis and topic modeling, these systems can provide personalized and relevant recommendations based on public sentiment, trending topics, and social network dynamics. | |
dc.format.extent | 114-125 | |
dc.format.pages | 12 | |
dc.identifier.citation | Смачило П. Особливості рекомендаційного алгоритму на основі аналізу методів добування даних з соціальних мереж / Петро Смачило, Любов Журавчак // Вісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі. — Львів : Видавництво Львівської політехніки, 2023. — № 14. — С. 114–125. | |
dc.identifier.citationen | Smachylo P. Features of recommendation algorithm on base of analysis of social network data mining methods / Petro Smachylo, Liubov Zhuravchak // Information Systems and Networks. — Lviv : Lviv Politechnic Publishing House, 2023. — No 14. — P. 114–125. | |
dc.identifier.doi | doi.org/10.23939/sisn2023.14.114 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111723 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Вісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі, 14, 2023 | |
dc.relation.ispartof | Information Systems and Networks, 14, 2023 | |
dc.relation.references | 1. Purva Grover, Arpan Kumar Kar, Yogesh Dwivedi, The evolution of social media influence – A literature review and research agenda, International Journal of Information Management Data Insights. URL: https://doi.org/10.1016/j.jjimei.2022.100116 | |
dc.relation.references | 2. M. D. Devika, C. Sunitha, Amal Ganesh, Sentiment Analysis: A Comparative Study on Different Approaches, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2016.05.124 | |
dc.relation.references | 3. AlBadani, Barakat & Shi, Ronghua & Dong, Jian.. A Novel Machine Learning Approach for Sentiment Analysis on Twitter Incorporating the Universal Language Model Fine-Tuning and SVM. Applied System Innovation. URL: https://www.researchgate.net/publication/357853465_A_Novel_Machine_Learning_Approach_for_Sentiment_Analysis_on_Twitter_Incorporating_the_Universal_Language_Model_Fine-Tuning_and_SVM | |
dc.relation.references | 4. Chetashri Bhadane, Hardi Dalal, Heenal Doshi,Sentiment Analysis: Measuring Opinions, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2015.03.159 | |
dc.relation.references | 5. Aisopos, Fotis & Papadakis, George & Varvarigou, Theodora. Sentiment analysis of social media content using N-Gram graphs. URL: https://www.researchgate.net/publication/254002881_Sentiment_analysis_of_social_media_content_using_N-Gram_graphs | |
dc.relation.references | 6. Qianwen Ariel Xu, Victor Chang, Chrisina Jayne, A systematic review of social media-based sentiment analysis: Emerging trends and challenges, Decision Analytics Journal. URL: https://doi.org/10.1016/j.dajour.2022.100073 | |
dc.relation.references | 7. Kherwa, Pooja & Bansal, Poonam. (2018). Topic Modeling: A Comprehensive Review. ICST Transactions on Scalable Information Systems. URL: https://www.researchgate.net/publication/334667298_Topic_Modeling_A_Comprehensive_Review | |
dc.relation.references | 8. Evangelopoulos, Nicholas & Zhang, Xiaoni & Prybutok, V.R. Latent Semantic Analysis: Five Methodological Recommendations. European Journal of Information Systems. [URL: https://www.researchgate.net/publication/236133983_Latent_Semantic_Analysis_Five_Methodological_Recommendations | |
dc.relation.references | 9. Choo, Jaegul & Lee, Changhyun & Reddy, Chandan & Park, Haesun. (2013). UTOPIAN: User-Driven Topic Modeling Based on Interactive Nonnegative Matrix Factorization. IEEE transactions on visualization and computer graphics. URL: https://www.researchgate.net/publication/256837226_UTOPIAN_User-Driven_Topic_Modeling_Based_on_Interactive_Nonnegative_Matrix_Factorization | |
dc.relation.references | 10. Alghamdi, Rubayyi & Alfalqi, Khalid. (2015). A Survey of Topic Modeling in Text Mining. International Journal of Advanced Computer Science and Applications. URL: https://www.researchgate.net/publication/276327703_A_Survey_of_Topic_Modeling_in_Text_Mining | |
dc.relation.references | 11. Marianela García Lozano, Jonah Schreiber, Joel Brynielsson, Tracking geographical locations using a geo-aware topic model for analyzing social media data. Decision Support Systems. URL: https://doi.org/10.1016/j.dss.2017.05.006 | |
dc.relation.references | 12. Charifa Laghridat, Mohamed Essalih,A Set of Measures of Centrality by Level for Social Network Analysis, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2023.01.348 | |
dc.relation.references | 13. Williams, Trenton & Shepherd, Dean. (2015). Mix Method Social Network Analysis: Combining Inductive Concept Development, Content Analysis, and Secondary Data for Quantitative Analysis. Organizational Research Methods. URL: https://www.researchgate.net/publication/283709926_Mix_Method_Social_Network_Analysis_Combining_Inductive_Concept_Development_Content_Analysis_and_Secondary_Data_for_Quantitative_Analysis | |
dc.relation.references | 14. Fatma Altuntas, Serkan Altuntas, Turkay Dereli, Social network analysis of tourism data: A case study of quarantine decisions in COVID-19 pandemic, International Journal of Information Management Data Insights. URL: https://doi.org/10.1016/j.jjimei.2022.100108 | |
dc.relation.references | 15. Novita Hanafiah, Alexander Kevin, Charles Sutanto, Fiona, Yulyani Arifin, Jaka Hartanto,Text Normalization Algorithm on Twitter in Complaint Category, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2017.10.004 | |
dc.relation.references | 16. Deena Abul-Fottouh, Melodie Yunju Song, Anatoliy Gruzd, Examining algorithmic biases in YouTube’s recommendations of vaccine videos, International Journal of Medical Informatics. URL: https://doi.org/10.1016/j.ijmedinf.2020.104175 | |
dc.relation.references | 17. Mehdi Elahi, Danial Khosh Kholgh, Mohammad Sina Kiarostami, Mourad Oussalah, Sorush Saghari, Hybrid recommendation by incorporating the sentiment of product reviews, Information Sciences. URL: https://doi.org/10.1016/j.ins.2023.01.051 | |
dc.relation.references | 18. Dixon Prem Daniel Rajendran, Rangaraja P. Sundarraj, Using topic models with browsing history in hybrid collaborative filtering recommender system: Experiments with user ratings, International Journal of Information Management Data Insights. URL: https://doi.org/10.1016/j.jjimei.2021.100027 | |
dc.relation.references | 19. N Vedavathi, R Suhas Bharadwaj, Deep Flamingo Search and Reinforcement Learning Based Recommendation System for E-Learning Platform using Social Media, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2022.12.022 | |
dc.relation.references | 20. Hossein A. Rahmani, Yashar Deldjoo, Tommaso di Noia, The role of context fusion on accuracy, beyond accuracy, and fairness of point-of-interest recommendation systems, Expert Systems with Applications. URL: https://doi.org/10.1016/j.eswa.2022.117700 | |
dc.relation.referencesen | 1. Purva Grover, Arpan Kumar Kar, Yogesh Dwivedi, The evolution of social media influence – A literature review and research agenda, International Journal of Information Management Data Insights. URL: https://doi.org/10.1016/j.jjimei.2022.100116 | |
dc.relation.referencesen | 2. M. D. Devika, C. Sunitha, Amal Ganesh, Sentiment Analysis: A Comparative Study on Different Approaches, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2016.05.124 | |
dc.relation.referencesen | 3. AlBadani, Barakat & Shi, Ronghua & Dong, Jian.. A Novel Machine Learning Approach for Sentiment Analysis on Twitter Incorporating the Universal Language Model Fine-Tuning and SVM. Applied System Innovation. URL: https://www.researchgate.net/publication/357853465_A_Novel_Machine_Learning_Approach_for_Sentiment_Analysis_on_Twitter_Incorporating_the_Universal_Language_Model_Fine-Tuning_and_SVM | |
dc.relation.referencesen | 4. Chetashri Bhadane, Hardi Dalal, Heenal Doshi,Sentiment Analysis: Measuring Opinions, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2015.03.159 | |
dc.relation.referencesen | 5. Aisopos, Fotis & Papadakis, George & Varvarigou, Theodora. Sentiment analysis of social media content using N-Gram graphs. URL: https://www.researchgate.net/publication/254002881_Sentiment_analysis_of_social_media_content_using_N-Gram_graphs | |
dc.relation.referencesen | 6. Qianwen Ariel Xu, Victor Chang, Chrisina Jayne, A systematic review of social media-based sentiment analysis: Emerging trends and challenges, Decision Analytics Journal. URL: https://doi.org/10.1016/j.dajour.2022.100073 | |
dc.relation.referencesen | 7. Kherwa, Pooja & Bansal, Poonam. (2018). Topic Modeling: A Comprehensive Review. ICST Transactions on Scalable Information Systems. URL: https://www.researchgate.net/publication/334667298_Topic_Modeling_A_Comprehensive_Review | |
dc.relation.referencesen | 8. Evangelopoulos, Nicholas & Zhang, Xiaoni & Prybutok, V. R. Latent Semantic Analysis: Five Methodological Recommendations. European Journal of Information Systems. URL: https://www.researchgate.net/publication/236133983_Latent_Semantic_Analysis_Five_Methodological_Recommendations | |
dc.relation.referencesen | 9. Choo, Jaegul & Lee, Changhyun & Reddy, Chandan & Park, Haesun (2013). UTOPIAN: User-Driven Topic Modeling Based on Interactive Nonnegative Matrix Factorization. IEEE transactions on visualization and computer graphics. URL: https://www.researchgate.net/publication/256837226_UTOPIAN_User-Driven_Topic_Modeling_Based_on_Interactive_Nonnegative_Matrix_Factorization | |
dc.relation.referencesen | 10. Alghamdi, Rubayyi & Alfalqi, Khalid (2015). A Survey of Topic Modeling in Text Mining. International Journal of Advanced Computer Science and Applications. URL: https://www.researchgate.net/publication/276327703_A_Survey_of_Topic_Modeling_in_Text_Mining | |
dc.relation.referencesen | 11. Marianela García Lozano, Jonah Schreiber, Joel Brynielsson, Tracking geographical locations using a geo-aware topic model for analyzing social media data, Decision Support Systems. URL: https://doi.org/10.1016/j.dss.2017.05.006 | |
dc.relation.referencesen | 12. Charifa Laghridat, Mohamed Essalih,A Set of Measures of Centrality by Level for Social Network Analysis, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2023.01.348 | |
dc.relation.referencesen | 13. Williams, Trenton & Shepherd, Dean. (2015). Mix Method Social Network Analysis: Combining Inductive Concept Development, Content Analysis, and Secondary Data for Quantitative Analysis. Organizational Research Methods. URL: https://www.researchgate.net/publication/283709926_Mix_Method_Social_Network_Analysis_Combining_Inductive_Concept_Development_Content_Analysis_and_Secondary_Data_for_Quantitative_Analysis | |
dc.relation.referencesen | 14. Fatma Altuntas, Serkan Altuntas, Turkay Dereli, Social network analysis of tourism data: A case study of quarantine decisions in COVID-19 pandemic, International Journal of Information Management Data Insights. URL: https://doi.org/10.1016/j.jjimei.2022.100108 | |
dc.relation.referencesen | 15. Novita Hanafiah, Alexander Kevin, Charles Sutanto, Fiona, Yulyani Arifin, Jaka Hartanto, Text Normalization Algorithm on Twitter in Complaint Category, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2017.10.004 | |
dc.relation.referencesen | 16. Deena Abul-Fottouh, Melodie Yunju Song, Anatoliy Gruzd, Examining algorithmic biases in YouTube’s recommendations of vaccine videos, International Journal of Medical Informatics. URL: https://doi.org/10.1016/j.ijmedinf.2020.104175 | |
dc.relation.referencesen | 17. Mehdi Elahi, Danial Khosh Kholgh, Mohammad Sina Kiarostami, Mourad Oussalah, Sorush Saghari, Hybrid recommendation by incorporating the sentiment of product reviews, Information Sciences. URL: https://doi.org/10.1016/j.ins.2023.01.051 | |
dc.relation.referencesen | 18. Dixon Prem Daniel Rajendran, Rangaraja P Sundarraj,Using topic models with browsing history in hybrid collaborative filtering recommender system: Experiments with user ratings, International Journal of Information Management Data Insights. URL: https://doi.org/10.1016/j.jjimei.2021.100027 | |
dc.relation.referencesen | 19. N Vedavathi, R Suhas Bharadwaj, Deep Flamingo Search and Reinforcement Learning Based Recommendation System for E-Learning Platform using Social Media, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2022.12.022 | |
dc.relation.referencesen | 20. Hossein A. Rahmani, Yashar Deldjoo, Tommaso di Noia, The role of context fusion on accuracy, beyond accuracy, and fairness of point-of-interest recommendation systems, Expert Systems with Applications. URL: https://doi.org/10.1016/j.eswa.2022.117700 | |
dc.relation.uri | https://doi.org/10.1016/j.jjimei.2022.100116 | |
dc.relation.uri | https://doi.org/10.1016/j.procs.2016.05.124 | |
dc.relation.uri | https://www.researchgate.net/publication/357853465_A_Novel_Machine_Learning_Approach_for_Sentiment_Analysis_on_Twitter_Incorporating_the_Universal_Language_Model_Fine-Tuning_and_SVM | |
dc.relation.uri | https://doi.org/10.1016/j.procs.2015.03.159 | |
dc.relation.uri | https://www.researchgate.net/publication/254002881_Sentiment_analysis_of_social_media_content_using_N-Gram_graphs | |
dc.relation.uri | https://doi.org/10.1016/j.dajour.2022.100073 | |
dc.relation.uri | https://www.researchgate.net/publication/334667298_Topic_Modeling_A_Comprehensive_Review | |
dc.relation.uri | https://www.researchgate.net/publication/236133983_Latent_Semantic_Analysis_Five_Methodological_Recommendations | |
dc.relation.uri | https://www.researchgate.net/publication/256837226_UTOPIAN_User-Driven_Topic_Modeling_Based_on_Interactive_Nonnegative_Matrix_Factorization | |
dc.relation.uri | https://www.researchgate.net/publication/276327703_A_Survey_of_Topic_Modeling_in_Text_Mining | |
dc.relation.uri | https://doi.org/10.1016/j.dss.2017.05.006 | |
dc.relation.uri | https://doi.org/10.1016/j.procs.2023.01.348 | |
dc.relation.uri | https://www.researchgate.net/publication/283709926_Mix_Method_Social_Network_Analysis_Combining_Inductive_Concept_Development_Content_Analysis_and_Secondary_Data_for_Quantitative_Analysis | |
dc.relation.uri | https://doi.org/10.1016/j.jjimei.2022.100108 | |
dc.relation.uri | https://doi.org/10.1016/j.procs.2017.10.004 | |
dc.relation.uri | https://doi.org/10.1016/j.ijmedinf.2020.104175 | |
dc.relation.uri | https://doi.org/10.1016/j.ins.2023.01.051 | |
dc.relation.uri | https://doi.org/10.1016/j.jjimei.2021.100027 | |
dc.relation.uri | https://doi.org/10.1016/j.procs.2022.12.022 | |
dc.relation.uri | https://doi.org/10.1016/j.eswa.2022.117700 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Смачило П., Журавчак Л., 2023 | |
dc.subject | аналіз даних | |
dc.subject | соціальні мережі | |
dc.subject | система рекомендацій | |
dc.subject | аналіз тональності мови | |
dc.subject | тематичне моделювання | |
dc.subject | data analysis | |
dc.subject | social networks | |
dc.subject | recommendation system | |
dc.subject | semantic analysis | |
dc.subject | topic modeling | |
dc.subject.udc | 004.4 | |
dc.title | Особливості рекомендаційного алгоритму на основі аналізу методів добування даних з соціальних мереж | |
dc.title.alternative | Features of recommendation algorithm on base of analysis of social network data mining methods | |
dc.type | Article |
Files
License bundle
1 - 1 of 1