Особливості рекомендаційного алгоритму на основі аналізу методів добування даних з соціальних мереж

dc.citation.epage125
dc.citation.issue14
dc.citation.journalTitleВісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі
dc.citation.spage114
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСмачило, Петро
dc.contributor.authorЖуравчак, Любов
dc.contributor.authorSmachylo, Petro
dc.contributor.authorZhuravchak, Liubov
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-12T07:22:10Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractВ останні роки платформи соціальних мереж стали потужними інструментами зі збирання даних для покращення досвіду користувачів. Величезна кількість даних, отриманих через соціальні медіа, надає унікальну можливість для розроблення інноваційних систем рекомендацій. У статті проаналізовано застосування методів інтелектуального аналізу даних щодо соціальних мереж у контексті ефективних систем рекомендацій, зосереджено увагу на трьох ключових методологіях: аналіз тональності тексту (АТТ), тематичному моделюванні (ТМ) й аналізі соціальних мереж (АСМ), виокремлено їхні позитивні риси. ATT дає змогу системі адаптувати рекомендації на основі аналізу настроїв, пропонуючи користувачам предмети, які відповідають їхнім вираженим емоціям. Експерименти показують істотні підвищення точності рекомендацій, коли дані настрою інтегровані. TM дає змогу системі зрозуміти основні проблеми користувачів, визначаючи провідні теми, надаючи індивідуальні рекомендації та залишаючись у курсі тенденцій, що розвиваються. Водночас АСМ визначає впливових користувачів і спільноти, підвищуючи релевантність і обізнаність про елементи системи. У статті підкреслено величезний потенціал соціальних мереж для розроблення ефективних, персоналізованих систем рекомендацій. Використовуючи аналіз настроїв та тематичне моделювання, ці системи можуть надавати персоналізовані та релевантні рекомендації на основі суспільних настроїв, популярних тем і динаміки соціальних мереж.
dc.description.abstractIn recent years, social media platforms have become powerful data collection tools to improve user experience. The vast amount of data generated through social media provides a unique opportunity to develop innovative recommendation systems. This article analyzes the application of data mining methods for social networks in the context of effective recommendation systems, focusing on three key methodologies: sentiment analysis (SA), topic modeling (TM) and social network analysis (SNA), highlighting their positive features. SA allows the system to tailor recommendations based on sentiment analysis, offering users items that match their expressed emotions. Experiments show significant improvements in recommendation accuracy when sentiment data is integrated. TM allows the system to understand the main concerns of users by identifying dominant themes, thereby providing personalized recommendations and staying abreast of evolving trends. At the same time, AFM identifies influential users and communities, increasing relevance and awareness of system elements. The article highlights the enormous potential of social networks for the development of effective, personalized recommendation systems. Using sentiment analysis and topic modeling, these systems can provide personalized and relevant recommendations based on public sentiment, trending topics, and social network dynamics.
dc.format.extent114-125
dc.format.pages12
dc.identifier.citationСмачило П. Особливості рекомендаційного алгоритму на основі аналізу методів добування даних з соціальних мереж / Петро Смачило, Любов Журавчак // Вісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі. — Львів : Видавництво Львівської політехніки, 2023. — № 14. — С. 114–125.
dc.identifier.citationenSmachylo P. Features of recommendation algorithm on base of analysis of social network data mining methods / Petro Smachylo, Liubov Zhuravchak // Information Systems and Networks. — Lviv : Lviv Politechnic Publishing House, 2023. — No 14. — P. 114–125.
dc.identifier.doidoi.org/10.23939/sisn2023.14.114
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111723
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі, 14, 2023
dc.relation.ispartofInformation Systems and Networks, 14, 2023
dc.relation.references1. Purva Grover, Arpan Kumar Kar, Yogesh Dwivedi, The evolution of social media influence – A literature review and research agenda, International Journal of Information Management Data Insights. URL: https://doi.org/10.1016/j.jjimei.2022.100116
dc.relation.references2. M. D. Devika, C. Sunitha, Amal Ganesh, Sentiment Analysis: A Comparative Study on Different Approaches, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2016.05.124
dc.relation.references3. AlBadani, Barakat & Shi, Ronghua & Dong, Jian.. A Novel Machine Learning Approach for Sentiment Analysis on Twitter Incorporating the Universal Language Model Fine-Tuning and SVM. Applied System Innovation. URL: https://www.researchgate.net/publication/357853465_A_Novel_Machine_Learning_Approach_for_Sentiment_Analysis_on_Twitter_Incorporating_the_Universal_Language_Model_Fine-Tuning_and_SVM
dc.relation.references4. Chetashri Bhadane, Hardi Dalal, Heenal Doshi,Sentiment Analysis: Measuring Opinions, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2015.03.159
dc.relation.references5. Aisopos, Fotis & Papadakis, George & Varvarigou, Theodora. Sentiment analysis of social media content using N-Gram graphs. URL: https://www.researchgate.net/publication/254002881_Sentiment_analysis_of_social_media_content_using_N-Gram_graphs
dc.relation.references6. Qianwen Ariel Xu, Victor Chang, Chrisina Jayne, A systematic review of social media-based sentiment analysis: Emerging trends and challenges, Decision Analytics Journal. URL: https://doi.org/10.1016/j.dajour.2022.100073
dc.relation.references7. Kherwa, Pooja & Bansal, Poonam. (2018). Topic Modeling: A Comprehensive Review. ICST Transactions on Scalable Information Systems. URL: https://www.researchgate.net/publication/334667298_Topic_Modeling_A_Comprehensive_Review
dc.relation.references8. Evangelopoulos, Nicholas & Zhang, Xiaoni & Prybutok, V.R. Latent Semantic Analysis: Five Methodological Recommendations. European Journal of Information Systems. [URL: https://www.researchgate.net/publication/236133983_Latent_Semantic_Analysis_Five_Methodological_Recommendations
dc.relation.references9. Choo, Jaegul & Lee, Changhyun & Reddy, Chandan & Park, Haesun. (2013). UTOPIAN: User-Driven Topic Modeling Based on Interactive Nonnegative Matrix Factorization. IEEE transactions on visualization and computer graphics. URL: https://www.researchgate.net/publication/256837226_UTOPIAN_User-Driven_Topic_Modeling_Based_on_Interactive_Nonnegative_Matrix_Factorization
dc.relation.references10. Alghamdi, Rubayyi & Alfalqi, Khalid. (2015). A Survey of Topic Modeling in Text Mining. International Journal of Advanced Computer Science and Applications. URL: https://www.researchgate.net/publication/276327703_A_Survey_of_Topic_Modeling_in_Text_Mining
dc.relation.references11. Marianela García Lozano, Jonah Schreiber, Joel Brynielsson, Tracking geographical locations using a geo-aware topic model for analyzing social media data. Decision Support Systems. URL: https://doi.org/10.1016/j.dss.2017.05.006
dc.relation.references12. Charifa Laghridat, Mohamed Essalih,A Set of Measures of Centrality by Level for Social Network Analysis, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2023.01.348
dc.relation.references13. Williams, Trenton & Shepherd, Dean. (2015). Mix Method Social Network Analysis: Combining Inductive Concept Development, Content Analysis, and Secondary Data for Quantitative Analysis. Organizational Research Methods. URL: https://www.researchgate.net/publication/283709926_Mix_Method_Social_Network_Analysis_Combining_Inductive_Concept_Development_Content_Analysis_and_Secondary_Data_for_Quantitative_Analysis
dc.relation.references14. Fatma Altuntas, Serkan Altuntas, Turkay Dereli, Social network analysis of tourism data: A case study of quarantine decisions in COVID-19 pandemic, International Journal of Information Management Data Insights. URL: https://doi.org/10.1016/j.jjimei.2022.100108
dc.relation.references15. Novita Hanafiah, Alexander Kevin, Charles Sutanto, Fiona, Yulyani Arifin, Jaka Hartanto,Text Normalization Algorithm on Twitter in Complaint Category, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2017.10.004
dc.relation.references16. Deena Abul-Fottouh, Melodie Yunju Song, Anatoliy Gruzd, Examining algorithmic biases in YouTube’s recommendations of vaccine videos, International Journal of Medical Informatics. URL: https://doi.org/10.1016/j.ijmedinf.2020.104175
dc.relation.references17. Mehdi Elahi, Danial Khosh Kholgh, Mohammad Sina Kiarostami, Mourad Oussalah, Sorush Saghari, Hybrid recommendation by incorporating the sentiment of product reviews, Information Sciences. URL: https://doi.org/10.1016/j.ins.2023.01.051
dc.relation.references18. Dixon Prem Daniel Rajendran, Rangaraja P. Sundarraj, Using topic models with browsing history in hybrid collaborative filtering recommender system: Experiments with user ratings, International Journal of Information Management Data Insights. URL: https://doi.org/10.1016/j.jjimei.2021.100027
dc.relation.references19. N Vedavathi, R Suhas Bharadwaj, Deep Flamingo Search and Reinforcement Learning Based Recommendation System for E-Learning Platform using Social Media, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2022.12.022
dc.relation.references20. Hossein A. Rahmani, Yashar Deldjoo, Tommaso di Noia, The role of context fusion on accuracy, beyond accuracy, and fairness of point-of-interest recommendation systems, Expert Systems with Applications. URL: https://doi.org/10.1016/j.eswa.2022.117700
dc.relation.referencesen1. Purva Grover, Arpan Kumar Kar, Yogesh Dwivedi, The evolution of social media influence – A literature review and research agenda, International Journal of Information Management Data Insights. URL: https://doi.org/10.1016/j.jjimei.2022.100116
dc.relation.referencesen2. M. D. Devika, C. Sunitha, Amal Ganesh, Sentiment Analysis: A Comparative Study on Different Approaches, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2016.05.124
dc.relation.referencesen3. AlBadani, Barakat & Shi, Ronghua & Dong, Jian.. A Novel Machine Learning Approach for Sentiment Analysis on Twitter Incorporating the Universal Language Model Fine-Tuning and SVM. Applied System Innovation. URL: https://www.researchgate.net/publication/357853465_A_Novel_Machine_Learning_Approach_for_Sentiment_Analysis_on_Twitter_Incorporating_the_Universal_Language_Model_Fine-Tuning_and_SVM
dc.relation.referencesen4. Chetashri Bhadane, Hardi Dalal, Heenal Doshi,Sentiment Analysis: Measuring Opinions, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2015.03.159
dc.relation.referencesen5. Aisopos, Fotis & Papadakis, George & Varvarigou, Theodora. Sentiment analysis of social media content using N-Gram graphs. URL: https://www.researchgate.net/publication/254002881_Sentiment_analysis_of_social_media_content_using_N-Gram_graphs
dc.relation.referencesen6. Qianwen Ariel Xu, Victor Chang, Chrisina Jayne, A systematic review of social media-based sentiment analysis: Emerging trends and challenges, Decision Analytics Journal. URL: https://doi.org/10.1016/j.dajour.2022.100073
dc.relation.referencesen7. Kherwa, Pooja & Bansal, Poonam. (2018). Topic Modeling: A Comprehensive Review. ICST Transactions on Scalable Information Systems. URL: https://www.researchgate.net/publication/334667298_Topic_Modeling_A_Comprehensive_Review
dc.relation.referencesen8. Evangelopoulos, Nicholas & Zhang, Xiaoni & Prybutok, V. R. Latent Semantic Analysis: Five Methodological Recommendations. European Journal of Information Systems. URL: https://www.researchgate.net/publication/236133983_Latent_Semantic_Analysis_Five_Methodological_Recommendations
dc.relation.referencesen9. Choo, Jaegul & Lee, Changhyun & Reddy, Chandan & Park, Haesun (2013). UTOPIAN: User-Driven Topic Modeling Based on Interactive Nonnegative Matrix Factorization. IEEE transactions on visualization and computer graphics. URL: https://www.researchgate.net/publication/256837226_UTOPIAN_User-Driven_Topic_Modeling_Based_on_Interactive_Nonnegative_Matrix_Factorization
dc.relation.referencesen10. Alghamdi, Rubayyi & Alfalqi, Khalid (2015). A Survey of Topic Modeling in Text Mining. International Journal of Advanced Computer Science and Applications. URL: https://www.researchgate.net/publication/276327703_A_Survey_of_Topic_Modeling_in_Text_Mining
dc.relation.referencesen11. Marianela García Lozano, Jonah Schreiber, Joel Brynielsson, Tracking geographical locations using a geo-aware topic model for analyzing social media data, Decision Support Systems. URL: https://doi.org/10.1016/j.dss.2017.05.006
dc.relation.referencesen12. Charifa Laghridat, Mohamed Essalih,A Set of Measures of Centrality by Level for Social Network Analysis, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2023.01.348
dc.relation.referencesen13. Williams, Trenton & Shepherd, Dean. (2015). Mix Method Social Network Analysis: Combining Inductive Concept Development, Content Analysis, and Secondary Data for Quantitative Analysis. Organizational Research Methods. URL: https://www.researchgate.net/publication/283709926_Mix_Method_Social_Network_Analysis_Combining_Inductive_Concept_Development_Content_Analysis_and_Secondary_Data_for_Quantitative_Analysis
dc.relation.referencesen14. Fatma Altuntas, Serkan Altuntas, Turkay Dereli, Social network analysis of tourism data: A case study of quarantine decisions in COVID-19 pandemic, International Journal of Information Management Data Insights. URL: https://doi.org/10.1016/j.jjimei.2022.100108
dc.relation.referencesen15. Novita Hanafiah, Alexander Kevin, Charles Sutanto, Fiona, Yulyani Arifin, Jaka Hartanto, Text Normalization Algorithm on Twitter in Complaint Category, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2017.10.004
dc.relation.referencesen16. Deena Abul-Fottouh, Melodie Yunju Song, Anatoliy Gruzd, Examining algorithmic biases in YouTube’s recommendations of vaccine videos, International Journal of Medical Informatics. URL: https://doi.org/10.1016/j.ijmedinf.2020.104175
dc.relation.referencesen17. Mehdi Elahi, Danial Khosh Kholgh, Mohammad Sina Kiarostami, Mourad Oussalah, Sorush Saghari, Hybrid recommendation by incorporating the sentiment of product reviews, Information Sciences. URL: https://doi.org/10.1016/j.ins.2023.01.051
dc.relation.referencesen18. Dixon Prem Daniel Rajendran, Rangaraja P Sundarraj,Using topic models with browsing history in hybrid collaborative filtering recommender system: Experiments with user ratings, International Journal of Information Management Data Insights. URL: https://doi.org/10.1016/j.jjimei.2021.100027
dc.relation.referencesen19. N Vedavathi, R Suhas Bharadwaj, Deep Flamingo Search and Reinforcement Learning Based Recommendation System for E-Learning Platform using Social Media, Procedia Computer Science. URL: https://doi.org/10.1016/j.procs.2022.12.022
dc.relation.referencesen20. Hossein A. Rahmani, Yashar Deldjoo, Tommaso di Noia, The role of context fusion on accuracy, beyond accuracy, and fairness of point-of-interest recommendation systems, Expert Systems with Applications. URL: https://doi.org/10.1016/j.eswa.2022.117700
dc.relation.urihttps://doi.org/10.1016/j.jjimei.2022.100116
dc.relation.urihttps://doi.org/10.1016/j.procs.2016.05.124
dc.relation.urihttps://www.researchgate.net/publication/357853465_A_Novel_Machine_Learning_Approach_for_Sentiment_Analysis_on_Twitter_Incorporating_the_Universal_Language_Model_Fine-Tuning_and_SVM
dc.relation.urihttps://doi.org/10.1016/j.procs.2015.03.159
dc.relation.urihttps://www.researchgate.net/publication/254002881_Sentiment_analysis_of_social_media_content_using_N-Gram_graphs
dc.relation.urihttps://doi.org/10.1016/j.dajour.2022.100073
dc.relation.urihttps://www.researchgate.net/publication/334667298_Topic_Modeling_A_Comprehensive_Review
dc.relation.urihttps://www.researchgate.net/publication/236133983_Latent_Semantic_Analysis_Five_Methodological_Recommendations
dc.relation.urihttps://www.researchgate.net/publication/256837226_UTOPIAN_User-Driven_Topic_Modeling_Based_on_Interactive_Nonnegative_Matrix_Factorization
dc.relation.urihttps://www.researchgate.net/publication/276327703_A_Survey_of_Topic_Modeling_in_Text_Mining
dc.relation.urihttps://doi.org/10.1016/j.dss.2017.05.006
dc.relation.urihttps://doi.org/10.1016/j.procs.2023.01.348
dc.relation.urihttps://www.researchgate.net/publication/283709926_Mix_Method_Social_Network_Analysis_Combining_Inductive_Concept_Development_Content_Analysis_and_Secondary_Data_for_Quantitative_Analysis
dc.relation.urihttps://doi.org/10.1016/j.jjimei.2022.100108
dc.relation.urihttps://doi.org/10.1016/j.procs.2017.10.004
dc.relation.urihttps://doi.org/10.1016/j.ijmedinf.2020.104175
dc.relation.urihttps://doi.org/10.1016/j.ins.2023.01.051
dc.relation.urihttps://doi.org/10.1016/j.jjimei.2021.100027
dc.relation.urihttps://doi.org/10.1016/j.procs.2022.12.022
dc.relation.urihttps://doi.org/10.1016/j.eswa.2022.117700
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Смачило П., Журавчак Л., 2023
dc.subjectаналіз даних
dc.subjectсоціальні мережі
dc.subjectсистема рекомендацій
dc.subjectаналіз тональності мови
dc.subjectтематичне моделювання
dc.subjectdata analysis
dc.subjectsocial networks
dc.subjectrecommendation system
dc.subjectsemantic analysis
dc.subjecttopic modeling
dc.subject.udc004.4
dc.titleОсобливості рекомендаційного алгоритму на основі аналізу методів добування даних з соціальних мереж
dc.title.alternativeFeatures of recommendation algorithm on base of analysis of social network data mining methods
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023n14_Smachylo_P-Features_of_recommendation_114-125.pdf
Size:
7.82 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023n14_Smachylo_P-Features_of_recommendation_114-125__COVER.png
Size:
367.05 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: