Використання полівінілпіролідону як високоефективного відновника та стабілізатора в реакціях синтезу наночастинок срібла

dc.citation.epage190
dc.citation.issue2
dc.citation.journalTitleChemistry, Technology and Application of Substances
dc.citation.spage185
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorДудок, Г. Д.
dc.contributor.authorСеменюк, Н. Б.
dc.contributor.authorСкорохода, В. Й.
dc.contributor.authorГубрій, З. В.
dc.contributor.authorDudok, G. D.
dc.contributor.authorSemenyuk, N. B.
dc.contributor.authorSkorokhoda, V. Yo.
dc.contributor.authorGubriy, Z. V.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T07:39:14Z
dc.date.created2005-03-01
dc.date.issued2005-03-01
dc.description.abstractДосліджено закономірності одержання наночастинок срібла із використанням полівінілпіролідону як відновника та стабілізатора одночасно. Утворення наночастинок срібла було підтверджено УФ, FT-IR спектроскопією і ТЕМ-аналізом. Встановлено вплив температури та концентрації реагентів на кінетику відновлення срібла із солей арґентуму. Синтезовано срібловмісні композити у вигляді пористих блоків і плівок та виявлено їхні високі бактерицидні та фунгіцидні властивості. Рекомендовано використовувати розроблені пористі композити у медицині для заміщення пошкодженої кісткової тканини у процесах остеогенезу.
dc.description.abstractThe regularities of silver nanoparticles derivation using polyvinylpyrrolidone as a reducing agent and stabilizer simultaneously have been studied. The silver spherical nanoparticles was confirmed by UV, FT-IR spectroscopy and TEM analysis. The influence of temperature and reagent concentration on the kinetics of silver reduction from argentum salts was determined. Silver-containing composites based on copolymers of polyvinylpyrrolidone and methacrylic esters with silver nanoparticles in the form of porous blocks and films were synthesized. Also their high bactericidal and fungicidal properties were revealed. The developed porous composites are recommended for application in medicine to replace damaged bone tissue in the processes of osteogenesis.
dc.format.extent185-190
dc.format.pages6
dc.identifier.citationВикористання полівінілпіролідону як високоефективного відновника та стабілізатора в реакціях синтезу наночастинок срібла / Г. Д. Дудок, Н. Б. Семенюк, В. Й. Скорохода, З. В. Губрій // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 2. — С. 185–190.
dc.identifier.citationenApplying the polyvinylpyrrolidone as a highly efficient reductant and stabilizer in reactions of silver nanoparticles synthesis / G. D. Dudok, N. B. Semenyuk, V. Yo. Skorokhoda, Z. V. Gubriy // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 2. — P. 185–190.
dc.identifier.doidoi.org/10.23939/ctas2022.01.185
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63653
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.references1. Sharma, V. K., Yngard, R. A., Lin, Y. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci., 145, 83-96. DOI: 10.1016/j.cis.2008.09.002. https://doi.org/10.1016/j.cis.2008.09.002
dc.relation.references2. Sondi, I., Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci., 275, 177-182. DOI: 0.1016/j.jcis.2004.02.012. https://doi.org/10.1016/j.jcis.2004.02.012
dc.relation.references3. Rai, M., Yadav, A., Gade, A. (2009). Silver nano- particles as a new generation of antimicrobials. Biotechnol. Adv., 27,76-83. DOI: 10.1016/j.biotechadv.2008.09.002. https://doi.org/10.1016/j.biotechadv.2008.09.002
dc.relation.references4. Ray, S., Mohan, R., Singh, J.K., Samantaray, M.K., Shaikh, M.M., Panda, D., Ghosh, P. (2007). Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes. J. Am Chem. Soc., 129:15042-15053. DOI: 10.1021/ja075889z.
dc.relation.references5. Lee, H.Y., Park, H.K., Lee, Y.M., Kim, K., Park, S.B. (2007). A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem. Commun, 28, 2959-2961. DOI: 10.1039/b703034g.
dc.relation.references6. Zhang Y., Peng H., Huang W., Zhou Y., Yan D. (2008). Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J. Colloid Interface Sci., 325, 371-376. DOI: 10.1016/j.jcis.2008.05.063.
dc.relation.references7. Panacek, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova, N., Sharma, V.K., Nevecna, T., Zboril, R. (2006). Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity. J. Phys. Chem. B., 110, 16248-16253. DOI: 10.1021/jp063826h.
dc.relation.references8. Pal S., Song J.M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ Microbiol., 73, 1712-1720. DOI: 10.1128/AEM.02218-06.
dc.relation.references9. Kvitek, L., Panacek, A., Soukupova, J., Kolar, M., Vecerova, R., Prusek, R., Holecova, M., Zboril, R. J. (2008). Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs). Phys. Chem. C., 112, 5825. DOI: 10.1021/jp711616v.
dc.relation.references10. Wang, H., Qiao, X., Chen, J., Ding, Sh. (2005). Preparation of silver nanoparticles by chemical reduction method. Colloid Surfaces Physicochem Eng Aspect., 256, 111-115. DOI: 10.1016/j.colsurfa.2004.12.058.
dc.relation.references11. Zielinska, A., Skwarek, E., Zaleska, A., Gazda, M., Hupka, J. (2009). Preparation of silver nanoparticles with controlled particle size Procedia Chem., 1, 1560-1566. DOI: 10.1016/j.proche.2009.11.004.
dc.relation.references12. Huang, H. H., Ni X. P., Loy G. L., Chew C. H., Tan K. L., Loh F. C., Deng J. F., Xu G. Q. (1996). Photochemical Formation of Silver Nanoparticles in Poly(N- vinylpyrrolidone). Langmuir, 12, 909-912. DOI: 10.1021/la950435d.
dc.relation.references13. Carotenuto, G. (2001). Synthesis and characterization of poly(N-vinylpyrrolidone) filled by monodispersed silver clusters with controlled size. Appl Organomet Chem., 15, 344. DOI: 10.1002/aoc.165.
dc.relation.references14. Sheikh, N., Akhavan, A., Kassaee, M. Z. (2009). Synthesis of antibacterial silver nanoparticles by γ-irradiation. Physica E., 42, 132-135. DOI: 10.1016/j.physe.2009.09.013.
dc.relation.references15. Li, T., Park, H. G., Choi, S-H. (2007). γ-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Mater Chem Phys., 105, 325- 330. DOI: 10.1016/j.matchemphys.2007.04.069.
dc.relation.references16. Shin, H. S., Yang, H. J., Kim, S. B., Lee, M. S. (2004). Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ- irradiated silver nitrate solution. J. Colloid Interface Sci., 274, 89-94. DOI: 10.1016/j.jcis.2004.02.084.
dc.relation.references17. Tsuji, T., Thang, D-H., Okazaki, Y., Nakanishi, M., Tsuboi, Y., Tsuji, M. (2008). Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions. Appl. Surf. Sci., 254, 5224-5230. DOI: 10.1016/j.apsusc.2008.02.048.
dc.relation.references18. Dudok, G., Semenyuk, N., Skorokhoda, T., Melnyk, Yu., Shalata, V. (2021). Research of the regularities of obtaining silver nanoparticles with applying of polyvinylpyrolidone and their effect on composite's fungibactericidal properties. Visnyk NU "Lvivska politekh- nika". Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 1, 237-242. doi.org/10.23939/ctas2021.01.237.
dc.relation.references19. Roe, D., Karandikar, B., Bonn-Savage, N., Gibbins, B., Roullet, J. B. (2008). Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J. Antimicrob. Chemother., 61, 869-876. DOI: 10.1093/j ac/dkn034.
dc.relation.references20. Skorokhoda, V., Semeniuk, N., Dziaman, I. (2018). Vplyv pryrody kaltsiievmisnoho napovniuvacha na zakonomirnosti oderzhannia ta vlastyvosti osteoplastychnykh porystykh kompozytiv. Voprosy khymyy y khymycheskoi tekhnolohyy, 2(117), 101-108.
dc.relation.referencesen1. Sharma, V. K., Yngard, R. A., Lin, Y. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci., 145, 83-96. DOI: 10.1016/j.cis.2008.09.002. https://doi.org/10.1016/j.cis.2008.09.002
dc.relation.referencesen2. Sondi, I., Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci., 275, 177-182. DOI: 0.1016/j.jcis.2004.02.012. https://doi.org/10.1016/j.jcis.2004.02.012
dc.relation.referencesen3. Rai, M., Yadav, A., Gade, A. (2009). Silver nano- particles as a new generation of antimicrobials. Biotechnol. Adv., 27,76-83. DOI: 10.1016/j.biotechadv.2008.09.002. https://doi.org/10.1016/j.biotechadv.2008.09.002
dc.relation.referencesen4. Ray, S., Mohan, R., Singh, J.K., Samantaray, M.K., Shaikh, M.M., Panda, D., Ghosh, P. (2007). Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes. J. Am Chem. Soc., 129:15042-15053. DOI: 10.1021/ja075889z.
dc.relation.referencesen5. Lee, H.Y., Park, H.K., Lee, Y.M., Kim, K., Park, S.B. (2007). A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem. Commun, 28, 2959-2961. DOI: 10.1039/b703034g.
dc.relation.referencesen6. Zhang Y., Peng H., Huang W., Zhou Y., Yan D. (2008). Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J. Colloid Interface Sci., 325, 371-376. DOI: 10.1016/j.jcis.2008.05.063.
dc.relation.referencesen7. Panacek, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova, N., Sharma, V.K., Nevecna, T., Zboril, R. (2006). Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity. J. Phys. Chem. B., 110, 16248-16253. DOI: 10.1021/jp063826h.
dc.relation.referencesen8. Pal S., Song J.M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ Microbiol., 73, 1712-1720. DOI: 10.1128/AEM.02218-06.
dc.relation.referencesen9. Kvitek, L., Panacek, A., Soukupova, J., Kolar, M., Vecerova, R., Prusek, R., Holecova, M., Zboril, R. J. (2008). Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs). Phys. Chem. C., 112, 5825. DOI: 10.1021/jp711616v.
dc.relation.referencesen10. Wang, H., Qiao, X., Chen, J., Ding, Sh. (2005). Preparation of silver nanoparticles by chemical reduction method. Colloid Surfaces Physicochem Eng Aspect., 256, 111-115. DOI: 10.1016/j.colsurfa.2004.12.058.
dc.relation.referencesen11. Zielinska, A., Skwarek, E., Zaleska, A., Gazda, M., Hupka, J. (2009). Preparation of silver nanoparticles with controlled particle size Procedia Chem., 1, 1560-1566. DOI: 10.1016/j.proche.2009.11.004.
dc.relation.referencesen12. Huang, H. H., Ni X. P., Loy G. L., Chew C. H., Tan K. L., Loh F. C., Deng J. F., Xu G. Q. (1996). Photochemical Formation of Silver Nanoparticles in Poly(N- vinylpyrrolidone). Langmuir, 12, 909-912. DOI: 10.1021/la950435d.
dc.relation.referencesen13. Carotenuto, G. (2001). Synthesis and characterization of poly(N-vinylpyrrolidone) filled by monodispersed silver clusters with controlled size. Appl Organomet Chem., 15, 344. DOI: 10.1002/aoc.165.
dc.relation.referencesen14. Sheikh, N., Akhavan, A., Kassaee, M. Z. (2009). Synthesis of antibacterial silver nanoparticles by g-irradiation. Physica E., 42, 132-135. DOI: 10.1016/j.physe.2009.09.013.
dc.relation.referencesen15. Li, T., Park, H. G., Choi, S-H. (2007). g-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Mater Chem Phys., 105, 325- 330. DOI: 10.1016/j.matchemphys.2007.04.069.
dc.relation.referencesen16. Shin, H. S., Yang, H. J., Kim, S. B., Lee, M. S. (2004). Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in g- irradiated silver nitrate solution. J. Colloid Interface Sci., 274, 89-94. DOI: 10.1016/j.jcis.2004.02.084.
dc.relation.referencesen17. Tsuji, T., Thang, D-H., Okazaki, Y., Nakanishi, M., Tsuboi, Y., Tsuji, M. (2008). Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions. Appl. Surf. Sci., 254, 5224-5230. DOI: 10.1016/j.apsusc.2008.02.048.
dc.relation.referencesen18. Dudok, G., Semenyuk, N., Skorokhoda, T., Melnyk, Yu., Shalata, V. (2021). Research of the regularities of obtaining silver nanoparticles with applying of polyvinylpyrolidone and their effect on composite's fungibactericidal properties. Visnyk NU "Lvivska politekh- nika". Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 1, 237-242. doi.org/10.23939/ctas2021.01.237.
dc.relation.referencesen19. Roe, D., Karandikar, B., Bonn-Savage, N., Gibbins, B., Roullet, J. B. (2008). Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J. Antimicrob. Chemother., 61, 869-876. DOI: 10.1093/j ac/dkn034.
dc.relation.referencesen20. Skorokhoda, V., Semeniuk, N., Dziaman, I. (2018). Vplyv pryrody kaltsiievmisnoho napovniuvacha na zakonomirnosti oderzhannia ta vlastyvosti osteoplastychnykh porystykh kompozytiv. Voprosy khymyy y khymycheskoi tekhnolohyy, 2(117), 101-108.
dc.relation.urihttps://doi.org/10.1016/j.cis.2008.09.002
dc.relation.urihttps://doi.org/10.1016/j.jcis.2004.02.012
dc.relation.urihttps://doi.org/10.1016/j.biotechadv.2008.09.002
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectполівінілпіролідон
dc.subjectнаночастинка срібла
dc.subjectстабілізатор
dc.subjectфунгібактерицидні властивості
dc.subjectсрібловмісні композити
dc.subjectpolyvinylpyrrolidone
dc.subjectsilver nanoparticle
dc.subjectstabilizer
dc.subjectfungibactericidal properties
dc.subjectsilvercontaining composites
dc.titleВикористання полівінілпіролідону як високоефективного відновника та стабілізатора в реакціях синтезу наночастинок срібла
dc.title.alternativeApplying the polyvinylpyrrolidone as a highly efficient reductant and stabilizer in reactions of silver nanoparticles synthesis
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v5n2_Dudok_G_D-Applying_the_polyvinylpyrrolidone_185-190.pdf
Size:
922.89 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v5n2_Dudok_G_D-Applying_the_polyvinylpyrrolidone_185-190__COVER.png
Size:
1.23 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: