Ефективність теплопередачі у горизонтальному колекторі SLINKY із нанорідиною “вода – Al2O3”

dc.citation.epage170
dc.citation.issue2
dc.citation.journalTitleChemistry, Technology and Application of Substances
dc.citation.spage165
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorРимар, Т. І.
dc.contributor.authorВодько, М. В.
dc.contributor.authorRymar, T. I.
dc.contributor.authorVodko, M. V.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T07:39:12Z
dc.date.created2005-03-01
dc.date.issued2005-03-01
dc.description.abstractДосліджено теплопередачу горизонтального колектора Slinky Ø 32×3 мм спіральної конфігурації теплового насоса із нанорідиною “вода – Al2O3”. Нанорідина має хороші перспективи щодо застосування в енергетичній галузі завдяки підвищеним тепловим властивостям. Дослідження виконано в діапазоні зміни концентрації наночастинок від 0,38 до 1,3 % об. для енергетичної системи енергонезалежного будинку, зокрема, для опалювального і неопалювального періодів роботи системи теплопостачання для Київської області.
dc.description.abstractThe heat transfer of the “water – Al2O3” nanofluid in the Ø 32 × 3 mm horizontal Slinky collector of spiral configuration of a heat pump have been studied. Nanofluid has good characteristics for use in the energy sector due to its high thermal properties. Studies were performed in the range of changes in the concentration of nanoparticles from 0.38 to 1.3 % vol. for the energy system of an energy-independent building, in particular, for the heating and non-heating periods of the heat supply system for the Kyiv region.
dc.format.extent165-170
dc.format.pages6
dc.identifier.citationРимар Т. І. Ефективність теплопередачі у горизонтальному колекторі SLINKY із нанорідиною “вода – Al2O3” / Т. І. Римар, М. В. Водько // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 2. — С. 165–170.
dc.identifier.citationenRymar T. I. The heat transfer efficiency in slinky horizontal collector with “water – Al2O3” nanofluid / T. I. Rymar, M. V. Vodko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 2. — P. 165–170.
dc.identifier.doidoi.org/10.23939/ctas2022.02.165
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63650
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.references1. Kizilova, N. M., & Tkachenko, Y. D. (2018). Features of heat and mass exchange in laminar flows of micro and nanofluids in tubes and channels. Visnyk Kyivskoho natsionalnoho universytetu im. T. Shevchenka. Seriia: fizyko-matematychni nauky, 4, 62-67 (in Ukrainian) https://doi.org/10.17721/1812-5409.2018/4.9
dc.relation.references2. Rymar, T. (2021). Heat exchange and hydrodynamic characteristics of unified package of cold layer of RAH. NTU "KhPI" Bulletin: Power and Heat Engineering Processes and Equipment, 3, 51-54. DOI: 10.20998/2078-774X.2021.03.07 (in Ukrainian). https://doi.org/10.20998/2078-774X.2021.03.07
dc.relation.references3. Wang, Z., Wu, Z., Han, F., Wadsö, L., & Sunden, (2018). Experimental comparative evaluation of a graphene nanofluid coolant in miniature plate heat exchanger. International Journal of Thermal Sciences, 130, 148-156. DOI: https://doi.org/10.1016/j.ijthermalsci.2018.04.021
dc.relation.references4. Kim, H. J., Lee, S. H., Lee, J. H., & Jang, S. P. (2015). Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids. Energy, 90, 1290-1297. DOI: https://doi.org/10.1016/j.energy.2015.06.084
dc.relation.references5. Gupta, M., Singh, V., Kumar, R., & Said, Z. (2017). A review on thermophysical properties of nanofluids and heat transfer applications. Renewable and Sustainable Energy Reviews, 74, 638-670. DOI: https://doi.org/10.1016/j.rser.2017.02.073
dc.relation.references6. Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11, 151-170. DOI: https://doi.org/10.1080/08916159808946559
dc.relation.references7. Heris, S. Z., Etemad, S. G., & Esfahan, M. N. (2006) Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer, 33, 529-535. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2006.01.005
dc.relation.references8. Williams, W., Buongiorno, J., & Wen, Hu. L. (2008). Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (Nanofluids) in horizontal tube. Journal of Heat Transfer, 130(4), 42412- 42419. DOI: https://doi.org/10.1115/1.2818775
dc.relation.references9. Xuan, Y., & Li, Q. (2003). Investigation on convective heat transfer and flow features of nanofluid. Journal of Heat Transfer, 125(1), 151-155. DOI: https://doi.org/10.1115/1.1532008
dc.relation.references10. Wen, D., & Ding, Y. (2004). Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer, 47(24), 5181-5188. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012
dc.relation.references11. Rymar, T., Kazmiruk, M. & Shyika I. (2021). The Efficiency of Nanofluid Use in the Heat Supply System of a House with a Geothermal Heat Pump, 11th International Conference Nanomaterials: Applications & Properties (NAP). Odessa, Ukraine: IEEE. DOI: https://doi.org/10.1109/NAP51885.2021.9568625
dc.relation.references12. Rymar, T. (2022). Use of water-TiO2 nanofluid in horizontal Slinky collector of heat pump. Energy Engineering and Control Systems, 8(1), 7-14. DOI: https://doi.org/10.23939/jeecs2022.01.007
dc.relation.references13. Bock, Choon Pak & Young, I. Cho (1998). Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles. Experimental Heat Transfer, 11(2), 151-170. DOI: https://doi.org/10.1080/08916159808946559
dc.relation.references14. Vasylenko, S. M., Ukrainets, A. I., & Olishevsky, V. V. (2004). Basics of heat and mass transfer. Kyiv: NUKHT (in Ukrainian).
dc.relation.referencesen1. Kizilova, N. M., & Tkachenko, Y. D. (2018). Features of heat and mass exchange in laminar flows of micro and nanofluids in tubes and channels. Visnyk Kyivskoho natsionalnoho universytetu im. T. Shevchenka. Seriia: fizyko-matematychni nauky, 4, 62-67 (in Ukrainian) https://doi.org/10.17721/1812-5409.2018/4.9
dc.relation.referencesen2. Rymar, T. (2021). Heat exchange and hydrodynamic characteristics of unified package of cold layer of RAH. NTU "KhPI" Bulletin: Power and Heat Engineering Processes and Equipment, 3, 51-54. DOI: 10.20998/2078-774X.2021.03.07 (in Ukrainian). https://doi.org/10.20998/2078-774X.2021.03.07
dc.relation.referencesen3. Wang, Z., Wu, Z., Han, F., Wadsö, L., & Sunden, (2018). Experimental comparative evaluation of a graphene nanofluid coolant in miniature plate heat exchanger. International Journal of Thermal Sciences, 130, 148-156. DOI: https://doi.org/10.1016/j.ijthermalsci.2018.04.021
dc.relation.referencesen4. Kim, H. J., Lee, S. H., Lee, J. H., & Jang, S. P. (2015). Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids. Energy, 90, 1290-1297. DOI: https://doi.org/10.1016/j.energy.2015.06.084
dc.relation.referencesen5. Gupta, M., Singh, V., Kumar, R., & Said, Z. (2017). A review on thermophysical properties of nanofluids and heat transfer applications. Renewable and Sustainable Energy Reviews, 74, 638-670. DOI: https://doi.org/10.1016/j.rser.2017.02.073
dc.relation.referencesen6. Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11, 151-170. DOI: https://doi.org/10.1080/08916159808946559
dc.relation.referencesen7. Heris, S. Z., Etemad, S. G., & Esfahan, M. N. (2006) Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer, 33, 529-535. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2006.01.005
dc.relation.referencesen8. Williams, W., Buongiorno, J., & Wen, Hu. L. (2008). Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (Nanofluids) in horizontal tube. Journal of Heat Transfer, 130(4), 42412- 42419. DOI: https://doi.org/10.1115/1.2818775
dc.relation.referencesen9. Xuan, Y., & Li, Q. (2003). Investigation on convective heat transfer and flow features of nanofluid. Journal of Heat Transfer, 125(1), 151-155. DOI: https://doi.org/10.1115/1.1532008
dc.relation.referencesen10. Wen, D., & Ding, Y. (2004). Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer, 47(24), 5181-5188. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012
dc.relation.referencesen11. Rymar, T., Kazmiruk, M. & Shyika I. (2021). The Efficiency of Nanofluid Use in the Heat Supply System of a House with a Geothermal Heat Pump, 11th International Conference Nanomaterials: Applications & Properties (NAP). Odessa, Ukraine: IEEE. DOI: https://doi.org/10.1109/NAP51885.2021.9568625
dc.relation.referencesen12. Rymar, T. (2022). Use of water-TiO2 nanofluid in horizontal Slinky collector of heat pump. Energy Engineering and Control Systems, 8(1), 7-14. DOI: https://doi.org/10.23939/jeecs2022.01.007
dc.relation.referencesen13. Bock, Choon Pak & Young, I. Cho (1998). Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles. Experimental Heat Transfer, 11(2), 151-170. DOI: https://doi.org/10.1080/08916159808946559
dc.relation.referencesen14. Vasylenko, S. M., Ukrainets, A. I., & Olishevsky, V. V. (2004). Basics of heat and mass transfer. Kyiv: NUKHT (in Ukrainian).
dc.relation.urihttps://doi.org/10.17721/1812-5409.2018/4.9
dc.relation.urihttps://doi.org/10.20998/2078-774X.2021.03.07
dc.relation.urihttps://doi.org/10.1016/j.ijthermalsci.2018.04.021
dc.relation.urihttps://doi.org/10.1016/j.energy.2015.06.084
dc.relation.urihttps://doi.org/10.1016/j.rser.2017.02.073
dc.relation.urihttps://doi.org/10.1080/08916159808946559
dc.relation.urihttps://doi.org/10.1016/j.icheatmasstransfer.2006.01.005
dc.relation.urihttps://doi.org/10.1115/1.2818775
dc.relation.urihttps://doi.org/10.1115/1.1532008
dc.relation.urihttps://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012
dc.relation.urihttps://doi.org/10.1109/NAP51885.2021.9568625
dc.relation.urihttps://doi.org/10.23939/jeecs2022.01.007
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectнанорідини
dc.subjectтепловіддача
dc.subjectтеплопередача
dc.subjectтеплофізичні характеристики
dc.subjectсистема теплопостачання
dc.subjectnanofluids
dc.subjectconvective heat transfer coefficient
dc.subjectoverall heat transfer coefficient
dc.subjectthermal characteristics
dc.subjectheat supply system
dc.titleЕфективність теплопередачі у горизонтальному колекторі SLINKY із нанорідиною “вода – Al2O3”
dc.title.alternativeThe heat transfer efficiency in slinky horizontal collector with “water – Al2O3” nanofluid
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v5n2_Rymar_T_I-The_heat_transfer_efficiency_165-170.pdf
Size:
785.04 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v5n2_Rymar_T_I-The_heat_transfer_efficiency_165-170__COVER.png
Size:
461.05 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: